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ABSTRACT 

This paper discusses multimodal affect detection from a fusion of 

facial expressions and interaction features derived from students’ 

interactions with an educational game in the noisy real-world 

context of a computer-enabled classroom. Log data of students’ 

interactions with the game and face videos from 133 students 

were recorded in a computer-enabled classroom over a two day 

period. Human observers live annotated learning-centered 

affective states such as engagement, confusion, and frustration. 

The face-only detectors were more accurate than interaction-only 

detectors. Multimodal affect detectors did not show any 

substantial improvement in accuracy over the face-only detectors. 

However, the face-only detectors were only applicable to 65% of 

the cases due to face registration errors caused by excessive 

movement, occlusion, poor lighting, and other factors. 

Multimodal fusion techniques were able to improve the 

applicability of detectors to 98% of cases without sacrificing 

classification accuracy. Balancing the accuracy vs. applicability 

tradeoff appears to be an important feature of multimodal affect 

detection. 

Categories and Subject Descriptors 

H.1.2 [Models and Principles]: User/Machine Systems – human 

factors. 

General Terms 

Measurement, Performance, Experimentation, Human Factors. 

Author Keywords 

Missing data; Affect; Affect detection; Facial expressions; 

Interaction. 

1. INTRODUCTION 
Affect sensitivity has been shown to have considerable promise 

for improving learning in computerized educational environments 

[22]. There are many ways in which an interface can leverage 

knowledge of students’ affective states to improve learning. For 

example, bored and disengaged students may be directed to new 

learning tasks to help them re-engage, while students who are 

frequently frustrated due to excessively difficult tasks might be 

presented with material more appropriate for their knowledge and 

skills. 

Affect sensitivity requires affect detection. Consequently, there 

have been many proposed methods for affect detection [25,33], of 

which multimodal affect detection is of interest here. D’Mello and 

Kory [25] recently provided a review and meta-analysis of 90 

multimodal affect detection system. Their review revealed that 

two of the most common modalities for affect detection were 

facial features and audio features, which were used in 76.7% 

(face) and 82.2% (audio) of surveyed studies. Thus, audiovisual 

affect detection is clearly the most prominent multimodal fusion 

approach. Taking a somewhat different approach, the current 

paper presents affect detection results from a fusion of facial and 

interaction features (e.g., clicks, response times).  

1.1 Related Work 
Face-based affect detection has been well studied in a variety of 

learning contexts in recent years. A variety of computer vision 

techniques have been used for affect detection, such as texture, 

shape, and motion features extracted from faces. The full scope of 

work is beyond this paper, but recent review articles cover face-

based affect detection in some detail [8,25,33]. 

Interaction log-based affect detection are less common, but have 

been increasingly studied over the last decade [3–5,24,28,29]. 

Unlike physical sensor-based detectors, which rely upon the 

nonverbal responses, these detectors infer affective states from 

students’ interactions with computerized learning systems. We 

expect these features to be useful for affect detection because a 

student’s affect could alter how they interact with the learning 

environment. For example, a bored student might not interact very 

frequently, or might aimlessly repeat an action. An engaged 

student might be more likely to try various strategies in the game 

and succeed more. The fact that interaction-based affect detectors 

rely on logs of student actions makes it possible for them to be 

deployed at no extra cost to a school that is using the learning 

system. Their unobtrusive and cost-efficient nature also makes it 

feasible to apply interaction-based detectors at scale, leading to a 

growing field of research regarding discovery with models [6]. 

Multimodal combinations of  face- and interaction- features are 

few and far between. In one of the first studies, Kapoor et al. [17] 

used multimodal techniques with face- and posture- based features 

collected from naturalistic data to develop a detector of student 

interest. Facial features, such as detected head nods, shakes, and 

smiles, were combined with posture features gathered from a 

pressure-sensitive chair and interaction log features from the 

learning environment. The best unimodal detector (posture-based) 

classified high interest vs. low interest vs. taking a break, and had 

82% accuracy (chance being 52%). The best multimodal detector 

combining all channels had 87% accuracy, demonstrating a 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from 

Permissions@acm.org. 
ICMI '15, November 09-13, 2015, Seattle, WA, USA  

© 2015 ACM. ISBN 978-1-4503-3912-4/15/11…$15.00  

DOI: http://dx.doi.org/10.1145/2818346.2820739 
 

 

 
 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

http://dx.doi.org/10.1145/2818346.2820739


modest improvement over the best unimodal detector. Further, 

Kapoor et al. [16] used facial features, a pressure-sensing chair, a 

pressure-sensitive mouse, a skin conductance sensor, and 

interaction log data to predict frustration. They were able to 

predict when a user would self-report frustration with 79% 

accuracy (chance being 58%). 

