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ABSTRACT
Measuring algorithmic bias in machine learning has historically fo-
cused on statistical inequalities pertaining to specific groups. How-
ever, the most common metrics (i.e., those focused on individual-
or group-conditioned error rates) are not currently well-suited to
educational settings because they assume that each individual ob-
servation is independent from the others. This is not statistically
appropriate when studying certain common educational outcomes,
because such metrics cannot account for the relationship between
students in classrooms or multiple observations per student across
an academic year. In this paper, we present novel adaptations of
algorithmic bias measurements for regression for both independent
and nested data structures. Using hierarchical linear models, we
rigorously measure algorithmic bias in a machine learning model
of the relationship between student engagement in an intelligent
tutoring system and year-end standardized test scores. We conclude
that classroom-level influences had a small but significant effect
on models. Examining significance with hierarchical linear models
helps determine which inequalities in educational settings might be
explained by small sample sizes rather than systematic differences.
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1 INTRODUCTION
Measuring algorithmic bias in machine learning has historically
focused on statistical inequalities pertaining to specific groups [26].
Biased outcomes are generally quantified as some difference in
the predictions between different groups. Depending on the equity
concerns, the difference of interest can relate to general accuracy
or more specific trends in false (or true) positives or negatives
[26]. However, the most common metrics (i.e., those focused on
individual- or group-conditioned error rates) [8, 17, 25] are not cur-
rently well-suited to educational settings because they assume that
each individual observation is independent from the others. This is
not statistically appropriate when studying educational outcomes,
because such metrics cannot account for the relationship between
students in classrooms or multiple observations per student across
an academic year.
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The nested relationships we see in educational contexts can,
however, be modeled statistically by hierarchical linear models
(HLMs) [35], which can handle multiple levels of hierarchy as long
as there is enough variance and data across each level. In general,
mixed-effect linear models allow us to do multilevel analysis when
independence assumptions are violated, as is the case for the data
in this research [37]. HLMs can also account for the fact that groups
influence individuals and individuals influence groups. For example,
it is possible to specify a model where level 1 is micro (individuals,
such as students), level 2 is secondary (groups, such as classrooms),
and level 3 is macro (populations, such as school districts).

In this paper, we use HLMs to adapt algorithmic bias metrics
in two novel ways. The first maps four common classification def-
initions to regression models. The second uses these regression
adaptations in hierarchical settings. This work allows us to rigor-
ously measure bias in a machine learning model of the relationship
between student engagement in an intelligent tutoring system and
year-end standardized test scores.

We examine this problem within the context of MATHia [32], an
intelligent tutoring system (ITS) that is widely used in US middle
and high schools. Like other intelligent tutoring systems that seek
to support learners on an individualized basis [27, 36], MATHia
uses machine learning models to serve students questions based
on predictions of content mastery [33]. These individualized mas-
tery predictions are built from information extracted from records
of students’ interactions with the software, and like other ITSs,
MATHia is used by large, diverse populations of students that re-
quire personalization to address a wide variety of learning needs
[20]. The underlying algorithms in these technologies, however,
may not be equally effective for all learners—hence the need for
analytic approaches to understand the relationships between stu-
dents’ experiences and outcomes, and to measure potential biases
in those analyses [7, 18].

In this paper, we explore these issues of algorithmic bias using
machine-learned models of gaming the system. “Gaming” occurs
in ITSs when students attempt to move through an ITS through
exploitation of properties of the system rather than by learning
the material [6]. Examples of gaming including trying successive
numbers until getting a correct response or repeatedly requesting
hints until the answer is provided. This behavior is associated with
both lower end-of-year and standardized exam scores, as well as a
lower probability of college attendance in the future [3, 15, 29, 34].
Previous work has shown that ITSs improve test scores, though
not uniformly across different testing environments [23]. Year-end,
state-level standardized tests cannot capture all kinds of success,
but they are frequently used for performance prediction in learn-
ing analytics settings [16, 29, 30]. Given the relationship between
gaming, ITS usage, and exam scores, we use year-end standardized
mathematics test scores to measure student performance in relation
to the MATHia for this research.

The goal of this work is not to declare certain students as likely
to fail but rather to notice where our predictions are misaligned
with reality or where they expose a potential systemic failure to
support specific groups of students. Our research questions are:

(1) What is the relationship between gaming the system in
MATHia (over the year) and standardized mathematics test

scores administered at the end of the 2021-2022 academic
year?

