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Affect detection is a key component in intelligent educational interfaces that respond to students’ affective 
states. We use computer vision and machine learning techniques to detect students’ affect from facial 
expressions (primary channel) and gross body movements (secondary channel) during interactions with an 
educational physics game. We collected data in the real-world environment of a school computer lab with 
up to thirty students simultaneously playing the game, while moving around, gesturing, and talking to 
each other. The results were cross-validated at the student level to ensure generalization to new students. 
Classification accuracies, quantified as area under the receiver operating characteristic curve (AUC), were 
above chance (AUC of 0.5) for all the affective states observed, namely boredom (AUC =.610), confusion 
(AUC = .649), delight (AUC = .867), engagement (AUC = .679), frustration (AUC = .631), and for off-task 
behavior (AUC = .816). Furthermore, the detectors showed temporal generalizability in that there was less 
than a 2% decrease in accuracy when tested on data collected from different times of the day and from 
different days. There was also some evidence of generalizability across ethnicity (as perceived by human 
coders) and gender, although with a higher degree of variability attributable to differences in affect base 
rates across subpopulations. In summary, our results demonstrate the feasibility of generalizable video-
based detectors of naturalistic affect in a real-world setting, suggesting that the time is ripe for affect-
sensitive interventions in educational games and other intelligent interfaces. 
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 INTRODUCTION 
Learning is not a mere cognitive endeavor but an affectively charged experience 
[Calvo and D’Mello 2011; D’Mello 2013]. Affective states like confusion, frustration, 
boredom, anxiety, curiosity, engagement, and happiness occur continually 
throughout the learning experience. The affective states are not merely incidental. 
They indirectly influence learning by modulating cognition in multiple ways [Clore 
and Huntsinger 2007]. An effective learning agent, be it human or computer, should 
foster affective states that are beneficial to learning, such as engaged concentration, 
interest, and curiosity. It should also minimize the occurrence of states that can 
interfere with learning, such as boredom and despair. 

A human teacher or tutor can observe students’ affect (cf. [Lepper et al. 1993]) and 
can use that information to determine how to adjust the pace or content of learning 
materials. Can our intelligent learning environments do the same? Some initial 
progress toward affect-sensitive (or affect-aware) learning technologies has occurred 
in laboratory settings (see [D’Mello et al. 2014] for a recent review). But it is time to 
consider affect-sensitivity in contexts where everyday learning occurs – in classrooms, 
in a school computer lab, in homes, or in the library. This is the long-term goal of this 
work. One initial challenge that we consider here is the task of detecting affective 
states in noisy contexts. 

Affect can be detected from multiple data streams. For example, interaction data 
(e.g., speed of actions performed in an interface, number of help requests) [Baker et 
al. 2012], facial expressions [Bosch et al. 2014; Kapoor and Picard 2005], posture 
[Mota and Picard 2003], and other data sources have been used to detect students’ 
affective states (see [Calvo and D’Mello 2010; Zeng et al. 2009; Calvo et al. 2015] for 
reviews). Facial features are attractive for affect detection because there is a well-
studied link between facial features and affective states [Ekman et al. 1980; 
Reisenzein et al. 2013], face-based affect detectors are likely to generalize across 
different learning technologies (unlike interaction-based detectors), and they do not 
require expensive hardware as webcams are ubiquitous on laptops and mobile 
devices. Therefore, we focus on video to detect affective states from facial features 
(primary channel) and body movements (secondary channel). 

First, face-based affect detection has been extensively researched (see [Calvo and 
D’Mello 2010; Zeng et al. 2009] for reviews), but most of the work has occurred 
outside of learning contexts and mainly in laboratory settings (see exceptions 
discussed below). Laboratory environments have the advantage of relatively 
consistent lighting, which facilitate computer vision methods, and are free from 
distractions from other people, cell phones, etc. Further, motion, unusual head pose, 
and face-occluding gestures are much more difficult to control in the wild compared 
to the lab, thereby introducing additional challenges. 