D’Mello et al. [23] developed a multimodal affect detection 

system that discriminated between naturally occurring affective 

states in a learning environment. They used conversational cues, 

gross body language, and facial features as inputs for 

classification. Using fixed affect labels (every 20 seconds), mean 

Cohen’s kappa improved from .220 (best individual modality 

model) to .288 in the best multimodal models. Using spontaneous 

affect labels (labeled at any point at the coder’s discretion), mean 

kappa improved from .374 (unimodal) to .391 (multimodal). 

These results also demonstrated a small advantage for multimodal 

affect detection in terms of accuracy. However, facial features 

were manually annotated in this paper, an approach which is not 

feasible for large datasets or real-time interventions in a learning 

environment. 

More recently, Grafsgaard et al. [12] developed multimodal affect 

detectors that utilized both facial features and student interaction 

features (as well as tutor-student dialog) in computer-mediated 

human-human tutoring sessions. They predicted engagement, 

frustration, and learning (all self-reported by the students) using 

linear regression with leave-one-student-out cross validation. A 

combination of facial features and interaction features predicted 

engagement (R2 = .112) and frustration (R2 = .134) more 

accurately than unimodal features (best R2 = .048 and -.010 

respectively for engagement and frustration). Adding tutor-student 

dialogue features improved results even further, R2 = .282 and R2 

= .520 for engagement and frustration,  respectively. This shows 

that a fusion of features can outperform individual modalities. 

However, affect detection was done at a course-grained level 

across an entire learning session, which limits its applicability to 

drive real-time interventions. 

While the previous studies were conducted in somewhat 

controlled settings, Arroyo et al. [2] tracked emotions of high 

school and college mathematics students in computer-enabled 

classrooms. They used self-reports (for ground truth) and several 

modalities (interaction data from log-files, facial features, posture, 

skin conductance, and mouse movements). Their best models 

explained 67% of the variance (R2) for self-reported confidence, 

52% for frustration, 69% for excitement, and 29% for interest. 

Average R2 was .1 higher for multimodal models with all 

modalities combined compared to the single modality 

(interaction-only) models reported. Although this research 

suggests that it might be possible to perform automated affect 

detection in classroom, this conclusion should be interpreted with 

a modicum of caution. This is because the model was not 

validated with a separate testing set (i.e. no cross validation was 

performed), and the size of the data set was very small (20-36 

instances depending on model) due to missing data. These issues 

raise concerns of overfitting, but also serve to illustrate how much 

missing data occurs in classroom data collection. 

1.2 Current Study: Novelty and 

Contributions 
The current study expands on previous research by building a 

multimodal face- and interaction-based affect detector for a game-

based learning environment called Physics Playground [31]. 

Previous research on these data has demonstrated the possibility 

of building both face-only and interaction-only detectors 

individually ([7,15]). Integrating these modalities also provides 

some unique challenges. Facial expressions are often brief (such 

as a delighted smile after succeeding in a task), whereas 

interaction events tend to unfold over a longer period of time (e.g., 

number of mouse clicks may be zero unless aggregated over a 

longer period of time).  

Multimodal approaches have been shown to produce ―modest‖ 

improvements in affect detection accuracy, according to a recent 

meta-analysis of 90 studies [25]. The meta-analysis showed that 

median improvement of multimodal approaches over the best 

single modality was 6.60%. The meta-analysis also revealed that 

multimodal classification of natural affect has shown an average 

of only one third of the benefit of multimodal classification than 

observed with acted affect. The present focus is also on 

classifying naturalistic affect displays rather than acted or posed 

affect. Thus, we do not expect large gains in classification 

accuracy from multimodal fusion. 