(2) What kinds of bias, with respect to student race and sex, exist
in a machine learning model that uses gaming behaviors to
predict standardized test scores?

(a) What are the best methods for measuring this bias given
the hierarchical nature of the dataset, which includes class-
room level influences (e.g., teacher characteristics)?

2 METHOD
In this study, we explore possible differences in how students’ de-
mographics (as reported within school district internal data) map
to a model of the relationship between gaming the system and end-
of-year standardized exam scores. We do so by first constructing a
machine-learned detector of gaming the system from 121 students
who used MATHia during the 2020–2021 and 2021–2022 school
years, applying that detector to measure gaming the system behav-
iors for 5,856 MATHia students from the 2021–2022 school year, and
constructing a machine-learned model that predicts end-of-year
outcomes from features derived from gaming the system behaviors.

2.1 Learning Context
Our study examines data from middle and high school students in a
small city in the Northeast United States who used MATHia as part
of their regular mathematics instruction for grades 6–8 mathemat-
ics, algebra, and geometry. MATHia is an ITS which asks students
to work in two different types of workspaces: concept builders or
mastery workspaces. Concept builders present a fixed sequence
of questions associated with content intended to build conceptual
understanding and have no fine-grained knowledge components
(KCs). Mastery workspaces present multi-step problems on which
students demonstrate mastery of KCs, which is measured using
Corbett and Anderson’s Bayesian Knowledge Tracing (BKT) [13].
Both types of workspaces assist students with context-sensitive
hints and just-in-time feedback [2]. All actions are therefore associ-
ated with workspace features, which are logged in DataShop format
[22], with customized categories for MATHia-specific features.

2.2 Student Demographics Accounted for in this
Study

Demographic and education-related categories for each student
were provided by the school district, which collects this data as
part of their standard practices. These data were shared with the
researchers according to an established data-sharing agreement.
For this district, demographic data included race, Hispanic ethnicity
status, gender, age, grade-level, English Language Learner (ELL)
status, Individualized Education Plan (IEP) status (i.e., students who
are legally entitled to additional learning supports), and eligibility
for free or reduced price lunch (i.e., a proxy for socioeconomic
status).

Of the 5,856 students in the test-score data set, 47.0%were labeled
female, 52.9% were labeled male, and 0.12% were labeled nonbinary.
Race group labels were 60.6% African American; 18.0% Hispanic;
14.2% White; 4.7% Multi-Race, Non-Hispanic; 2.3% Asian; 0.24%
Native Hawaiian and Pacific Islander; and 0.07% Native American
students. 90.8% of students were in grades 6 through 10. In this
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paper, we used “African American” to match the school district’s
terminology, which may not reflect how students would describe
themselves.

Additionally, 22.1% of students were English Language Learners
(ELLs). Given the racial distribution of the school district in general,
the total population of ELL students is 72.8% African American
and 20.7% Hispanic, with the remaining students spread across the
other race groups. This school district is of particular interest for
measuring bias for its majority-Black population, many of whom
are first- or second-generation immigrants to the United States,
representing distinct Caribbean andWest African communities. The
ELL population of this school district, even when racially similar,
therefore do not always share the same home languages.

Some of these demographic attributes serve as the dimensions
across which we calculated bias in this study.

2.3 Training Data for Gaming Detectors
We generated reference labels for the gaming detectors using text
replays, following the method established in [4]. To label student
interactions, log data were first segmented into sequential clips. We
defined clips as either 8 actions or 20 seconds in duration, whichever
came first. Each sequence included the student ID, timestamps for
actions, problem details, student input, relevant knowledge/skill
metrics, system evaluations, and the determined outcome (e.g., cor-
rect, misconception, wrong answer, hint requests). These sequences
were then analyzed for "gaming the system" behavior that included
students quickly and repeatedly asking for hints without spending
time to read or assimilate the help and attempt the question again
[1], using repeated hints to get the correct answer from the system
[4], entering a systematic series of answers in quick succession
(e.g., 1,2,3,4,...) or selecting every multiple choice answer until the
correct answer is identified [4], and trying the same answer for
successive questions in a short time period without reading feed-
back (see [28] for a comprehensive list of the actions classified as
gaming behavior). An expert coder, who had previously achieved
a Cohen’s kappa of 0.62 with another rater to establish inter-rater
reliability on the text replay clips of MATHia [24]—which is above
the standard 0.6 cut-off for ill-defined/ambiguous constructs like
gaming or disengagement—determined whether clips indicated
gaming behavior. Using this methodology, the expert coder labeled
a random sample of 1,211 coded clips, of which 72 were gaming and
1,095 were not gaming (i.e., 5.94% gaming behavior, which aligns
with the usual distribution of gaming [4]). The remaining 44 clips
were unclear. As in other research using this method, we did not
include unclear clips in the training data [24]. As such, the data
used to train the gaming detectors consisted of 1,167 observations
across 121 students in two academic years. The training data had
an adjusted gaming rate of 6.17%.