Second, much of the previous work on face-based affect detection has focused on 
the so-called “basic emotions” [Ekman 1992] of anger, fear, sadness, happiness, 
disgust, and surprise (see reviews in [D’Mello and Calvo 2013; Calvo and D’Mello 
2010]). However, a recent meta-analysis of 24 studies indicated that these basic 
emotions are quite infrequent during short (30-90 mins) learning sessions with 
technology [D’Mello 2013]. Instead, affective states such as engagement, boredom, 
confusion, frustration, happiness, curiosity, and anxiety were much more frequent. It 
is unclear if these “learning-centered” affective states can be detected as accurately 
as the basic emotions, where the links between emotion and expression have been 
investigated for decades [Ekman et al. 1980; Reisenzein et al. 2013]. Similar links 
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between facial expressions and learning-centered affective states are largely missing 
(see [McDaniel et al. 2007] for some initial work in this direction), and it is an 
entirely open question if such links even exist. 

Third, there is more variability in the real-world, so generalization is a key issue 
that must be addressed. In particular, affect detectors may not generalize across time 
(time of day or from one day to the next) due to variations in lighting, level of activity, 
or affect itself (e.g., affect and behavior might be different early in the morning 
compared to late in the day). Groups of students may also exhibit distinct facial 
features due to demographic differences. For example, males and females typically 
have recognizably different facial structures, which could influence expression 
detection. Computer-vision techniques might also have different levels of fidelity 
when modeling facial landmarks (e.g., eyes [Li et al. 2007]) from individuals from 
different ethnicities (especially in visible light; for example, when using a webcam 
[Kong et al. 2005]). In general, overfitting is a concern whenever training and testing 
date share some systematic bias. Here, we focus on generalization across time (days 
and class periods) and across demographics (gender and perceived ethnicity). 

We take on these three challenges in the development of an automated face-based 
detector of affective states that occur during learning with technology in the noisy 
context of a computer-enabled classroom. 

 RELATED WORK AND OVERVIEW OF CURRENT STUDY 
There is a rich history on affect detection from facial features [Calvo and D’Mello 
2010; Zeng et al. 2009]. To keep the scope of this review manageable, we focus on 
papers describing facial expression detection in the wild and papers on detecting 
learning-centered affective states from naturalistic as opposed to acted (posed) facial 
expressions. Although we also consider gross body movements extracted from video, 
the emphasis of this work and consequently the literature review is on facial features. 
Finally, we review available research on generalization of detectors across time and 
demographic factors. 

 Face-based Affect Detection in the Lab 
In one early study, Kapoor and Picard [2005] used face- and posture- based features 
to detect student interest in the lab. Facial features, such as automatically-detected 
head nods, shakes, and smiles, were combined with posture features from a pressure-
sensitive chair and features from the learning environment. They classified 
interest/disinterest with an 87% accuracy (chance being 52%). Further, Kapoor et al. 
[2007] used facial features, a pressure-sensing chair, a pressure-sensitive mouse, a 
skin conductance sensor, and interaction log data to predict when a user would self-
report frustration with 79% accuracy (chance being 58%). This early work shows the 
potential of detecting learning-centered affective states like interest and frustration, 
albeit in the lab. 

Hoque et al. [2012] used facial features to distinguish between frustrated and 
delighted smiles with an accuracy of 92%. They also found key differences between 
acted and naturalistic facial expressions. In acted data, only 10% of frustrated 
expressions included a smile, whereas smiles were present in 90% of the naturalistic 
expressions of frustration, which corroborates an earlier finding [McDaniel et al. 
2007]. These results illustrate that there can be large differences between 
naturalistic and acted data, which is significant because natural instead of acted 
expressions are more likely to occur in real-world contexts. 
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More recently, Whitehill et al. [2014] used Gabor features (appearance-based 
features capturing edges and textures of various parts of the face) to detect 
behavioral engagement as students used cognitive skills training software. They 
were able to detect engagement as judged by human annotators at rates 
substantially greater than chance. Specifically, they reported an average AUC (area 
under the receiver operating characteristic curve) of .729 compared to a chance-level 
AUC of .5. 