However, there is more to consider than mere accuracy when 

evaluating multimodal affect detectors in the wild. Our 

multimodal affect detector is designed to operate in computer-

enabled classrooms, a context that is rife with noisy and missing 

data, thereby providing additional challenges for multimodal 

affect detection. One key limitation of unimodal affect detection is 

the inability to operate when data are missing, a limitation that 

affects nearly every modality commonly used for affect detection. 

Heart rate, skin conductance, electroencephalogram, and other 

modalities measured via bodily contact sensors can be unavailable 

do to noise in the data or lack of contact caused by movement. 

Facial features can be unavailable when the person’s face is 

occluded by hand-to-face gestures, when the person falls outside 

the camera’s field of view, or when rapid motion causes detection 

errors. Environmental factors such as lighting can also cause face 

registration errors. Similarly, interaction features can be 

unavailable when a person is not frequently interacting with an 

interface, due to disengagement or non-interactive tasks such as 

reading or video watching. 

This missing data problem was particularly prevalent in the 

present context where data was collected in the wild, specifically 

in a computer-enabled classroom environment with up to 30 

students at a time playing an educational physics game. Students 

talked to one another, laughed, moved around, and gestured, as is 

expected in a game-based learning environment and in naturalistic 

contexts. Face data was frequently unavailable due to face 

registration failures caused by excessive movements or 

occlusions, while interaction data was not be present when the 

student was passively processing information rather than actively 

interacting. To address this issue, this paper considers both 

accuracy and availability while developing a unique multimodal 

combination of face + interaction data in the noisy real-world 

context of computer-enabled classrooms. 

2. METHOD 

2.1 Data Collection 
The sample consisted of 137 8th and 9th grade students (57 male, 

80 female) who were enrolled in a public school in a medium-

sized city in the Southeastern U.S. They were tested in groups of 

about 20 students per class period for a total of four periods on 

four different days (55 minutes per period). Students in the 8th 

and 9th grades were selected because of the alignment of the 

learning content and the state standards (relating to Newtonian 

Physics) at those grade levels. 



2.1.1 Learning Environment (Physics Playground) 
Physics Playground (PP) [31] is a two-dimensional game that 

requires the player to apply principles of Newtonian Physics in an 

attempt to guide a green ball to a red balloon in many challenging 

configurations (key goal). The player can nudge the ball to the left 

and right (if the surface is flat) but the primary way to move the 

ball is by drawing/creating simple machines (which are called 

―agents of force and motion‖ in the game) on the screen that 

―come to life‖ once the object is drawn (example in Figure 1). 

Thus, the problems in PP require the player to draw/create four 

different agents (which are simple machine-like objects): inclined 

plane/ramps, pendulums, levers, and springboards. All solutions 

are drawn with colored lines using the mouse. Everything in the 

game obeys the basic laws of physics relating to gravity and 

Newton’s three laws of motion. 

The game includes seven playgrounds (each one containing 10–11 

problems, for a total of 74 problems) that progressively get more 

difficult. The difficulty of a problem is based on a number of 

factors including the relative location of ball to balloon, obstacles, 

the number of agents required to solve the problem, and the 

novelty of the problem. The game is nonlinear in that students 

have complete choice in selecting playgrounds and levels. 

Progress in the game is represented by silver and gold trophies, 

which are displayed in the top left part of the screen. While a 

silver trophy is obtained for any solution to a problem, students 

earn a gold trophy if a solution is under a certain number of 

objects (the threshold varies by problem, but is typically < 3). PP 

maintains detailed log files that record the problem, student 

actions and when they occurred, system responses, trophies 

awarded, and so on. 

 
Figure 1. Ramp solution for a simple Physics Playground 

problem. 

2.1.2 Procedure 
The study took place in one of the school’s computer-enabled 

classrooms, which was equipped with 30 desktop computers. Each 

computer was equipped with a monitor, mouse, keyboard, and 

headphones. Inexpensive webcams ($30) were affixed at the top 

of the monitor of each computer. At the beginning of each 

session, the data collection software displayed an interface that 

allowed students to position their faces in the center of the 

camera’s view by adjusting the camera angle up or down. This 

process was guided by on-screen instructions and verbal 

instructions given by the experimenters, who were also available 

to answer any additional questions and to troubleshoot any 

problems. 

We administered a qualitative physics pretest during the first day 

and a posttest at the end of the fourth day (both online). In this 

study we considered data from the second and third days (roughly 

two hours total) when students were only playing the game and 

not being tested.  

