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ABSTRACT 

Affect detection is a key component in developing 

intelligent educational interfaces that are capable of 

responding to the affective needs of students. In this paper, 

computer vision and machine learning techniques were 

used to detect students’ affect as they used an educational 

game designed to teach fundamental principles of 

Newtonian physics. Data were collected in the real-world 

environment of a school computer lab, which provides 

unique challenges for detection of affect from facial 

expressions (primary channel) and gross body movements 

(secondary channel)—up to thirty students at a time 

participated in the class, moving around, gesturing, and 

talking to each other. Results were cross validated at the 

student level to ensure generalization to new students. 

Classification was successful at levels above chance for off-

task behavior (area under receiver operating characteristic 

curve or AUC = .816) and each affective state including 

boredom (AUC =.610), confusion (.649), delight (.867), 

engagement (.679), and frustration (.631) as well as a five-

way overall classification of affect (.655), despite the noisy 

nature of the data. Implications and prospects for affect-

sensitive interfaces for educational software in classroom 

environments are discussed. 
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H.5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous. 

INTRODUCTION 

Learning from intelligent educational interfaces elicits 

frequent affective responses from students and wide 

variations in their behavior. A variety of affective states 

occur frequently in learning contexts, and can have both 

positive and negative effects on students’ learning [12,38]. 

For example, students often encounter exercises that require 

information or techniques with which they are not familiar. 

Confusion, frustration, boredom, and other affective states 

are elicited in response to how these impasses are resolved 

[4,12,15]. These and other affective experiences are 

particularly important because they are inextricably bound 

to learning by coloring students’ perceptions of a learning 

environment and changing how well they learn from it 

[9,19]. 

A human teacher can observe students’ affect in a 

classroom or one-on-one tutoring situation (cf. [28]) and 

use that information to determine who needs help and to 

adjust the pace or content of learning materials. On the 

other hand, computerized learning environments used in 

school computer labs rarely incorporate such 

accommodations into their instructional strategies. One of 

the many challenges of creating intelligent educational 

interfaces is developing systems that can detect and respond 

to the affective states of students, though some initial 

progress has been made in laboratory settings (see [13] for a 

recent review). The goal of these interfaces is to provide a 

computerized learning environment that responds to the 

affective needs of students, whether by redirecting off-task 

behavior, providing encouragement, or altering learning 

materials to better suit the student. Much work remains to 

be done for effective affect-sensitivity in learning 

environments in the wild, however. At the core of such 

systems is the ability to detect or anticipate the affective 

state of students, a proposition considered in this paper. 
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Affect can be detected using various types of data. For 

example, interaction data (e.g., number of actions taken in 

an interface, speed of help requests) [3], facial expressions 

[5,26], posture [33], and other data sources have been used 

to detect the affective states of students (see [6,42] for 

recent reviews). Facial-feature based affect detection is 

particularly attractive because (a) there is a strong link 

between facial features and affective states [16], (b) it does 

not depend on learning environment or content, and (c) it 

does not require expensive hardware, as webcams are 

ubiquitous on laptops and mobile devices. For these 

reasons, we focus on vision-based techniques to detect 

affective states from facial features (primary channel) and 

body movements (secondary channel). Affect detection 

based on facial features has been the subject of considerable 

previous research (see [6,42] for reviews); albeit outside of 

learning contexts and mainly in laboratory settings (see 

exceptions discussed below). Laboratory environments 

have the advantage of relatively consistent lighting and 

freedom from distractions from other students, cell phones, 

walking around, and numerous other factors. Users of 

computer interfaces in the wild (e.g., students in a school 

computer lab) may be subject to such external distractions 

that make affective data far noisier than data collected in 

laboratory contexts. In many cases, motion, unusual head 

pose, and face-occluding gestures are so prevalent that 

facial feature detection is not possible and affect detection 

must be done using other modalities. 