Though we had gaming data for two academic years (2020–2021
and 2021–2022) we only received demographic data from the district
for the 2021-2022 school year. We did, however, have students’ self-
reported demographic data for 2020–2021. Some of the 2020–2021
data were therefore unknown, since these self-reports were not
standardized by the school district. Overall, the students in the
training data were 42.1% female, 38.0% male, and 19.8% unknown.
38.0% of students were labeled African American; 10.7%White; 3.4%

Hispanic; 10.7% Multi-Race, Non-Hispanic; 1.7% Asian; and 35.5%
unknown. No Native Hawaiian, Pacific Islander or Native American
identified students were present in the training data.

2.3.1 Machine Learning for Gaming Detectors. We extracted 162
features for machine learning predictions of gaming the system
by applying statistical aggregation functions to the expert-coded
clips. Because a clip consists of a sequence of actions, the feature
extraction process transformed these sequences into a single row of
summary data for each clip. Specifically, these functions included
minimum, maximum, quartiles, mean, standard deviation, sum, and
count of non-empty values, and they were applied to data from
the ITS, including student answer correctness, timing (i.e., time
spent per attempt), help requests, and real-time estimates of student
knowledge. Further description of the feature engineering process
is available in Levin et al. [24]. We rebalanced the training data be-
fore training the classifier using Synthetic Minority Oversampling
Technique (SMOTE) in order to ensure a uniform balance in class
distribution [11].

We trained four classification models on these data, extreme
gradient boosting (i.e., XGBoost), a decision tree, a random forest,
and a multilayer perceptron neural net [12, 31]. Three of these
models are available in scikit-learn, a commonly used machine
learning package for Python [31]. The fourth, XGBoost, is another
popular adaptation of decision trees [12]. Thesemodels were chosen
to allow comparison with previously published work [24]. We set a
maximum depth of 5 for the tree-based models and used log loss
for the evaluation metric for XGBoost. The random forest model
had the highest performance in terms of area under the receiver
operating characteristic curve (AUC ROC = .80) and recall (.67).
Though XGBoost had slightly higher precision (0.5, compared to
0.43 for the random forest model), we were more concerned with
false negatives, since the overall gaming rate was quite low. As
such, the random forest model was selected for subsequent use as
our measure of gaming the system.

2.3.2 Distribution of Gaming Detector Predictions Across Demo-
graphic Categories. We applied the random forest detector of gam-
ing to the entire dataset of all 5,856 students (6,300,569 clips) to
measure gaming the system for each of these students across the
academic year (M = 1,075 clips per student, SD = 1,054). The random
forest model labeled each clip with a probability.

The overall predicted gaming rate was higher than the labeled
data at 21.9%. Asian students had a predicted gaming rate of 15.9%;
African American 22.4%; Hispanic 24.1%; Multi-race, non-Hispanic
22.0%; Native American 17.5%; Native Hawaiian and Pacific Islander
17.7%; and White 20.5%. Female students had a predicted gaming
rate of 21.0%, male students 23.4%, and nonbinary students 0.54%.
Predicted gaming rates are likely too high (relative to the training
data) due to the change in class balance from SMOTE, but this
does not affect our downstream analysis given that we extract
features from the probabilities in a threshold-free manner rather
than binarizing them [5].

2.4 Standardized Test Score Prediction
For the state-level standardized test used in our study, the possible
scores are scaled to a standardized range of 440 to 560. These scores
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Table 1: Descriptive attributes for students in the demographic dataset, including both categorical and binary features.