Students’ affective states were ―live‖ (real-time) annotated during 

their interactions with PP using the Baker-Rodrigo Observation 

Method Protocol (BROMP) [27]. In BROMP, trained observers 

perform live affect annotations (real-time observations made 

while students played PP) by observing students one at a time 

using a round-robin technique (observing one student until visible 

affect is detected or 20 seconds have elapsed and moving on to the 

next student). Observers use side glances to make a holistic 

judgment of the students’ affect based on facial expressions, 

speech, body posture, gestures, and student interaction with the 

computer program (e.g., whether a student is progressing or 

struggling). Observers record students in a pre-determined order 

to maintain a representative sampling of students’ affect, rather 

than focusing on the most interesting (but not most prevalent) 

things occurring in the classroom. Every BROMP observer was 

trained and tested on the protocol and achieved sufficient 

agreement (kappa ≥ .6) with a certified BROMP observer before 

coding the data.  

The coding process was implemented using the HART application 

for Android devices [27], which enforces the protocol while 

facilitating data collection. Observation-codes recorded in HART 

were synchronized with the videos recorded on the individual 

computers using Internet time servers. Observers averaged 3.2 

observations per minute (approximately 19 seconds per 

observation). Observers moved on to the next student when they 

were confident in their rating so that timestamps coincide with 

affective manifestations. 

It should be noted that there are many possible affect annotation 

schemes, each with their strengths and weaknesses, as recently 

reviewed in [30]. BROMP was selected for this study because it 

has been shown to achieve adequate reliability (among over 70 

coders in over a dozen studies with a variety of learning 

environments [26]) in annotating affective states of a large 

number of students occurring in the ―heat of the moment‖ and 

without interrupting or biasing students by asking them to self-

report affect. 

The affective states of interest were boredom, confusion, delight, 

engaged concentration, and frustration. This list of states was 

selected based on previous research [21] and from observing 

students during the first day of data collection (these data were not 

used in the current detectors). BROMP-coded observations of 

these states served as the ground truth labels for affect detection. 

2.1.3 Instances of Affect Observed 
Data from the two main days of game-play were collated and 

jointly analyzed in this study. We obtained 1,838 observations of 

affective states across the two days of data used in this study. 

Recording errors eliminated 44 face-based instances from 

consideration due to occasional computer crashes and 

performance issues. The most common affective state observed 

was engaged concentration (77.6%), followed by frustrated 

(13.5%), bored (4.3%), delighted (2.3%), and confused (2.3%). 

2.2 Feature Engineering 
We computed features from video recordings of students’ faces as 

they played the game (facial features) and features obtained from 

logs of their interactions in the learning environment (interaction 

features). These features were then used to develop affect 



detectors for each individual modality as well as for feature- and 

decision-level multimodal fusion models. 

2.2.1 Facial Features 
We used FACET for facial feature extraction. FACET is a 

commercialized version of the Computer Expression Recognition 

Toolbox (CERT) computer vision software [19]. Like CERT, 

FACET provides likelihood estimates for the presence of 19 

Action Units (AUs) as well as head pose (orientation) and position 

information detected from video. Data from FACET was 

temporally aligned with affect observations in small windows. We 

tested five different window sizes (3, 6, 9, or 12 seconds). 

Features  were created by aggregating (using maximum, median, 

standard deviation) values obtained from FACET (AUs, 

orientation, and position of the face) in a window of time leading 

up to each observation. For example, for a six-second window we 

created three features from the AU4 channel (brow lower). Those 

features were the maximum, median, and standard deviation of 

AU4 likelihood within the six seconds leading up to an affect 

observation. In all there were 78 facial features for each window. 

We also used features computed from gross body movement 

estimated in the videos ([7]). Body movement was calculated by 

measuring the proportion of pixels in each video frame that 

differed from a continuously updated estimate of the background 

image generated from the four previous frames. Previous work 

has shown that features derived using this technique correlate with 

relevant affective states including boredom, confusion, and 

frustration [20]. We created three body movement features using 

the maximum, median, and standard deviation of the proportion of 

―motion‖ pixels within the window of time leading up to an 

observation, similar to the method used to create FACET features. 