Much of the previous work in face-based affect detection 

has also focused on the so-called basic emotions of anger, 

fear, sadness, happiness, disgust, and surprise (see review in 

[6]). However, a recent review and meta-analysis of 24 

studies indicated that these basic-emotions are quite 

infrequent in the context of learning with educational 

software [12]. Instead, students’ affective experience 

mainly consists of learning-centered affective states (which 

we focus on in this study), such as engaged concentration, 

boredom, confusion, frustration, happiness, and anxiety. It 

is unclear if these states can be detected with similar fidelity 

as the basic emotions, where the links between emotion and 

expression have been carefully mapped out for decades 

[16,37]. Similar mappings for the learning-centered 

affective states are largely missing (see [30] for some initial 

work in this direction), and it is an entirely open question if 

such mappings even exist. 

The present paper addresses these two challenges in an 

effort to detect naturalistic episodes of learning-centered 

affective states while students were using a computer 

interface in the setting of a school’s computer lab. Students 

were in a context that was rich in interruptions, distractions, 

and conversations from fellow students. If successful, we 

will have shown that learning-centered affective states can 

be detected from facial expressions and body movements in 

the context most basic to education—a school. 

RELATED WORK 

There is a rich history on affect detection from facial 

features [6,42]. To keep scope manageable, we focus here 

on papers attempting to detect facial expressions in the wild 

and papers detecting learning-centered affective states from 

naturalistic facial expressions, as opposed to acted (posed) 

facial expressions. Furthermore, although we also consider 

gross body movements as an additional measure, the 

emphasis of the work and consequently the literature review 

is on facial features. 

Facial Expression and Affect in the Lab 

Kapoor et al. [25] developed the first system detecting 

affect in a learning environment. They used multimodal 

data channels including facial features (from video), a 

posture-sensing chair, a pressure-sensitive mouse, a skin 

conductance sensor, and interaction data to predict 

frustration in an automated learning companion. They were 

able to predict when a user would self-report frustration 

with 79% accuracy (chance being 58%). Furthermore, using 

similar multimodal sensor fusion techniques including 

facial features, Kapoor et al. [26] were able to classify 

interest/disinterest with 87% accuracy (chance being 52%). 

Hoque et al. [23] used facial features and temporal 

information in videos to classify smiles as either frustrated 

or delighted – two states that are related to learning. They 

accurately distinguished between frustrated and delighted 

smiles correctly in 92% of cases. They also found 

differences between acted facial expressions and 

naturalistic facial expressions. In acted data only 10% of 

frustrated cases included a smile, whereas in naturally 

occurring frustration smiles were present in 90% of cases. 

These results illustrate the fact that there can be large 

differences between naturalistic and posed data. 

In a more recent affect detection effort, Whitehill et al. [41] 

used Gabor features (appearance-based features capturing 

textures of various parts of the face) with a support vector 

machine (SVM) classifier to detect engagement as students 

interacted with cognitive skills training software. Labels 

used in their study were obtained from retrospective 

annotation of videos by human judges. Four levels of 

engagement were annotated, ranging from complete 

disengagement (not even looking at the material) to strong 

engagement. They were able to detect engagement with an 

Area Under the ROC Curve (AUC, averaged across all four 

levels of engagement) of .729 where AUC = .5 is chance 

level detection. 

Gabor features have also been used for detection of Action 

Units (AUs). Action Units are labels for specific facial 

muscle activations (e.g., lowered brow) [17]. As noted in 

[39], detecting action units can be a useful intermediate step 

in the process of detecting affective states. AUs provide a 

small set of features for use in affect detection efforts. A 

large database of AU-labeled data can be used to train AU 

detectors, which can then be applied to new data to generate 

AU labels. This can be particularly useful for datasets that 



are difficult to collect (such as data in the wild) and may 

thus have few instances. The smaller set of features 

provided by the AU detector (compared to, for example, 

hundreds of Gabor features) can reduce overfitting. 

The Computer Expression Recognition Toolbox (CERT) 

[29] is a computer vision tool used to automatically detect 

AUs as well as head pose and head position information. 

CERT uses features extracted from Gabor filters as inputs 

to SVMs to provide likelihood estimates for the presence of 

19 different AUs in any given frame of a video stream. It 

also supplies measures of unilateral (one side of the face 

only) AUs for three action units, as well as ―Fear Brow‖ 

and ―Distress Brow,‖ which indicate the presence of 

combinations of AU1 (Inner Brow Raiser), AU2 (Outer 

Brow Raiser), and AU4 (Brow Lowerer). CERT has been 

tested with databases of both posed facial expressions and 

spontaneous facial expressions, achieving accuracy of 

90.1% and 79.9%, respectively, when discriminating 

between instances of the AU present vs. absent [29]. 