Attribute Potential Values
Grade 6–12
Age 11–19
Gender Male; Female; Nonbinary
Race African American; Asian; Hispanic; White; Native American;

Native Hawaiian, Pacific Islander; Multi-Race, Non-Hispanic
Hispanic Ethnicity Y, N
Special Education Y, N
English Language Learner Y, N
Economically Disadvantaged Y, N

are grouped into four 30-point ranges by the state, representing
broad categories of student performance in relation to grade-level
standards for mathematics. Student scores are reported back to not
only the school district, but also the student and their family. Stu-
dents classified as “not meeting expectations” are explicitly slated
for additional assistance and/or instruction. Students who partially
meet expectations see language suggesting that the school, in con-
sultation with their family, “consider whether” the student needs
such additional support, while students who meet expectations are
described as “academically on track to succeed.” Students classified
as “exceeding expectations” are described as having “demonstrated
mastery of the subject matter.” Note that this definition of mastery,
provided by the state which administers the exam, is different than
how mastery is used in MATHia workspaces, where it instead is
used to describe students who havemet expectations for a particular
workspace.

To predict these year-end scores (solely from gaming), we ex-
tracted 16 features from the gaming predictions to create a student-
level dataset (i.e., one row per student) which described each stu-
dent’s general gaming behaviors across the year. Features consisted
of summary statistics of the gaming predictions, such as the num-
ber of observations per student; the predicted gaming probability
mean, standard deviation, and quartiles. We then used 10-fold cross-
validation to fit a machine learning model to these data and predict
the standardized math test scores. We considered five models: deci-
sion tree, random forest, Extra-Trees (a random forest variant [19]),
XGBoost, and linear regression. We tuned hyperparameters via
nested cross-validation for the tree-based models, including mini-
mum samples per leaf (1, 2, 3, 8, 16, or 32) and maximum number
of features considered for each decision in a tree (proportions of .1,
.25, .5, .75, 0.9, or 1.0, the square root of the number of features, or
the base-2 log of the number of features).

In all, we generated standardized test score predictions for 3,964
students, because some (n = 1,892) did not have a recorded stan-
dardized math test score. The mean score for all students in our
dataset was 481.3. Male and female students scored similarly on
year-end standardized tests: female students had a mean score of
481.4 (SD = 18.9) and male students had a mean score of 481.2 (SD =
19.8). No students labeled as nonbinary were present in the dataset
containing test scores.

There was more variance in mean test scores by race. African
American students had an average score of 479.1 (SD = 18.5); Asian
students 501.9 (SD = 23.3); Hispanic students 479.7 (SD = 18.9);
White students 488.2 (SD = 19.3); Native American 480.0 (SD =
26.1); Native Hawaiian and Pacific Islander 483.6 (SD = 10.7); and
Multi-Race, Non-Hispanic students 481.2 (SD = 18.7).

2.5 Measuring Bias
In our study, we adapt the following four commonly used classi-
fication metrics [8–10, 14], where TP = true positives, FP = false
positives, FN = false negatives, and TN = true negatives.

• Overall Accuracy Equality (OAE): OAE is satisfied when
the proportion of correct predictions (both true positives
and negatives) made by model is equal across each inter-
est group. Therefore, we say overall accuracy equality is
ensured when 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 is the same across all groups
of interest. OAE looks at differences in predictive accuracy
across different groups to try to establish whether these dif-
ferences are driven by systematic bias in the model or by
differences in the underlying data. OAE assumes that true
positives and true negatives are equally important, though
this assumption is not always true in real-world scenarios
[10].

• Statistical Parity (SP): SP measures the bias of a model by
ensuring the predicted positive and negative class propor-
tions are equal across every group. Specifically, the ratio of
predicted positives 𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 and predicted negatives
𝐹𝑁+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 should be consistent across all groups. SP
tries to establish that there are similar predicted rates of
success (or failure) across groups. This particular definition
has been critiqued because it can lead to forcing dissimilar
groups to have similar outcomes, even when this may not
be desirable or make sense. [14].

• Conditional Procedure Accuracy Equality (CPA): CPA as-
sesses a model’s predictions by ensuring actual positives
and negatives are consistent across all groups. Therefore,
to meet the conditional procedure accuracy equality, the
model’s rate of correctly predicting positives 𝑇𝑃

𝑇𝑃+𝐹𝑁 and
negatives 𝑇𝑁

𝑇𝑁+𝐹𝑃 should be consistent for all groups to meet
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the conditional procedure accuracy equality. CPA is equiva-
lent to comparing the recall of the model for each group.