Gabor features have also been used for detection of Action Units (AUs), which 
refer to activation of specific facial muscles (e.g., lowered brow) [Ekman and Friesen 
1978]. As noted in [Senechal et al. 2014], detecting action units can be a useful 
intermediate dimensionality reduction step toward detecting affective states as 
features derived from AUs range in the tens to hundreds compared to the much 
larger numbers of Gabor features or other lower-level features (e.g., local binary 
pattern features). There has also been considerable progress in automatic detection 
of AUs from video [Valstar et al. 2012; Girard et al. 2015]. For example, the 
Computer Expression Recognition Toolbox (CERT) [Littlewort et al. 2011] can 
automatically detect AUs as well as head pose and head position information. CERT 
uses Gabor features as inputs to SVMs that provide likelihood estimates of the 
presence of 20 different AUs on a frame-by-frame basis. CERT has been tested with 
databases of both posed and spontaneous facial expressions, achieving accuracies of 
90.1% and 79.9% respectively for discriminating between presence vs. absence of AUs 
[Littlewort et al. 2011]. 

Grafsgaard et al. [2013] achieved modest results (R2 = .24) in using CERT to 
predict self-reported (on a Likert scale) frustration during a learning session. They 
did not perform frustration detection at a fine-grained level (i.e. specific affective 
episodes), instead detecting the presence of frustration across the entire learning 
session. They also verified that there was moderate agreement (Cohen’s kappa of .68 
or higher) between CERT AU estimates and human-coded AUs after correcting for 
individual differences in facial features (e.g., eyebrows appear raised even in a 
neutral expression for some students but not others). 

In another study, Bosch and D’Mello [2014] demonstrated the effectiveness of 
CERT features for affect detection when novices learned the basis of computer 
programming from a computerized learning environment. They were able to detect 
confusion and frustration at levels above chance (22.1% and 23.2% better than 
chance, respectively), but accuracy was much lower for other states (11.2% above 
chance for engagement; 3.8% above chance for boredom). 

In summary, these studies show that it is possible to automatically detect 
learning-centered affective states from video. However, they were conducted with the 
high degree of control afforded by the laboratory, so applicability to real-world 
contexts is unknown. There has been some recent work on affect detection in more 
real world contexts, as reviewed below. 

 Face-based Affect Detection in the Wild 
The Affectiva-MIT Facial Expression Dataset (AM-FED) [McDuff et al. 2013] 
contains videos of participants recorded in their personal environments. Participants 
watched Super Bowl commercials which were likely to elicit smiles, which could be 
detected quite accurately (AUC = .90). The authors were also able to detect whether 
viewers liked the commercials (AUC = .82) and wanted to view them again (AUC 
= .79) [McDuff et al. 2014]. They also found that appearance-based features yielded 
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higher accuracy than geometric features. This is likely due to the fact that precisely 
locating the shape of facial landmarks was more difficult than simply extracting 
textures from regions of the face in the noisy AM-FED data set. We also used 
appearance-based features for AU detection, which is presumably more appropriate 
for a noisy real-world context. 

In a somewhat similar vein, Hernandez et al. [2012] used computer vision 
techniques to detect smiles collected from cameras in various buildings on a college 
campus. They found expected patterns, such as more smiles on weekends and 
holidays, suggesting that visible affect might be influenced by temporal and seasonal 
factors, thereby highlighting the importance of temporal generalizability for affect 
detectors. 

The Emotion Recognition in the Wild Challenge [Dhall et al. 2013] is an effort to 
create a common benchmark to test audio and visual affect detection techniques. The 
challenge used the Acted Facial Expressions in the Wild (AFEW) database, which 
was compiled using movie clips. These professionally acted clips raise some concerns 
due to well-known differences between acted and naturalistic expressions, as 
discussed above. Nevertheless, recent advancements in computer vision techniques 
(such as deep neural networks [Kahou et al. 2013]) were successful for the AFEW 
data set and may prove useful in the present context as well. 