Grafsgaard et al. [20] used CERT to recognize the level of 

frustration (self-reported on a Likert scale) in a learning 

session and achieved modest results (R
2
 = .24). 

Additionally, they achieved good agreement between the 

output of CERT AU recognition and human-coded ground 

truth measurements of AUs. After correcting for individual 

differences in facial feature movements they achieved 

Cohen’s kappa = .68 and higher for several key AUs. They 

did not perform detection at a fine-grained level (i.e., 

specific affective episodes), instead detecting the presence 

of affect in the entire learning session. However, their work 

does provide evidence of the validity of CERT for 

automated AU detection. 

In another study using CERT, Bosch and D’Mello [5] used 

machine learning to build fine-grained detectors for 

learning-centered affective states of novice programming 

students using the likelihoods of AUs provided by CERT. 

The students took part in the study in a laboratory setting. 

Students made retrospective judgments of their own 

affective states. Confusion and frustration were detected at 

levels above chance (22.1% and 23.2% better than chance, 

respectively), but performance was much lower for other 

states (11.2% above chance for engagement, 3.8% above 

chance for boredom). 

Facial Expressions and Affect in the Wild 

All of the aforementioned studies have been conducted 

during one-on-one interactions and with the high degree of 

control afforded by the laboratory, so generalizability to 

real-world contexts is uncertain. However, some relevant 

research has been done in real-world contexts including a 

classroom or school computer lab as reviewed below. 

Facial expression data collected in the wild have been the 

subject of some research. The Affectiva-MIT Facial 

Expression Dataset (AM-FED) [31] contains videos of 

participants recorded on their own computers, in various 

settings while they watched Super Bowl commercials 

which were likely to elicit smiles. They provided baseline 

performance for smile detection (AUC = .90), AU2 (outer 

brow raise, AUC = .72), and AU4 (brow lower, AUC = 

.70). This dataset has been used for detection of whether 

viewers liked the commercials (AUC = .82) and wanted to 

view them again (AUC = .79) [32]. However, affect 

detectors have not been developed on this dataset to date. 

Another study on smiles collected in the wild was 

conducted on a college campus using cameras set up in 

various university buildings. Hernandez et al. [21] used 

computer vision techniques to detect smiles and found 

expected patterns (e.g., more smiles on weekends and 

holidays). They demonstrated the feasibility of detecting 

smiles in the wild, but the question of whether data in the 

wild can be used for affect detection remains open. 

The Emotion Recognition in the Wild Challenge [10] is an 

effort to unify detection of affect in the wild by creating a 

common benchmark for various state of the art audio and 

visual affect detection techniques. The data set used in this 

challenge was the Acted Facial Expressions in the Wild 

database, which was compiled by using clips from movies. 

This resulted in professionally acted affective expressions, 

rather than naturally experienced ones, which raises some 

concerns due to well-known differences between acted and 

naturalistic expressions (e,g., see [23]). 

Perhaps the closest study to the current paper is one by 

Arroyo et al. [2]. They tracked emotions of high school and 

college mathematics students using self-reports and also 

recorded several modalities (interaction data from log-files, 

facial features, posture, skin conductance, and mouse 

movements). Their best models explained 52% of the 

variance (R
2
) for confidence, 46% for frustration, 69% for 

excitement, and 29% for interest. Although this research 

suggests that it might be possible to perform automated 

affect detection in classroom, this conclusion should be 

interpreted with a modicum of caution. This is because the 

model was not validated with a separate testing set (i.e. no 

cross validation was performed), and the size of the data set 

was very small (20-36 instances depending on model) due 

to missing data. These issues raise concerns of overfitting to 

specific students and instances in the training data. 