In all, there were 3 body movement features, thereby yielding a 

total of 81 video-based features. 

Facial features were only available for 65% of the instances due to 

face-registration errors. The unregisterable instances were treated 

as missing data and were addressed during multimodal fusion. 

2.2.2 Interaction Features 
Interaction features capture key aspects of students’ actions as 

they played Physics Playground. The basic set of features 

considered the number of specific objects drawn as well as actions 

and events occurring during gameplay. Some examples include 

the number of springboard structures created in a level, the 

number of freeform objects drawn in a level, the time between 

start to end of a level, the number of gold trophies obtained in a 

level, and the number of stacking events (cheating behavior) in a 

level. In addition, time-based features focused on the amount of 

time elapsed between specific student actions, such as starting and 

pausing a level, as well as the time it took for a variety of events 

to occur within each level. In all, there were 113 interaction 

features. 

Features were aggregated within a 20 second window leading up 

to each affect observation. A larger window size was required for 

interaction features than facial features because interaction events 

occur less frequently. Windows of all sizes for both facial and 

interaction features were synchronized to end at the same point in 

time. Differing window sizes thus did not affect the number of 

instances or alignment of instances between face and interaction 

modalities. 

Occasional missing values were present at certain points in the 

dataset when a particular interaction was not logged. For example, 

a feature specifying the amount of time between the student 

beginning a level and his/her first restart of the level would 

contain a missing value if the student manages to complete a level 

without having to restart it. Zero imputations were performed 

where the missing values were replaced by the value 0. However, 

if all interaction features were missing for a particular instance, 

values were not replaced with 0. These instances occurred 

infrequently in situations where students did not interact with the 

game at all or when they were not interacting with a level, as was 

the case when selecting a new level or watching instructional 

videos on how to play the game. In all, interaction data was 

available for 94% of the instances compared to 65% for facial 

features. 

2.2.3 Feature Selection 
Tolerance analysis was used to eliminate features with high 

multicollinearity (variance inflation factor > 5) within each 

modality [1]. Feature selection was used to obtain a sparser and 

potentially more diagnostic set of features for classification. A 

common feature selection technique RELIEF-F [18] was run on 

the training data in order to rank features. A proportion of the 

highest ranked features were then used in the detectors 

(proportions of .1, .2, .3, .4, .5, and .75 were tested).  

2.3 Supervised Learning 
We built detectors using 14 different classifiers including support 

vector machines, C4.5 trees, Bayesian classifiers, and others in the 

Waikato Environment for Knowledge Analysis (WEKA), a 

machine learning tool [13]. A large number of classifiers were 

considered since we are unaware of the best approach for this type 

of data. 

A two-class approach was used for each affective state, where that 

affective state was discriminated from all others. For example, 

engaged concentration was discriminated from all frustrated, 

bored, delighted, and confused instances combined (referred to as 

―all other‖). Building individual detectors for each state allows the 

parameters (e.g., window size, features used) to be optimized for 

that particular affective state 

The affective distributions lead to large class imbalances (e.g. .04 

vs. .96 class priors in the bored vs. all other classification). Two 

different sampling techniques were used (on training data only) to 

compensate for class imbalance. These included downsampling 

(removal of random instances from the majority class) and 

synthetic oversampling (with SMOTE; [9]) to create equal class 

sizes. SMOTE creates synthetic training data by interpolating 

feature values between an instance and randomly chosen nearest 

neighbors. The distributions in the testing data were not changed, 

to preserve the validity of the results. 

Detectors were cross-validated at the student level using leave-

one-student-out cross validation. A detector was trained on data 

from all but one holdout student, then tested on data from the 

holdout student. Feature selection was performed using nested 

cross-validation on training data only (see below). Ten iterations 

of feature selection were run on the training data, using data from 

a randomly chosen 67% of students within the training set for 

each iteration. The entire cross-validation process was repeated 

for every student to produce student-independent predictions for 

every instance. This helps detectors generalize to new students 

since training and testing data sets are student-independent. 

2.4 Multimodal Fusion 
Basic feature-level fusion and decision-level fusion techniques 

were used in the present paper. Feature level fusion involved 

combining features from both modalities into a single dataset and 

then building a detector. The disadvantage of this simplistic 

approach is that the data must be present in every modality for 



training and testing. Decision-level fusion, on the other hand, 

involved creating a detector separately with each modality, thus 

exploiting all the training data available for that modality. 