In perhaps the study most closely related to our work, Arroyo et al. [2009] tracked 
self-reported affect of high school math students and college students taking a math 
for elementary teachers class. They simultaneously recorded facial features, posture, 
skin conductance, mouse movements, and contextual information from log-files. 
Their best models explained 52% of the variance (R2) for confidence, 46% for 
frustration, 69% for excitement, and 29% for interest in predicting self-reported affect 
on Likert scales. Although this research suggests that it is possible to perform 
automated affect detection in a classroom, this conclusion should be interpreted with 
a modicum of caution. This is because the models were not validated with a separate 
testing set (i.e. no cross validation was performed), and the data sets were small (20-
36 instances depending on model) due to missing data. These issues raise concerns of 
overfitting to the training data. 

 Temporal and Demographic Generalization of Affect Detectors 
Most of the work on temporal generalization has focused on physiological signals (e.g., 
skin conductance and heart rate) with the general finding of degraded affect 
detection accuracy when training on data from one day and testing on another 
[AlZoubi et al. 2011; Picard et al. 2001]. In a classic study, Picard et al. [2001] found 
that physiological data were more tightly clustered by affective state within a day 
than across days. Generalization issues were due in part to physical differences from 
day to day, such as a change in resting heart rate and skin conductance – factors 
related to mood, physical exercise, and so on. Efforts have been made to improve 
generalization of physiology-based detectors across time [AlZoubi et al. 2011; AlZoubi 
et al. 2015], but it is not clear whether such measures will also be necessary for face-
based affect detectors. 

Ocumpaugh et al. [Ocumpaugh et al. 2014] created affect detectors using log file 
data from three different demographics: urban, suburban, and rural students. They 
found that detectors built using data from all three groups worked well (average 
AUC = .65) but detectors trained on one group and applied to another did not 
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(average AUC = .52). Thus they demonstrated that their log-based affect detectors 
did not generalize well across demographics. 

There has been some recent work on generalization of face-based detectors across 
demographics. Grafsgaard et al. [2015] examined differences between middle school 
and college students with respect to facial expressions. They found AUs that were 
predictive of self-efficacy in both student groups, but also found that AU12 (lip corner 
puller, i.e. smile) and AU5 (upper lid raiser) were predictive of self-efficacy in middle 
school students but not college students. This work demonstrated that there were 
differences in facial expressions between age groups, and raises the question of what 
differences might exist between other groups of students. 

Whitehill et al. [2014] also investigated generalization across ethnicities in a 
separate sample. Their training set consisted of 26 black students from a Historically 
Black College/University, while the generalization test set was eight Caucasian-
Americans and Asian-Americans. Training on black students and testing on 
Caucasian and Asian students resulted in an AUC of .691, which was lower than 
training and testing on the same ethnicity (i.e. black; AUC = .729). Thus, they 
demonstrated above-chance but slightly reduced detection accuracy across ethnicity. 
However, their testing set was small, they only considered engagement, and they 
tested only one direction of generalization (Caucasian + Asian → Black). 

 Interim Discussion and Current Study 
The literature review revealed studies that focus on face-based detection of 
naturalistic affective states. Many of these studies consider learning-centered affect. 
However, these studies have been conducted within controlled lab contexts, so it is 
unclear if the results will generalize to the wild. This is because conditions in lab-
based studies are typically tightly controlled in an effort to reduce outside influences. 
Of course, such control is not attainable or even desirable in the real-world. 
Researchers have also begun to take some steps toward affect detection in the wild. 
However, these studies mainly focus on detecting facial expressions rather than 
affective states [Hernandez et al. 2012; McDuff et al. 2013], are still in need of cross-
validation [Arroyo et al. 2009], or study acted instead of naturalistic affect [Dhall et 
al. 2013]. Aside from physiology, temporal generalization of face-based affect 
detectors is currently an open question. Similarly, generalization of face-based affect 
detectors across demographics is not well explored. 

