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ABSTRACT 

Affect detection is an important component of 

computerized learning environments that adapt the interface 

and materials to students’ affect. This paper proposes a plan 

for developing and testing multimodal affect detectors that 

generalize across differences in data that are likely to occur 

in practical applications (e.g., time, demographic variables). 

Facial features and interaction log features are considered 

as modalities for affect detection in this scenario, each with 

their own advantages. Results are presented for completed 

work evaluating the accuracy of individual modality face- 

and interaction- based detectors, accuracy and availability 

of a multimodal combination of these modalities, and initial 

steps toward generalization of face-based detectors. 

Additional data collection needed for cross-culture 

generalization testing is also completed. Challenges and 

possible solutions for proposed cross-cultural generalization 

testing of multimodal detectors are also discussed. 
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INTRODUCTION 

Many techniques have been employed to improve learning 

in computerized education, including methods from the 

field of human-computer interaction. Affect sensitivity in 

interfaces is one such technique and has been shown to be 

useful for improving learning [11]. There are many ways in 

which an interface can leverage affect sensitivity for 

increasing learning. For example, bored and disengaged 

students may be directed to new learning tasks to help them 

re-engage, while students who are frequently frustrated due 

to excessively difficult tasks might be presented with 

material more appropriate to their knowledge levels. Affect 

detection is a key component of such affect-sensitive 

systems, because responding to affect requires accurate 

detection of affect. 

The present focus is on multimodal affect detection, so 

unimodal detection will not be considered in detail. 

D’Mello and Kory [12] recently provided a review and 

meta-analysis of 90 multimodal affect detection systems. 

Their review revealed that two of the most common 

modalities for affect detection were facial features and 

audio features, which were used in 76.7% (face) and 82.2% 

(audio) of surveyed studies. Audiovisual affect detection is 

clearly the most prominent multimodal fusion approach. 

However, audio features are limited to interfaces that 

support spoken interaction. 

The current paper proposes taking a somewhat different 

approach by employing a fusion of facial features and 

interaction log features, two potentially complementary 

modalities that have only rarely been considered together. 

The proposed affect detectors are designed to operate in 

computer-enabled classrooms, a context that is rife with 

noisy and missing data, thereby providing additional 

challenges for multimodal affect detection. Furthermore, 

the current paper considers challenges and solutions for 

cross-culture generalization of detectors, which may be 

mitigated in part by using interaction features. To that end 

we primarily consider face- and interaction- based affect 

detection approaches in educational contexts as related 

work, along with detector generalizability work. 

BACKGROUND AND RELATED WORK 

Affect detection from facial features and interaction log 

data has been studied deeply in recent years [1,12]. In this 

section we briefly review some of the research related to 

individual face- and interaction- based affect detection, 

followed by multimodal and generalization work. 

Unimodal Affect Detection 

Face-based affect detection has been studied in a variety of 

learning contexts in recent years. For example, Whitehill et 

al. [18] discriminated four levels of engagement at a fine-

grained level in students as they used cognitive skills 

training software. Grafsgaard et al. [6] used facial features 

to detect a variety of affect-related variables such as 

perceived temporal demand (hurriedness), performance, 
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and frustration. A variety of computer vision methods have 

been used for affect detection, such as texture, shape, and 

motion features extracted from faces. A full review of 

methods is beyond the scope of this paper, but recent 

review articles cover it in detail (e.g., [12]). 

Interaction-based affect detection has been increasingly 

studied over the last decade [1,14]. Unlike physical sensor-

based detectors, which rely upon the physical reactions of 

the student, these detectors infer affective states from 

students’ interactions with computerized learning systems. 

Their unobtrusive and cost-efficient nature also makes it 

feasible to apply interaction-based detectors at scale, 

leading to a growing field of research regarding discovery 

with models. 

Multimodal Affect Detection 

As noted above, there have been a large number of studies 

that have considered face- and interaction- features 

independently. However, multimodal combinations of these 

features are few and far between. These studies are 

reviewed below, with a special emphasis on affect detection 

in learning environments – the context of the present work. 

In one of the first such studies, Kapoor et al. [9] used 

multimodal techniques with face- and posture- based 

features collected from naturalistic data to create a detector 

of student interest. Facial features such as detected head 

nods, shakes, and smiles were combined with posture 

features gathered from a pressure-sensitive chair and 

interaction log features from the learning environment. 

They classified interest/disinterest with 87% accuracy 

(chance being 52%). 