Current Study 

The literature review revealed that there are studies that 

focus on detection of naturalistic affective states, many of 

which go beyond the basic emotions by considering 

learning-centered affect. However, this work has been done 

within controlled lab contexts, so it is unclear if the 

detectors will generalize to the wild. On the other hand, 

researchers have started to make great strides towards 

moving to the wild, but these studies are limited in that they 

either focus on more atomic facial expressions rather than 

affective state detection [21,31], are still in need of cross-

validation [2], or study acted instead of naturalistic affect 

[10].  



To address these challenges, the present study, for the first 

time, considers the detection of learning-centered affective 

states in the wild. Videos of students faces’ and affect 

labels (for supervised learning) was collected while 

students interacted with a game-based physics education 

environment called Physics Playground (formerly Newton’s 

Playground; [40]) in their school’s computer lab, which was 

regularly used by students for academic purposes. 

METHOD 

Data Collection 

Participants. The sample consisted of 137 8
th

 and 9
th

 grade 

students (57 male, 80 female) who were enrolled in a public 

school in a medium-sized city in the Southeastern U.S. 

They were tested in groups of about 20 students per class 

period for a total of four periods on different days (55 

minutes per period). Students in the 8th and 9th grades were 

selected because of the alignment of the Physics 

Playground content and the State Standards (relating to 

Newtonian Physics) at those grade levels. 

Interface. Physics Playground is a two-dimensional game 

that requires the player to apply principles of Newtonian 

Physics in an attempt to guide a green ball to a red balloon 

in many challenging configurations (key goal). The player 

can nudge the ball to the left and right (if the surface is flat) 

but the primary way to move the ball is by drawing/creating 

simple machines (which are called ―agents of force and 

motion‖ in the game) on the screen that ―come to life‖ once 

the object is drawn (example in Figure 1). Thus, the 

problems in Physics Playground require the player to 

draw/create four different agents (which are simple 

machine-like objects): inclined plane/ramps, pendulums, 

levers, and springboards. All solutions are drawn with 

colored lines using the mouse. Everything in the game 

obeys the basic laws of physics relating to gravity and 

Newton’s three laws of motion. 

Figure 1. Ramp solution for a simple Physics Playground 

problem 

Procedure. The study took place in one of the school’s 

computer-enabled classrooms, which was equipped with 

about 30 desktop computers for schoolwork. Each computer 

was equipped with a monitor, mouse, keyboard, webcam, 

and headphones. Inexpensive webcams ($30) were affixed 

at the top of the monitor on each computer. At the 

beginning of each session, the webcam software displayed 

an interface that allowed students to position their faces in 

the center of the camera’s view by adjusting the camera 

angle up or down. This process was guided by on-screen 

instructions and verbal instructions given by the 

experimenters, who were also available to answer any 

additional questions and to troubleshoot any problems. 

We administered a qualitative physics pretest during the 

first day and a posttest at the end of the fourth day (both 

online). In this study we consider data from the second and 

third days (roughly two hours total) when students were 

only playing the game and not being tested. Students’ 

affective states and on-task vs. off-task behaviors were 

observed during their interactions with Physics Playground 

using the Baker-Rodrigo Observation Method Protocol 

(BROMP) field observation system as detailed below [35]. 

These observations served as the ground truth labels used in 

training automated detectors. 

The affective states of interest were boredom, confusion, 

delight, engaged concentration, and frustration. This list of 

states was selected based on previous research [12] and 

from observing students during the first day of data 

collection (this data was not used in the current models). In 

addition to affect, some basic student behaviors were 

observed. Students were coded as on task when looking at 

their own computer, on-task conversation when conversing 

with other students about what was happening on their own 

or others’ screens, and off task in other situations (e.g., task-

unrelated conversation, watching other students without 

conversation, using a cellphone). 

BROMP. BROMP is a field coding protocol. In BROMP 

trained observers perform live affect and behavior 

annotations by observing students one at a time using a 

round-robin technique (observing one student until visible 

affect is detected or 20 seconds have elapsed and moving 

on to the next student). Observers use side glances to make 

a holistic judgment of the students’ affect based on facial 

expressions, speech, body posture, gestures, and student 

interaction with the computer program (e.g., whether a 

student is progressing or struggling). Observers record 

students in a pre-determined order to maintain a 

representative sampling of students’ affect, rather than 

focusing on the most interesting (but not most prevalent) 

things occurring in the classroom. Every BROMP observer 

was trained and tested on the protocol and achieved 

sufficient agreement (kappa ≥ .6) with a certified BROMP 

observer before coding the data.  