The present study considers, for the first time, the face-based detection of 
learning-centered affective states in the wild with an eye for temporal and 
demographic generalizability.1 

 METHOD 

 Data Collection 
Training data consisting of affect labels (for supervised learning) and face videos 
were recorded while students interacted with an educational physics game called 
Physics Playground (formerly Newton’s Playground; [Shute et al. 2013]) in their 
school’s computer lab. 

 
1 This paper expands on previously published work [Bosch, D’Mello, Baker, Ocumpaugh and Shute 

2015; Bosch, D’Mello, Baker, Ocumpaugh, Shute, et al. 2015], with additional analyzes on generalization 
across time and new analyses of demographic generalization. 
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Participants. The sample consisted of 137 8th and 9th grade students (57 male, 80 
female) who were enrolled in a public school in a medium-sized city in the 
Southeastern U.S. They were tested in groups of about 20 students per class period 
for a total of four periods on different days (55 minutes per period). Students in the 
8th and 9th grades (predominately 13-15 years old) were selected because of the 
alignment between Physics Playground content and State Standards (relating to 
Newtonian physics) at those grade levels. 

Interface. Physics Playground is a two-dimensional game that requires the 
player to apply principles of Newtonian physics in an attempt to guide a green ball to 
a red balloon (key goal) in many challenging configurations. The player can nudge 
the ball to the left and right (if the surface is flat) but the primary way to move the 
ball is by drawing/creating simple machines (which are called “agents of force and 
motion” in the game) on the screen that “come to life” once the object is drawn 
(example in Fig. 1). Thus, the problems in Physics Playground require the player to 
draw/create four different types of agents (which are simple machine-like objects): 
inclined plane/ramps, pendulums, levers, and springboards. All solutions are drawn 
with colored lines using the mouse. Everything in the game obeys the basic laws of 
physics relating to gravity and Newton’s three laws of motion. 

 

 
Fig. 1. Ramp solution for a simple Physics Playground problem. 

 
Procedure. The study took place in one of the school’s computer-enabled 

classrooms, which was equipped with about 30 desktop computers for schoolwork. 
Each computer was equipped with a monitor, mouse, keyboard, webcam, and 
headphones. Inexpensive webcams ($30) were affixed at the top of the monitor on 
each computer. At the beginning of each session, the data collection software allowed 
students to position their faces in the center of the camera’s field of view by adjusting 
the camera angle up or down. This process was guided by on-screen instructions and 
verbal instructions given by the experimenters, who were also available to answer 
any additional questions and to troubleshoot any problems. 
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We administered a qualitative physics pretest during the first day and a posttest 
at the end of the fourth day (both online). In this study we consider data from the 
second and third days (roughly 2 hours total) when students were only playing the 
game for the full 55 minutes and not being tested. Students’ affective states and on-
task vs. off-task behaviors were observed during their interactions with Physics 
Playground using the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP) field 
observation system as detailed below [Ocumpaugh, Baker and Rodrigo 2015]. These 
observations served as the labels used in training the automated detectors. 

The affective states of interest were boredom, confusion, delight, engaged 
concentration, and frustration. These states were selected based on previous research 
showing their frequency during learning [D’Mello 2013] and from qualitative 
observations of students during the first day of data collection (these data were not 
used in the models presented here). In addition to affect, the students’ behaviors 
were coded as on task when they were looking at their own computers, on-task 
conversation when conversing with other students about the game or asking relevant 
questions, and off task in other situations (e.g., task-unrelated conversation, 
watching other students without conversation, using a cellphone). 

BROMP. In BROMP trained observers perform live affect and behavior 
annotations by observing students as they interact with educational software. 
Students are observed one at a time using a round-robin technique involving 
observing one student until visible affect is detected or 20 seconds have elapsed, then 
moving on to the next student in a predetermined order. The frequency of 
observations per student varied between class periods depending on the number of 
students in the class (12-30). Observers use side glances to make a holistic judgment 
of a student’s affect and on-task/off-task behavior based on facial expressions, speech, 
body posture, gestures, and the student’s interaction with the computer program (e.g., 
whether the student is progressing or struggling). Observers record students in a 
pre-determined order to maintain a representative sampling of students’ affect, 
rather than focusing on the most interesting (but not most prevalent) events. The 
BROMP observers were trained and tested on the protocol and achieved sufficient 
agreement (Cohen’s kappa ≥ .6) with a certified BROMP observer before coding the 
data. The same observers coded each day. 