• Conditional Use Accuracy Equality (CUA): CUA measures
the model’s predictions rather than the actual outcomes.
Thus, it focuses on ensuring the proportion of all predicted
positives 𝑇𝑃

𝑇𝑃+𝐹𝑃 and negatives 𝑇𝑁
𝑇𝑁+𝐹𝑁 are equivalent for all

groups. CUA is equivalent to comparing the precision of the
model for each group.

Because we are working with a regression problem, we adapted
the above definitions into the following analogous formulas:

• Overall Accuracy Equality: OAE is measured with the root
mean squared error (RMSE) between the actual and predicted
values for the interest group. Variance in accuracy is ex-
plained by the category of interest (e.g., gender or race). This
metric aims to ensure the predictions are equally accurate
across protected groups of interest, but does not differentiate
between positive and negative error. A value of 0 indicates
equal error across predictions per group.

• Statistical Parity: This metric examines whether the groups
of interest receive similar model-predicted outcomes (e.g.,
test score) on average. We measured SP by taking the mean
of predicted values for each group of interest. Statistical
parity ensures the means of predicted values are consistent
across protected interest groups. This measure lets us see if
the model systematically predicts higher or lower for groups.
A value of 0 indicates equal predictions of scores per group.

• Conditional Procedure Accuracy Equality: We assessed CPA
analogously to the measurement of OAE. However, this met-
ric conditions on the actual values, focusing on instances
across groups where the actual outcome (e.g., test score) is
above or below a specified threshold. Specifically, this metric
allows us to investigate the model’s prediction accuracy for
specific cases meeting the test score threshold. Thresholding
at a specific value is required here, given that we cannot con-
dition easily on a continuous outcome. A value of 0 indicates
equal error across predictions per group.

• Conditional Use Accuracy Equality: CUA is also measured
similarly to how CPA is measured. However, this metric
conditions on the predicted value of the test scores, rather
than the true values. We use the same test score threshold
used for CPA. A value of 0 again indicates equal error across
predictions per group.

For both CPA and CUA, we use thresholds of both 470 (the cutoff
for partially meeting expectations) and 500 (the cutoff for meeting
expectations). These thresholds allow us to compare how our model
performs for students seen as needing extra support versus students
seen as succeeding. High school students in this state must score
486 or higher on their mathematics exam to graduate.

Our study deals with datasets which violate independence as-
sumptions; we therefore again adapt the regression bias metrics
to account for these violations. HLMs can be more flexible than
traditional linear models and can support the kinds of complicated
data structures which occur in the real world [35]. In this study,
we use a random intercept to model standardized test score per
classroom, allowing us to capture the teacher effect on classrooms
[37]. By allowing each classroom to have a unique intercept, we

can account for baseline differences between classrooms to isolate
the effect that categories like race or sex have on test scores. The
3,964 students included in our dataset represented 267 classrooms
(M = 14.9 students per classroom, SD = 8.5). We fit both a traditional
and a hierarchical model to compare measures of bias that do and
do not account for variance in this secondary relationship.

For categories withmore than two groups, we calculate an overall
score for each metric by taking the difference between the max-
imum and minimum predicted values for the groups. Doing this
calculation allows us to have one number per metric as well as quan-
tify the extent of potential bias in the model’s predictions across
these groups. This is true for both the traditional and hierarchical
metrics.

3 RESULTS
Random forest had the highest 𝑅2 (0.494) score of the models by
a small margin; linear regression had the lowest 𝑅2 of 0.464. The
random forest model also had the smallest RMSE of the trained
models: 13.8. We therefore used the predictions from the random
forest model for our bias analysis.

We initially evaluated the results with both traditional statistical
analysis and algorithmic bias metrics. We visualized predicted test
scores compared to actual year-end scores, categorizing students
by race and sex (Figure 1). Overall, the model predicted that male
students had lower test scores than female students: female students
had a mean predicted score of 482.8; male students had a mean
predicted score of 479.9. The mean predicted score for male students
was 1.3 points lower than the true mean Asian students had the
highest predicted mean score (493.4) while Hispanic students had
the lowest predicted mean score (479.2). The remaining predicted
mean scores were African American: 480.8; White: 483.8; Native
American: 484.7; Native Hawaiian and Pacific Islander: 485.1; and
Multi-Race, Non-Hispanic: 480.7.