More recently, Grafsgaard et al. [7] developed multimodal 

affect detectors that utilized both facial features and student 

interaction features (as well as tutor-student dialog) from a 

dialog-based computerized learning environment designed 

to teach Java computer programming. They predicted 

engagement, frustration, and learning (all self-reported by 

the students) using linear regression with leave-one-student-

out cross validation. A combination of facial features and 

interaction features predicted engagement (R
2
 = .112) and 

frustration (R
2
 = .134) more accurately than unimodal 

features (best R
2
 = .048 and -.010 respectively for 

engagement and frustration). Adding tutor-student dialogue 

features improved results even further, to R
2
 = .282 and R

2
 

= .520 respectively. This shows the potential for a fusion of 

features to outperform individual modalities. However, 

affect detection was done at a course-grained level across 

an entire learning session, which limits its applicability to 

drive real-time interventions. 

Affect Detector Generalization 

The unimodal and multimodal detectors previously 

discussed have been demonstrated in a variety of contexts 

and are often cross validated at the student level, 

demonstrating generalization to new students within the 

same population. In this section selected works that 

demonstrate generalizability across time or demographic 

variables are also discussed. 

Prior work has demonstrated cross-corpus generalization of 

affect detection in some contexts, especially using audio 

features (e.g., [15,17]). Audio, though useful for affect 

detection, is not considered in the current research. The 

generalizability of speech-based affect detection across 

languages is an important but large goal that is beyond the 

scope of the current project. 

Interaction data from log-files have shown promise for 

building affect detectors that generalize across time. Pardos 

et al. [14] used interaction data collected over the span of a 

few days in 2010 to build affect detectors. These detectors 

were then applied to a separate, previously collected dataset 

from two school years (Fall 2004-Spring 2006). The 

detectors’ predictions were correlated with students’ scores 

on a standardized test. Several of these correlations 

demonstrated the consistency of detectors across two school 

years. Predicted boredom (r = -.119, p < .01 for year 1; r = -

.280, p < .01 for year 2), confusion (r = -.165, p < .01; r = -

.089, p < .05), and gaming the system (r = -.431, p < .01; r 

= -.301, p < .01) negatively correlated with test score in 

both school years, while engaged concentration (r = .449, p 

< .01; r = .258, p < .01) positively correlated in both years. 

However, they did not directly test cross-year 

generalization by building detectors on one year of data and 

testing on the other. 

The previously discussed face-based engagement detection 

work by Whitehill et al. (see above) also investigated 

generalization of engagement detection across ethnicity in a 

small separate sample. Their training set consisted of 26 

black students from a Historically Black College/University 

(HBCU) while the generalization testing set consisted of 8 

Caucasian-Americans and Asian-Americans. Their best 

result for cross-ethnicity testing was AUC = .691, versus 

.729 for training/testing on the same sample. Thus they 

demonstrated above-chance detection accuracy across 

ethnicity, with a slight reduction in accuracy. However, 

their testing set was small, only considered engagement, 

and tested only one direction of generalization (Caucasian 

and Asian → Black). 

PROPOSED RESEARCH 

The literature review revealed a variety of affect detection 

methods and some work that has been done to investigate 

issues of generalization for affect detectors. In this doctoral 

consortium paper we propose a series of studies and 

contributions intended to develop answers to some 

remaining key research questions related to multimodal 

methods for cross-population affect detection in the wild. 

Each of these questions is partially addressed in the current 

paper, though much work remains to be done. 

First, there are questions of the feasibility of affect 

detection in the wild, specifically for educational 

technology in a computer-enabled classroom. Factors such 



as conversation, movement, posture, and lighting occur in 

classroom environments, which cannot be as easily 

controlled as laboratory contexts. These factors have 

undesirable effects on affect detection (e.g., missing or 

noisy data for face-based affect detection). In the proposed 

research we consider facial features and interaction log data 

(e.g., clicks, response times) as two modalities for affect 

detection in this context, each with their own advantages. 

Second, it is important to explore the potential benefits of 

multimodal techniques for improving affect detection in a 

computer-enabled classroom context. Facial features 

capture expressions of affective states at brief time scales 

compared to interaction features, while interaction data may 

be more indicative of affective states with less active facial 

expressions, such as boredom. Additionally, facial feature 

detection is highly influenced by factors such as lighting 

and movement, which may also cause missing data. 

Interaction log data on the other hand is available as long as 

students continue to interact with the educational interface, 

and may thus complement face-based affect detection in 

situations where facial features cannot be extracted. 