The coding process was implemented using the HART 

application for Android devices [35], which enforces the 

protocol while facilitating data collection. Observation-

codes recorded in HART were synchronized with the 



videos recorded on the individual computers using Internet 

time servers. 

It should be noted that there are many possible affect 

annotation schemes, each with their strengths and 

weaknesses, as recently reviewed in [36]. BROMP was 

selected for this study because it has been shown to achieve 

adequate reliability (among over 70 coders in over a dozen 

studies with a variety of learning environments [34]) in 

annotating affective states of a large number of students 

occurring in the ―heat of the moment‖ and without 

interrupting or biasing students by asking them to self-

report affect. 

Instances of Affect Observed 

It was not always possible to observe both affect and 

behavior in situations where students could not be easily 

observed (e.g., bathroom breaks, occlusions caused by hand 

to face gestures) or where the observer was not confident 

about an observation. Affect could not be observed in 8.1% 

of cases while on-task/off-task behavior could not be 

observed in 2.8% of cases. We obtained 1,767 successful 

observations of affective states and 1,899 observations of 

on-task/off-task behavior during the two days of data used 

in this study. The most common affective state observed 

was engaged concentration (77.6%), followed by frustrated 

(13.5%), bored (4.3%), delighted (2.3%), and confused 

(2.3%). On task behavior occurred 74.2% of the time, on-

task conversation occurred 20.9% of the time, and off-task 

behavior occurred 4.9% of the time. 

Model Building 

Feature Engineering. We used FACET, a commercialized 

version of the CERT computer vision software, for facial 

feature extraction (http://www.emotient.com/products). 

Like CERT, FACET provides estimates of the likelihood 

estimates for the presence of nineteen AUs as well as head 

pose (orientation) and position information detected from 

video. Data from FACET was temporally aligned with 

affect observations in small windows. We tested five 

different window sizes (3, 6, 9, 12, and 20 seconds) for 

creation of features. Features were created by aggregating 

values obtained from FACET (AUs, orientation and 

position of the face) in a window of time leading up to each 

observation using maximum, median, and standard 

deviation. For example, with a six-second window we 

created three features from the AU4 channel (brow lower) 

by taking the maximum, median, and standard deviation of 

AU4 likelihood within the six seconds leading up to an 

affect observation. In all there were 78 facial features. 

A quarter (25%) of the instances were discarded because 

FACET was not able to register the face and thus could not 

estimate the presence of AUs. Poor lighting, extreme head 

pose or position, occlusions from hand-to-face gestures, and 

rapid movements can all cause face registration errors; 

these issues were not uncommon due to the game-like 

nature of the software and the active behaviors of the young 

students in this study. We also removed 9% of instances 

because the window of time leading up to the observation 

contained less than one second (13 frames) of data in which 

the face could be detected. 

We also used features computed from gross body 

movement present in the videos as well. Body movement 

was calculated by measuring the proportion of pixels in 

each video frame that differed from a continuously updated 

estimate of the background image generated from the four 

previous frames (illustration in Figure 2). Previous work 

has shown that features derived using this technique 

correlate with relevant affective states including boredom, 

confusion, and frustration [11]. We created three body 

movement features using the maximum, median, and 

standard deviation of the proportion of different pixels 

within the window of time leading up to an observation, 

similar to the method used to create FACET features. 

Figure 2. Silhouette visualization of motion detected in a video. 

Tolerance analysis was used to eliminate features with high 

multicollinearity (variance inflation factor > 5) [1]. Feature 

selection was used to obtain a sparser, more diagnostic set 

of features for classification. RELIEF-F [27] was run on the 

training data in order to rank features. A proportion of the 

highest ranked features were then used in the models (.1, .2, 

.3, .4, .5, and .75 proportions were tested). Feature selection 

was performed using nested cross-validation on training 

data only. Ten iterations of feature selection were run on 

the training data, using data from a randomly chosen 67% 

of students within the training set for each iteration. 