Individual detector outputs were then combined by training an 

additional classifier on the outputs of the individual classifiers to 

form a final classification. Both approaches used leave-one-

student-out cross validation. 

3. RESULTS 
The results are organized with respect to three aspects of 

multimodal classification. First, how does multimodal accuracy 

compare to unimodal accuracy; second, does a multimodal 

approach improve detector availability; and third, what are the 

benefits of a more sophisticated multimodal approach compared 

to a simplistic one. 

The Area Under the ROC Curve (AUC) was used to measure 

classification accuracy. AUC measures the tradeoff between the 

true positive and false positive rates of a detector. AUC ranges 

from 0 (completely incorrect classification) to 1 (perfect 

classification), while an AUC of .5 represents chance-level 

classification. AUC is a recommended accuracy metric when 

dealing with imbalanced data [14], which is the case in the current 

study (e.g., boredom comprised only 4.23% of data).  

3.1 Fusion with Nonmissing Data only 
The applicability of the feature-level fusion detector was limited 

because a significant number of instances were missing either one 

modality or the other. To make a fair comparison with identical 

instances, training and testing datasets contained only instances 

when both face and interaction data were valid. Table 1 shows a 

comparison of classification accuracy of the face-only, 

interaction-only, feature-level fusion, and decision-level fusion 

detectors on identical instances. The number of instances (N) 

varies between affective states because the window sizes varied. 

On average, 1,124 instances out of 1,838 total instances were used 

in these analyses, so a considerable amount of data were being 

unused.  

The results indicated that the multimodal detectors yielded similar 

accuracies compared to the best unimodal detectors for boredom, 

delight, engagement, and frustration. Detection accuracy for 

confusion was higher for the feature-level fusion detector 

compared to the unimodal detectors. 

Table 1. AUC comparison of modalities and fusion methods 

using identical instances. 

 

Face Interaction 

Feature-

Level 

Fusion 

Decision-

Level 

Fusion N 

Boredom .594 .546 .520 .598 1229 

Confusion .573 .600 .663 .596 1229 

Delight .869 .662 .848 .865 943 

Engagement .670 .505 .669 .673 1153 

Frustration .627 .556 .634 .623 1064 

Mean .667 .574 .667 .671  

Note: Bold indicates best unimodal and multimodal models. 

3.2 Fusion with All Available Data 
The comparison in Section 3.1 shows that the feature-level and 

decision-level fusion approaches are at least comparable to the 

best individual modalities, but did not offer a large benefit in 

terms of accuracy with the minor exception of confusion. This 

finding was not unexpected, given the null to modest multimodal 

improvements typically obtained for naturalistic affective 

expressions [25]. In the Introduction, we argued that there may be 

additional benefits to multimodal affect detection beyond 

accuracy. Here, we consider the potential of multimodal affect 

detection as a means to improve availability (i.e., handling of 

missing data). 

The analyses preceded as follows. Multimodal detectors were 

built to operate on as many instances as possible by predicting 

affect for every instance as long as it contained either face or 

interaction data (or both). Decision-level fusion was used because 

it affords training individual base detectors for each modality. 

Each base detector can then provide a prediction (decision) for an 

instance if data are available for that modality. The decisions from 

each modality’s detector can then be combined. This procedure 

maximizes the use of training data because the detector for each 

modality can be trained using all of the data from that modality. It 

also maximizes the availability of the detector by making a 

prediction whenever any of the individual modalities has available 

data. 

There are many possible methods of combining the decisions of 

individual modalities to provide an overall prediction for an 

instance. We built three types of decision-level fusion detectors. 

The first type used the face-only detector whenever possible and 

the interaction-only detector only when face data were unavailable 

(face-biased). The second type was the complement, using 

interaction-only detection whenever possible and using the face-

only detector as a backup (interaction-biased). The third type used 

a classifier to make decisions with the output of each of the 

individual modalities as input features, thereby essentially 

learning how to weigh each modality (learned-bias). When a 

channel was not available, its prediction was taken to be 0.5 (even 

odds for a two-way classification problem). We also experimented 

with 0 and 1 replacement, but found 0.5 to produce better results, 

which is expected since it is unlikely to bias the classifier’s 

decision significantly. Table 2 contains an overview of the 

modalities used for each of the fusion methods. The AUC 

accuracy of these three detection-schemes after averaging across 

the affective states is shown in Figure 2, where we note a small 

advantage of the learned-bias detector compared to the face-

biased and interaction-biased detectors. 