Female students had better predictive accuracy than male stu-
dents for OAE, CPA, and CUA across both the hierarchical and
traditional metrics (Table 2). When calculating these values across
sex, the traditional and hierarchical metrics were largely similar,
though in some cases the traditional method overestimated bias
(up to 35.6% higher for SP) or underestimated bias (15.2% lower for
CPA ≥ 470 and 19.5% lower for CPA ≥ 500).

In the hierarchical models, African American was the baseline
(largest) group for race, meaning differences in the model were in
relation to African American students rather than an overall mean.
Statistical parity was generally quite small across both traditional
and hierarchical models, while mean square error rates varied more
widely (Table 3).

For the hierarchical models, which race group had the smallest
or largest error varied per metric. For example, Asian students had
the largest predicted RMSE for CPA and CUA for students scoring,
or predicted to score, above 500, while Native American students
had the largest RMSE for the other error-based metrics. Native
Hawaiian and Pacific Islander students had the smallest predicted
error for three of the error-based metrics, while Hispanic students
had the smallest predicted error for the other two. White, African
American, and multi-race, non-Hispanic students were consistently
none of the extremes across metrics. Of note is that zero Native
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Table 2: Regression-based bias metrics, both traditional and hierarchical, for student sex. All results are significant (𝛼 = 0.05) in
the HLMs other than those marked with #.

OAE SP CPA
≥ 470

CPA
< 470𝑏

CPA
≥ 500

CPA
< 500

CUA
≥ 470

CUA
< 470𝑎,𝑏

CUA
≥ 500𝑎,𝑏

CUA
< 500

Hierarchical 1.214 2.176 2.273 0.788# 4.476 0.289# 1.212 1.442 0.717# 1.242
Traditional 1.148 2.951 1.928 0.634 4.048 0.330 1.142 1.444 0.671 1.197

Figure 1: Boxplots of true and predicted (RF model) mean
test scores for students by race and sex.

American or Native Hawaiian and Pacific Islander students were
predicted to score at or above 500 points, even though they are
present in the true scores. As such, we also looked at the threshold
for students who partially meet expectations: 470 points. Using this
cutoff, Native American students had the largest discrepancy in
error rate, leading to a CPA of 28.370, the largest spread in predictive
error for any of the error-based metrics.

A benefit of HLMs is their ability to measure statistical signifi-
cance of differences in the predictive model. For sex, the relatively
small differences in predictive error rates for CPA (score < 470;
𝑝 = .189), CPA (score < 500; 𝑝 = .433), and CUA (score ≥ 500;
𝑝 = .374) are not significant (Table 2). Measuring statistical signif-
icance is additionally useful for examining biases related to race,
since there were several groups in these data. Seven of the metrics

are changed when we calculate hierarchical bias using only race
groups with results that were significantly different than the base-
line (Table 4). OAE, the second largest difference of the error-based
metrics for race, only had a statistically significant difference in
the predictive error rate (compared with the baseline error) for
Native American students (RMSE = 24.0, 𝑝 = .004). The original
smallest predictive error, for Native Hawaiian and Pacific Islander
students (RMSE = 7.7), was not significant (𝑝 = .162). If we recal-
culate OAE using only significant differences—that is, using the
statistically significant baseline RMSE of 13.9 rather than the small-
est observed RMSE—it was reduced from 16.2 to 10.1. SP for race
was, however, unchanged by accounting for statistical significance,
since the largest and smallest differences in predicted scores were
both significant (𝑝 = .043 and 𝑝 = .021, respectively), with a nearly
12-point spread between the means of the highest and lowest pre-
dicted scores. CUA (< 470) had no statistically different error rates
across different race groups (the smallest p-value was .071, while
the largest was .852).

For English language learner status, usingHLMs, error rates were
not statistically significantly different across conditional definitions
nor for overall accuracy equality. SP was, however, five points
lower for ELL students. We can likely conclude the predictive model
reflects increased difficulties in test-taking for students who are
still learning English, rather than bias in the predictive model. This
is not a surprising result, given that students are being instructed
in a new language, and so allows us to conclude that ELL students
likely need additional academic support, but are not gaming the
system at very different rates than native English speakers nor was
our model systematically mis-predicting their expected test scores.

4 DISCUSSION
4.1 RQ1: What is the relationship between

gaming the system in MATHia (over the
year) and standardized mathematics test
scores administered at the end of the
2021-2022 academic year?