Supervised Learning. We built a detector for the overall 

five-way affect discrimination (bored, confused, delighted, 

engaged, and frustrated). In addition to the five-way 

classification, we also built separate detectors for each state. 

Building individual detectors for each state allows the 

parameters (e.g., window size, features used) to be 

optimized for that particular affective state. A two-class 

approach was used for each affective state, where that 

affective state was discriminated from all others. For 

example, engaged was discriminated from all frustrated, 

bored, delighted, and confused instances combined 

(referred to as ―all other‖). Behaviors were grouped into 

two classes: 1) off task behaviors, and 2) both on task 

behaviors and on task conversation (i.e. not off task).  



Classification AUC Accuracy Classifier No. 

Instances 

No.  

Features 

Window  

Size (secs) 

Five-Way Affect 0.655 54% Bayes Net 1209 38 9  

              

Bored vs. Other 0.610 64% Classification Via Clustering 1305 20 12  

Confused vs. Other 0.649 74% Bayes Net 1293 15 12  

Delighted vs. Other 0.867 83% Updateable Naïve Bayes 1003 24 3  

Engaged vs. Other 0.679 64% Bayes Net 1228 51 9  

Frustrated vs. Other 0.631 62% Bayes Net 1132 51 6  

              

Off Task 0.816 81% Logistic Regression 1381 15 12  

Table 1. Details and results for classifiers. 

The affective and behavior distributions lead to large class 

imbalances (e.g. .04 vs. .96 class priors in the bored vs. all 

other classification). Two different sampling techniques 

were used (on training data only) to compensate for class 

imbalance. These included downsampling (removal of 

random instances from the majority class) and synthetic 

oversampling (with SMOTE; [7]) to create equal class 

sizes. SMOTE creates synthetic training data by 

interpolating feature values between an instance and 

randomly chosen nearest neighbors. The distributions in the 

testing data were not changed, to preserve the validity of 

the results. 

We built classification models for these seven 

discriminations (overall, five affective state models, and off 

task vs. on task), using 14 different classifiers including 

support vector machines, C4.5 trees, Bayesian classifiers, 

and others in the Waikato Environment for Knowledge 

Analysis (WEKA), a machine learning tool [22]. 

Models were cross-validated at the student level. Data from 

66% of randomly-chosen students were used to train each 

classifier and the remaining students’ data were used to test 

its performance. Each model was each trained and tested 

over 150 iterations with random students chosen each time, 

to help amortize random sampling errors. This helps models 

generalize to new learners since training and testing data 

sets are student-independent. 

RESULTS 

The best results for affect and off-task detection are 

presented in Table 1. The number of instances refers to the 

total number of instances that could be used to train the 

model, including negative examples. This number varies 

from model to model based on the window size because 

shorter windows have less data and are thus slightly less 

likely to contain at least one second of valid data (as stated 

earlier, windows with less than one second of valid data 

were not used). 

Accuracy (recognition rate) for affect detectors varies 

widely in terms of percentage of instances correctly 

classified. However, accuracy is not a good performance 

metric for classification in situations where class 

distributions are highly skewed, as they are in this data. For 

example, delight occurs 2.3% of the time, which means a 

detector that simply guesses ―Not delighted‖ for every 

single instance would have 97.7% accuracy. Other metrics 

such as Cohen’s Kappa also provide unstable estimates 

when class distractions are widely skewed [24]. AUC is the 

recommended metric for skewed data and is used here as 

the primary measure of detection accuracy. 

Area under the ROC curve (AUC) is only defined for 

binary classes, so we created an aggregate AUC by 

calculating AUC for each class versus all others within the 

five-way discrimination and averaging the results (see [18] 

for an overview of this and other methods of calculating 

AUC for multiple classes). The overall five-way 

discrimination between all affective states performed above 

chance with mean AUC = .655 (chance AUC = .500). For 

individual detectors, classification performed above chance 

for each affective state and off-task behavior.  

Of particular note is the fact that classification was 

successful for infrequent states despite large class 

imbalances. Balanced classification performance is 

reflected in the confusion matrices for these states. For 

example, Table 2 shows the confusion matrix for delight, 

one of the most imbalanced affective states. Note that prior 

proportion of delighted is 2.9% rather than 2.3% as in the 

original observations because of instances removed due to 

face detection failures. 