 Figure 2. Comparison of decision-level fusion methods. 

3.3 Accuracy vs. Availability 
Section 3.1 indicated that the face-only model yielded the best 

accuracy when only considering cases with nonmissing instances. 

This lead to large data loss (high accuracy and low availability). 

In Section 3.2, using the interaction-biased weighting scheme 

yielded the best results while using all available instances. Here, 

we attempt to reconcile these two results. 
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Figure 3 displays and compares the available percentage of total 

instances and the accuracy of individual modalities versus the 

learned-bias multimodal detectors. We note that the proportion of 

total instances available for classification increased notably with 

the use of decision-level multimodal fusion. Thus, availability was 

dramatically improved over the face-only detector with little 

reduction in classification accuracy. Availability also marginally 

improved over the interaction-only detector, but accuracy was 

dramatically improved in this case. 

 

 
Figure 3. Comparison of accuracy versus availability for 

unimodal and multimodal detection. 

3.4 Analysis of Learned-bias Multimodal 

Detector 
Figure 3 showed that using multimodal fusion increased the 

percentage of situations in which the detectors could be applied to 

nearly 100% of the cases. However, the average multimodal 

detector accuracy was slightly lower than the face-only detectors. 

Thus, further analysis of the accuracy of this combined detector is 

needed to more clearly understand why accuracy was diminished. 

We examined the accuracy of the learned-bias detector in 

different situations (face data available vs. missing) to determine 

why this was the case. 

There was an average of 595 instances where interaction data 

were available but face data were missing. In this situation the 

learned-bias detectors had an average accuracy of AUC = .583. In 

contrast, the average accuracy when the face data were present 

was AUC = .694. Thus, the detectors performed better when the 

face was present, which could be expected since the face 

generally outperformed the interaction-only detectors. It might be 

reasoned from this that most of the learned-bias detectors’ 

predictive power stems from the face modality. However, the 

learned-bias detectors were more slightly accurate than simply 

using the face-only detector whenever possible (see Figure 2). It 

appears that the learned-bias detector made productive use of the 

information contained in the less accurate interaction modality 

even when the more accurate face modality was available. Thus, 

there was some improvement to be gained through a weighted 

fusion rather than simply using the face-only detector when 

available and reverting to the interaction-only detector otherwise. 

Table 3 shows the details of how individual modalities were 

weighted in the learned-bias detectors for the best classifiers 

(from those listed in section 2.3). 

Table 3. Details of learned-bias detectors. 

Affect AUC Classifier 

Face 

Weight 

Interaction 

Weight 

Boredom .590 
Logistic 

Regression 
0.415 0.157 

Confusion .585 
Logistic 

Regression 
1.20 20.7 

Delight .775 
Logistic 

Regression 
0.043 0.137 

Engagement .621 
Updateable 
Naïve Bayes 

NA NA 

Frustration .614 
Logistic 

Regression 
0.314 0.064 

Note: Weights denote odds ratios in logistic regression. No 

weights were available from the Updateable Naïve Bayes 

classifier. 

As can be seen in Table 3, the confusion detectors are heavily 

biased toward using the interaction modality. That finding is 

consistent with Table 1, which showed that confusion was the one 

modality where interaction-only detectors out-performed face-

only detectors, despite using instances where the face data was 

available. Surprisingly, the delight classifier also weighted 

interaction more highly than face, though not to the same extent. 

One possible reason for that finding is that the face data were so 

frequently missing for delight (48.7% missing) due to the short, 3-

second window size. Thus the learned-bias detector learned to rely 

more heavily on the interaction detector instead. 

4. GENERAL DISCUSSION 
We explored multimodal affect detection in a classroom 

environment where students interacted with a game-based 

learning environment called Physics Playground [31]. 