Third, there are questions of generalizability for affect 

detection methods in computer-enabled classroom contexts. 

Student-independent cross-validation techniques have 

become commonplace in affect detection research, but there 

are aspects of generalization not specifically tested by 

student-level generalization that may be important for 

applying affect detection techniques in an educational 

interface. Additional dimensions of generalization include 

time (applying detectors at a different time than when they 

were trained), gender, ethnicity, and culture. A multimodal 

approach to affect detection in the wild should be explicitly 

tested across these dimensions if such an approach can be 

applied in a computer-enabled classroom context to 

students in a new population. 

PROPOSED METHOD 

We collected a dataset and employed machine learning 

techniques that have served to answer some (but not all) of 

the proposed research questions. 

Current Dataset 

Students played an educational physics game (see [16] for 

information about the game) in their school’s computer-

enabled classroom, while videos of their faces were 

recorded and their interaction (mouse and keyboard) 

behaviors were logged. The sample consisted of 137 8
th

 and 

9
th

 grade students (57 male, 80 female) who were enrolled 

in a public school in a medium-sized city in the 

Southeastern U.S. There were about 20 students per class 

period (four periods) on four different days (55 minutes per 

period). For affect detection we considered data from the 

second and third days (roughly two hours total) when 

students were only playing the game and not being tested. 

Students’ affective states were “live” annotated during their 

interactions with Physics Playground using the Baker-

Rodrigo Observation Method Protocol (BROMP) field 

observation system (see [2] for details). These observations 

served as ground truth labels for affect detection. Affective 

states of interest were boredom, confusion, delight, engaged 

concentration, and frustration. This list of states was 

selected based on previous research [10] and from 

observing students during the first day of data collection 

(these data were not used when creating detectors). 

Affect Detection Method 

We employed supervised machine learning to build affect 

detectors trained and tested on the dataset collected. 

Specifically, we have developed methods for face- and 

interaction- based detectors, multimodal fusions of these 

modalities, and cross-validation methods for testing some 

aspects of generalization. 

Details of face-based detection methods (classifiers, 

features, etc.) are available in a recent publication [2]. In 

brief, facial features were extracted using FACET computer 

vision software for each frame of video, and aggregated 

across a window of time leading up to the BROMP-coded 

affect label. Gross body movement features were extracted 

from the videos using a previously validated method. A 

variety of classification models were evaluated by training 

and testing using student-independent cross-validation. 

Interaction-based affect detectors were built using similar 

methods [8]. Features extracted from the interaction log 

data consisted of features specific to the learning 

environment, such as the number of recently occurring 

events in the game, as well as more general features such as 

variability of mouse clicks throughout time. These features 

were also aggregated across time leading up to the affect 

labels, and student-independent detectors were built. 

Generalization across time (to new days and new times of 

day) was tested for face-based detectors (and will be for 

interaction-based detectors) by developing cross-validation 

methods that preserved student independence while training 

a detector on one day of data and testing it on data from a 

different day [3]. Similar techniques were employed for 

testing across time of day, gender, and ethnicity within the 

sample of students collected (publication currently in 

review). In the future a similar method will be used to test 

cross-cultural generalization, by training a detector on data 

from students in one country and testing on students from a 

different country. 

CURRENT RESULTS 

We have completed work toward answering some, but not 

all of the broad questions posed in the previous section. We 

collected a dataset in a computer-enabled classroom 

environment, which was then used to develop interaction- 

and face- based affect detectors, analyze the benefits of 

multimodal techniques in this context, and tested 

generalization of affect detectors across some of the 

proposed generalization dimensions. In this section we very 

briefly review the results obtained thus far (Table 1). 



Table 1. Summary of Current Results. 

 

Mean 

AUC Availability 

Generalization 

Effect 

Face-based .687 65% -2.19% 

Interaction-based .608 94%  

Multimodal .637 98%  

Face-based Affect Detection 

Area Under the ROC Curve (AUC) was used to measure 

classification accuracy, where chance level is .500 and 

perfect accuracy is 1.00. Boredom (AUC = .610), confusion 

(.649), delight (.867), engagement (.679), and frustration 

(.631) were all detected with better than chance-level 

accuracy [2]. 