Male and female students scored nearly identically on year-end
standardized tests, but when gaming the system was used to predict
these scores, male students were predicted to do nearly 3 points
worse on average (female: 482.8; male: 479.9). A spread of 3 points
can be enough to place students into different categories of achieve-
ment. For example, 319 students (over 8% of students) scored be-
tween 497 and 503 points (inclusive).

More male students were present in the data than female stu-
dents, so this is not likely accounted for by basic differences in
representation in the training data. Features were extracted from
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Table 3: Regression-based bias metrics, both traditional and hierarchical, for student race. 𝑎 indicates that no Native American
students were present in this group. 𝑏 indicates that no or Native Hawaiian and Pacific Islander students were present in this
group.

OAE SP CPA
≥ 470

CPA
< 470𝑏

CPA
≥ 500

CPA
< 500

CUA
≥ 470

CUA
< 470𝑎,𝑏

CUA
≥ 500𝑎,𝑏

CUA
< 500

Hierarchical 16.224 11.969 5.952 28.370 12.271 19.918 16.031 1.839 6.612 10.658
Traditional 15.103 14.252 6.919 28.924 12.578 19.092 15.107 1.603 6.840 15.107

Table 4: Hierarchical bias metrics for student race using only statistically significant group differences (𝛼 = 0.05). 𝑎 indicates that
no Native American students were present in this group. 𝑏 indicates that no or Native Hawaiian and Pacific Islander students
were present in this group.

OAE SP CPA
≥ 470

CPA
< 470𝑏

CPA
≥ 500

CPA
< 500

CUA
≥ 470

CUA
< 470𝑎,𝑏

CUA
≥ 500𝑎,𝑏

CUA
< 500

10.084 11.969 2.688 28.370 1.900 13.844 9.936 0 4.288 10.058

these data without any demographic information, nor anything that
would arguably be a proxy for demographic information, and yet
they are not well calibrated for all different groups. Male students
were predicted to game the system more frequently than female
students, perhaps accounting for their lower predicted scores. The
three race groups with the lowest predicted gaming rates (Asian,
Native American, Native Hawaiian and Pacific Islander) had the
highest predicted mean test scores. In the actual test scores, how-
ever, White students were among the three highest-scoring groups,
rather than Native American students. These findings may be ar-
tifacts of focusing solely on the relationship between gaming and
test score outcomes, though many other factors also contribute to
outcomes.

4.2 RQ2: What kinds of bias, with respect to
student race and sex, exist in a machine
learning model that uses gaming behaviors
to predict standardized test scores? What are
the best methods for measuring this bias
given the hierarchical nature of the dataset?

The differences between the traditional metrics and the hierarchical
difference were not often large, though there are noticeable excep-
tions for a small number of metrics for race (SP, CUA<500). We can
likely conclude that classroom-level influences had a smaller effect
on models than we hypothesized in this school district. However,
the HLM approach we propose is still more comprehensive in its
combination of statistical rigor with established algorithmic bias
metrics. It allows us to observe both the nested nature of the data as
well as the differences in predictive accuracy across groups, which
are both relevant to understanding the relationship of predictive
bias to other potential sources of bias and difference in educational
outcomes.

Perhaps most important is that HLMs include valid measures
of statistical significance that are important for making inferential
claims about bias in machine learning models. While traditional
measures of algorithmic bias could likely be adapted to offer signifi-
cance as well, they have not done so previously. Moreover, adding a

measure of statistical significance to non-hierarchical metrics would
violate assumptions of non-independence in cases where there is
reason to believe biases might be correlated between students (e.g.,
within a classroom). Examining significance helps distinguish con-
clusions, such as which inequalities might be explained by small
sample sizes rather than true difference. Statistical validity can then
inform our future work and conclusions. For example, conditional
procedure accuracy by sex, conditioned on students who met or
exceeded expectations, was the largest difference of any of the
error-based metrics, and was significant in the HLMs. The smaller
inequality in accuracy for students who did not meet expectations
was not significant. This is useful for developing next steps; we can
validate the discrepancy in predicted scores for students who are
generally seen as “succeeding” and investigate why this occurs. We
used test scores as one measure of student outcome; false negatives
mean the predictive model failed to notice students who may not
meet performance thresholds. This particular model, however, has
no significant difference in accuracy with respect to false negatives
(CPA), when conditioned on sex, for both thresholds used.