Actual Classified Priors 

 Delighted All Other  

Delighted .685 (hit) .315 (miss) .029 

All Other .169 (false alarm) .831 (correct 

rejection) 

.971 

Table 2. Confusion matrix for delighted affect. 

The delight detector illustrated the effectiveness of using 

the SMOTE oversampling technique on the training data in 

order to improve model fit. In fact, SMOTE (as opposed to 

the alternatives, downsampling the training data or using no 



balancing techniques) improved the results for all of the 

individual models except engaged concentration, which was 

already a relatively balanced discrimination. It comprises 

78% of the affect observations, so it is not surprising that 

oversampling the training set did not improve performance 

for that particular affective state. 

Figure 3 further illustrates the effect of using SMOTE on 

the affect and off-task detection models. Note that the mean 

hit (true positive) rate improves noticeably for models built 

without SMOTE, though with a slightly lower correct 

rejection rate. This effect arises because the detectors 

trained without SMOTE are biased towards recognizing the 

majority class (i.e. ―all other‖ for all affective states except 

engagement). On the other hand, detectors built with 

SMOTE have equal numbers of both the affective state and 

the ―other‖ instances, so they are better trained to recognize 

the affective state of interest. 

Figure 3. Comparison of mean hit rates and correct rejection 

rates for best models built with and without using SMOTE. 

We also investigated the relationship between window size 

and classification performance in further detail. Figure 4 

presents the performance of the best model for each 

affective state at different window sizes, which illustrates 

clear trends in the data. 

Classification accuracy was not very dependent on the 

window size for boredom, engagement, and frustration 

(dotted lines in Figure 4), but it was clearly relevant for 

confusion, delight, and off task behavior (solid lines in 

Figure 4). The performance decrease for larger windows 

sizes in the detection of delight may be due to differences in 

the inherent temporal dynamics of expressive behavior for 

the different states [14]. For example, expressions of delight 

may last just a few seconds while confusion might be 

expressed for a longer period of time, though further 

research is needed to study this issue more thoroughly. 

Nevertheless, our results show that varying the window size 

between different detectors was an important consideration 

for some affective states.
 1

 

Figure 4. Detection results across window sizes. 

DISCUSSION 

Affect detection is a crucial component for affect-sensitive 

user interfaces, which aspire to improve students’ 

engagement and learning by dynamically responding to 

affect. The inexpensive, ubiquitous nature of webcams on 

computers makes facial expression recognition an attractive 

modality to consider for affect detection. We expanded on 

the considerable body of vision-based affect detection 

research by building detectors for learning-centered 

affective states using data collected in the wild. 

Specifically, we have shown that affect detection is possible 

with data collected in a computer-enabled classroom 

environment in which students were subject to distractions, 

uncontrolled lighting conditions, and other factors which 

complicate affect detection. In this section, we discuss 

major findings, limitations of the present study, and 

implications of our affect detectors for future work with 

affect-sensitive interfaces. 

Major Findings. Our key contribution was the 

development and validation of face-based detectors for 

learning-centered affect in a noisy school environment. We 

demonstrated that automatic detection of boredom, 

confusion, delight, engagement, frustration, and off-task 

behavior in the wild was possible for students using an 

educational game in a computer-enabled classroom 

environment—though many challenges exist for these 

classification tasks, such as classroom distractions and large 

imbalances in affective distributions. 

                                                           

1
 We also built models with a 20 second window. However, 

classification performance for those models was no better than 

other models so they were not further analyzed.  
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With respect to class distractions, students in the current 

study fidgeted, talked with one another, asked questions, 

left to go to the bathroom, and even occasionally used their 

cellphones (against classroom policy). In some situations 

multiple students crowded around the same screen to view 

something that another student had done. In short, students 

behaved as can be expected in a school computer lab. 