Specifically, we focus on the use of multimodal approaches to 

affect detection as a means of improving the accuracy and 

availability of detectors in this noisy environment where missing 

data are prevalent. We employed face-only and interaction-only 

affect detection methods as two modalities with a tradeoff 

between accuracy and availability (applicability to a large number 

of situations and instances). In this section we review our main 

findings, point out limitations and opportunities for future work, 

and discuss implications for affect-sensitive learning 

environments. 

4.1 Main Findings 
We investigated multimodal classification of affect in several 

ways. First, we compared multimodal detectors with unimodal 

detectors. We did not expect large improvements based on 

previous research [25]. Indeed we found no major improvement in 

average accuracy with multimodal classification, but established 
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Table 2. Modality used in multimodal fusion methods. 

Available Modality Used For Decision 

Face Interaction Feature-level Face-biased Interaction-biased Learned-bias 

Yes Yes Both Face Interaction Both 

Yes No None Face Face Face 

No Yes None Interaction Interaction Interaction 

 



that accuracy was at least not diminished. Face-only affect 

detection was more accurate but there were a larger number of 

missing instances, while interaction-only detection was applicable 

to a larger number of instances but was less accurate. Thus, our 

primary goal was to improve the availability of detectors without 

significantly reducing accuracy. We used decision-level fusion to 

develop detectors that worked for 98% of the instances in our 

data—a notable improvement over the 65% availability of the 

face modality. Accuracy of these multimodal detectors was close 

to that of the face-only detectors. Thus, we appear to have struck 

an appropriate balance between accuracy and availability in this 

context. 

We further investigated the accuracy of the improved detectors in 

two ways. First, we examined accuracy in situations where the 

face (most frequently missing modality) was missing versus those 

where it was not. We found that accuracy was notably better when 

face data were available, but that the accuracy of learned-bias 

multimodal detectors improved through the use of interaction data 

even when face data were available. This finding is significant 

because it shows there was benefit to the interaction modality 

despite its lower accuracy. A deeper analysis of the logistic 

regression weights of individual modalities in the final decision-

level fusion detectors revealed that the interaction modality was 

indeed influencing the final classification decision (Table 3). 

4.2 Limitations and Future Work 
Some limitations of this study should be noted. First, additional 

modalities such as acoustic features might have proven useful, but 

were not collected. Future work should address this by 

considering other common affect detection modalities and 

determining which are suitable for use given the constraints of 

having multiple students in a computer-enabled classroom. 

Second, though the students in this study varied widely across 

some demographic variables, they were all approximately the 

same age and in the same location. A further study testing 

detectors on data with more variability in age and geographic 

distribution would be useful for determining the level to which 

results might generalize to different group of students. Third, the 

observation method used (BROMP) requires observers to be in 

the room, which could influence students displays of affect akin to 

a Hawthorne effect [10]. These limitations could be addressed by 

an additional study comparing the incidence of affective states 

experienced by students with different demographics using a 

variety of different sensors and affect annotation methodologies. 

4.3 Implications for Affect-Sensitive 

Interfaces 
Our results were particularly relevant to affect detection efforts in 

intelligent learning interfaces for computer-enabled classrooms. 

For example, the detectors we developed will be used to improve 

intelligent instructional strategies towards developing an affect-

sensitive version of Physics Playground. Separate strategies will 

be used for each affective state and off-task behavior. For 

example, when the detectors determine that a student is engaged 

or delighted, Physics Playground may not intervene at all. 

Confusion and frustration offer intervention opportunities in the 

form of hints or revisiting introductory material related to the 

concepts in the current level. If the student has recently been 

frustrated and unable to complete levels, an easier level might be 

suggested. Conversely, a more difficult level might be appropriate 

if the student has not been challenged by recently completed 

levels. Boredom might be addressed by suggesting that the student 

attempt a new level or by calibrating difficulty. 

4.4 Concluding Remarks 
Affect interventions require real-time affect detection, and this 

work has extended the amount of cases where an affect detector 

can operate while maintaining accuracy. In particular, face-only 

affect detection systems seem likely to suffer from considerable 

missing data. Interaction-only detectors suffered less from missing 

data, but accuracy was significantly worse than for face-only 

detectors in this context. Our multimodal fusion solution offered 

98% availability in the wild with better accuracy than the 

interaction-only method and equivalent to face-only detection. 

The next step is to embed our multimodal affect detection into 

intelligent, adaptive educational interfaces for use in computer-

enabled classrooms.  
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