For race, the recalibrated OAE score was similar to the predicted
error rates for students who scored or were predicted to score be-
low 500. Because the predictive error rates for other race groups
were not statistically significant, we can interpret this as having
achieved OAE for most groups, but not for Native American stu-
dents. The number of Native American students in our dataset was
quite small, however, so this finding should be considered tentative
until replicated. The recalibrated CPA and CUA scores for students
scoring at or above 500 were also much smaller. The recalibrated
CUA score for students scoring below 470 was 0, as there were
no significant differences in error rates, indicating equal predicted
error rates across all race groups. These results help us to focus on
a pattern of increased predictive error for students scoring between
470 and 500 (i.e., those classified as partially meeting expectations)
on these exams.

This predictive discrepancy (and perhaps others seen here) is
likely partially attributable to (a lack of) representation in the train-
ing data. African American students were the most represented
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in the dataset and in the school district and had a mean predic-
tive value closest to the true mean. Native American students only
represented 0.07% of the students, and our predictive accuracy for
this group was poor, including that none of these students were
predicted to meet or exceed expectations despite their having done
so in the actual exam. Similarly, Asian students represented 2.3%
of students, and their scores were underpredicted compared to the
baseline, likely representing an issue with predictive regression to
the mean of the student population. This could be remedied with
additional, fairness-focused, preprocessing techniques which allow
recalibration of the training data to eliminate algorithmic bias, even
beyond SMOTE [21]. Future work might also seek to include these
under-represented groups in the training data using an explicit
demographic sampling strategy.

4.3 Limitations
Our values for certain demographic categories for this work are
incomplete, representing the school district’s current attempts to
classify students, rather than the true possible range. For example,
gender was reported as female, male, and nonbinary. While a third
gender category is useful, these three categories do not include
whether a student is cisgender or transgender. Moreover, nonbinary
may not fully capture the range of gender expressions in this data,
and it is possible that even students who might identify with the
term may not feel comfortable or safe reporting it. In the end, the
small number of nonbinary students—none of whom had reported
test scores—meant we were not able to include them in our analysis.

Similarly, the racial groups provided do not capture the full
breadth of possible racial identities and ethnicities. For example,
“Multi-Race, Non-Hispanic” does not allow us to know which races
are represented in this group. Similarly, this particular school dis-
trict’s Black population has a variety of ethnic backgrounds, in-
cluding distinct immigrant communities with distinct language
practices, which is not reflected in the label of “African American.”.
Also of note is that this dataset includes Hispanic as both a race
group and ethnicity, with the Hispanic Ethnicity flag perfectly cor-
relating to whether the student’s listed race group was Hispanic.
Relatedly, students from Brazil (a sizeable group in this district)
would not be identified by the school as Hispanic, even though they
are Latin American.

There are related limitations in the training data itself. The first
is that the data used to train the gaming detector was not directly
representative of the total student population. Though a demon-
stration of generality, this could be a source of bias and inaccuracy
in our test score predictions. The training data was also collected
during both the 2020–2021 and 2021–2022 school years, though
the testing data was from only the 2021–2022 school year. Students
experienced varying amounts of in person and remote instruction
across these two years due to COVID-19, but we saw similar rates
of gaming in our training data across both years. Machine learning
models inherently draw predictions on incomplete models of the
world, which underlines the importance of considering whether
these models create biased predictive outcomes.

5 CONCLUSION
The development of hierarchical bias metrics allows the learning
analytics community to better understand where our predictive
models—and the analyses and adaptive learning platforms they
enable—fall short of equity goals. When a predictive model is not
well calibrated for distinct groups, we risk neglecting those already
at the margins. Our novel contribution of algorithmic bias metrics
for regression and HLMs allows more accurate exploration of biases
in situations where not all predictions are independent of each other,
which is also of interest to a broad machine learning community.
Hierarchical structure, modeled here in terms of students within
classrooms, can also account for common scenarios such as multiple
predictions per student (which are statistically dependent) while
measuring bias and providing statistical significance testing. Future
work can, for example, model the introduction of biases at each level
of a process (e.g., during gaming the system predictions made many
times per student in this study). This research used only gaming
indicators to predict year-end test scores. Future work could also
improve these models by incorporating additional predictive factors
and relevant dimensions in which biases could occur, like finer-
grained ethnicity data, to better identify which students may not
be seeing the full benefits of using an ITS.
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