Furthermore, lighting conditions were inconsistent across 

students, in part due to placement of computers. Students’ 

faces in some videos were well-illuminated, while they 

were barely visible in others. We were able to create 

detectors without excluding any of these difficult but 

realistic situations, except where faces could not be 

automatically detected at all in the video. In fact, we were 

unable to register the face in 34% of instances using 

modern computer vision techniques—an illustration of just 

how much uncontrolled lighting and the way students 

move, occlude, and pose their faces can make affect 

detection difficult in the wild. 

Creating one set of parameters to use for all models is 

attractive for the sake of simplicity. However, we found 

differences in detection performance for some 

classifications with respect to window size. Confusion and 

off-task classifications worked better with larger window 

sizes, while delighted classification was better with a 

smaller window. Classifiers and feature selection 

parameters varied as well. This suggests that there are 

important differences in ideal parameters for different 

models, and that better performance can be achieved by 

tailoring models to their specific classification tasks. 

Imbalance in affective state distributions is another 

challenge for affect detectors. This was a major concern 

with the present data, as three of the states occurred at rates 

less than 5%, while the most frequent state occurred at a 

rate nearing 80%. Despite this extreme skew, we were able 

to synthetically oversample the training data to create 

models that were not heavily biased against predicting the 

minority states. This is particularly important for future 

applications to affect-sensitive educational interfaces 

because detectors must be able to recognize relatively 

infrequent affective states that are important to learning 

(e.g., confusion) [12]. Infrequent does not mean 

inconsequential, however, since one or two episodes of 

intense frustration can disrupt an entire learning experience. 

Limitations. This study is not without its limitations. First, 

the sample size is limited for some affective states, due in 

part to the difficulty of collecting data in the wild. This 

limitation was partially overcome by using SMOTE to 

create synthetic training data, but oversampling is not a 

perfect substitute for the diversity of genuine data. Second, 

though the students in this study varied widely across some 

demographic variables, they were all approximately the 

same age and in the same location. A further study testing 

detectors on data with more variability in age and 

geographic distribution would be useful for determining the 

level to which results might generalize to interfaces targeted 

at a different group of students, such as elementary school 

students. Third, the distribution of affective states 

experienced may be dependent on the interface used. The 

interface in this study was game-based, which may increase 

engagement and decrease the incidence of other affective 

states compared to some other types of interfaces. 

Similarly, the observation method used (BROMP) requires 

observers to be in the room, which could influence students 

displays of affect similar to the Hawthorne effect [8]. This 

could be addressed by an additional study comparing the 

incidence of affective states experienced by students in the 

wild using a variety of different educational interfaces and 

affect collection methodologies. 

Towards Affect-Sensitive Intelligent Interfaces. The 

detectors we created will be used to create intelligent 

instructional strategies towards developing an affect-

sensitive version of Physics Playground. Separate strategies 

will be used for each affective state and off-task behavior. 

For example, when the detectors determine that a student is 

engaged or delighted, Physics Playground may not 

intervene at all. Confusion and frustration offer intervention 

opportunities in the form of hints or revisiting introductory 

material related to the concepts in the current problem. If 

the student has recently been frustrated and unable to 

complete problems, an easier problem might be suggested. 

Conversely, a more difficult problem might be appropriate 

if the student has not been challenged by recently 

completed problems. Boredom might be addressed by 

suggesting that the student attempt a new problem or by 

calibrating difficulty. 

These aforementioned strategies have the goal of improving 

learning, but much work remains to be done in determining 

what types of interventions should be used in this context 

and how frequently they should be applied. Special 

considerations must also be given to the probability of 

spurious detections (false alarms) when designing and 

implementing these strategies since incorrect interventions 

could cause confusion or annoyance. In particular, 

interventions must be fail-soft so that learning is not 

negatively impacted by the strategies. Subtle strategies, 

such as re-ordering the problems to display an easier 

problem after a frustrating experience, may prove more 

effective. Future work will be needed to test a variety of 

intervention strategies in order to determine the most 

effective way to respond to the sensed affect. 

It is our hope that affect detection will one day lead to 

intelligent, adaptive educational interfaces for use in 

computer-enabled classrooms. The research presented in 

this paper represents an important initial step toward 

accomplishing this goal by demonstrating techniques that 

can be used to detect students’ affect in a noisy real-world 

environment. 
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