Interaction-based Affect Detection 

Interaction-based affect detectors were not as accurate as 

face-based detectors on average (.608 vs. .687), though still 

above chance level. Interaction-based boredom detection 

was slightly more accurate than face-based detection (AUC 

= .629), while confusion (.588), delight (.679), engagement 

(.586), and frustration (.559) were not as accurate [8]. 

Multimodal Fusion 

We explored several methods for creating multimodal 

affect detectors with the face and interaction data, using late 

fusion. First, we created models using only instances where 

both face and interaction data were available, to provide a 

direct comparison of face, interaction, and multimodal 

techniques. Face-based affect detection was more accurate 

than interaction-based affect detection on average (AUC = 

.667 vs. .574), and multimodal fusion performed at least as 

well (AUC = .671) as face-based detection. 

The benefit of multimodal fusion in this context was more 

apparent in subsequent analyses of detector availability and 

accuracy. Interaction log data were available in 94% of 

instances, while facial features were available in just 65% 

of instances. By training an additional classifier on the 

outputs of detectors from the individual modalities, we 

created affect detectors with average AUC = .637, close to 

face-based detectors (.687), notably better than interaction-

based detectors (.608), and with 98% availability. 

Detector Generalization 

Thus far we have investigated aspects of generalization for 

face-based affect detection only. Average accuracy was not 

severely diminished by testing generalization across 

different dimensions. Accuracy was reduced by 1.89% 

when cross-validating across time of day, 1.51% across 

days, and 1.81% across gender, and 3.53% when testing 

across ethnicities. 

REMAINING WORK 

Results thus far suggested that multimodal affect detection 

was possible in a noisy computer-enabled classroom 

context. Face-based affect detection also appeared to 

generalize well across time and demographic variables 

tested. The remaining work will focus on generalizability 

aspects of multimodal affect detectors. Toward this end we 

have collected data in another country to enable 

generalization testing across populations with differing 

cultures. In this section we identify key cross-culture 

generalization challenges and propose potential solutions. 

Perhaps the most well-studied challenge in cross-culture 

generalization is the variation in facial expression of affect 

between cultures. Classic studies of this problem have 

shown that people of one culture can recognize affect from 

people of another culture at above chance levels [4]. 

However, there is also research demonstrating a within-

group advantage, i.e. people are better at recognizing the 

facial expressions of people from their own culture [5]. This 

may also indicate a within-group advantage for automatic 

affect detectors built with. We plan to expand face-based 

feature extraction methods (texture-based and motion-based 

features) with geometric shape-based features. We will 

divide features into groups based on categories, such as 

representation (e.g., shape-based) and area of the face (e.g., 

mouth), building separate models for these categories to 

determine which features may be most generalizable across 

cultures. Additionally, the interaction-based predictions 

may be less influenced by cultural norms, which could 

prove to be an added multimodal advantage. 

Observing and labeling affecting states poses a related 

challenge when collecting data from multiple cultures. The 

observers should be members of the students’ culture to 

exploit in-group recognition advantage. However, this 

creates a challenge because observers will differ between 

datasets, and may have slightly different interpretations of 

the labels (as they should if there are cultural differences). 

We will examine frequently misclassified cross-cultural 

instances from each affective state to determine if there are 

salient differences that could not only be adapted for, but 

also shed light on cross-cultural expressions of affect. 

Another issue related to the affect labels is the fact that 

prior proportions of affect could be quite different between 

datasets collected in different cultures. Differing data 

distributions between training and testing sets can cause 

problems for machine learning methods. For example, 

detectors built on one dataset might be too biased toward or 

away from some affective states when applied to another 

dataset. We propose applying methods from transfer 

learning [13], designed to solve distribution-related issues, 

in order to adapt models from one culture to the other. 

Future improvements to affect detection will also include 

information about affect developing through time. For 

example, long short-term memory (LSTM) recurrent neural 

networks have shown improved affect classification 

performance compared to traditional methods [19]. LSTM 

is capable of capturing patterns that evolve over long 

periods of time, which is relevant to affect detection. 

CONCLUSION 

Applying affect detection methods to new data collected in 

a different country will serve as a thorough test of 



multimodal face- and interaction- based affect detectors. If 

detectors trained on data collected in year 2013 in the 

Southeastern U.S. successfully detect affect at above-

chance levels in data collected two or more years later in a 

different country, these detectors can indeed by applied to 

computer-enabled classroom contexts with confidence that 

detectors are robust to potential sources of systematic bias. 

The work already completed as well as the results of cross-

cultural generalization testing will serve as the central 

theme of a PhD dissertation for the author. 
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