The coding process was implemented using the HART application for Android 
devices [Ocumpaugh, Baker, Rodrigo, et al. 2015], which enforces the protocol while 
facilitating data collection. Observations recorded in HART were synchronized with 
the videos recorded on the individual computers using Internet time servers. 

We should note that that there are many possible affect annotation schemes, each 
with their strengths and weaknesses, as reviewed in [Porayska-Pomsta et al. 2013]. 
BROMP was selected because it has been shown to achieve adequate reliability for 
annotating the affective states of a large number of students (among over 150 coders 
in over a dozen studies with a variety of learning environments have been certified 
[Ocumpaugh, Baker and Rodrigo 2015]). Further, BROMP captures affective states 
occurring in the “heat of the moment” while minimizing interruptions from asking 
students to self-report affect. 

 Instances of Affect Observed 
Situations arose where students could not be easily observed (e.g., bathroom breaks, 
occlusions caused by hand to face gestures) or where the observer was not confident 
about an observation. Affect could not be observed in 8.1% of cases while on-task/off-
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task behavior could not be observed in 2.8% of cases. We obtained 1,767 successful 
observations of affective states and 1,899 observations of on-task/off-task behavior 
during the two days of data used in this study. The most common affective state was 
engaged concentration (engagement for short – 77.6%), followed by frustration 
(13.5%), boredom (4.3%), delight (2.3%), and confusion (2.3%). On-task behavior 
occurred 74.2% of the time, on-task conversation occurred 20.9% of the time, and off-
task behavior occurred 4.9% of the time. 

 Model Building 
Feature Engineering. We used FACET (no longer publicly available), a 
commercialized version of the CERT computer vision software (Fig. 2), for facial 
feature extraction. FACET provides likelihood estimates of the presence of 19 AUs (1, 
2, 4, 5, 6 ,7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, and 28 [Ekman and Friesen 
1978]) as well as head pose (orientation), face size, gender, and eyewear. It also 
provides measures of unilateral (one side of the face only) AUs for three action units, 
as well as “Fear Brow” and “Distress Brow,” which indicate the presence of 
combinations of AU1 (Inner Brow Raiser), AU2 (Outer Brow Raiser), and AU4 (Brow 
Lowerer). Data from FACET were temporally aligned with affect observations in 
small windows of time. Features were created by aggregating FACET estimates in a 
window of time leading up to each BROMP observation using maximum, median, and 
standard deviation. We tested five different window sizes (3, 6, 9, 12, and 20 seconds). 
For example, we computed three features pertaining to AU4 (brow lower) by taking 
the maximum, median, and standard deviation of the frame-level AU4 likelihoods 
within the six seconds leading up to an affect observation. In all there were 78 facial 
features (3 aggregation functions × [19 AUs + 3 head pose orientation axes + 2 face 
position coordinates + gender + eyewear]). 
 

 
Fig. 2. CERT interface demonstrating AU estimations from a face video. AUs were used as features. Video 

was not from the current study due to privacy concerns. 
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About a third (34%) of the instances were discarded because FACET was not able to 
register the face and thus could not estimate the presence of AUs. We removed 
instances with less than 1 second (12.5 frames) of valid AU data. Poor lighting, 
extreme head pose or position, occlusions from hand-to-face gestures, and rapid 
movements were all causes of face registration errors. These issues were common due 
to the engaging nature of the game and the active behaviors of the young students. 

We also computed gross body movement present in the videos using a motion 
estimation algorithm [Westlund et al. 2015]. Body movement was calculated by 
measuring the proportion of pixels in each video frame that differed by a threshold 
from a continuously updated estimate of the background image generated from the 
four previous frames (illustration in Fig. 3). We computed three body movement 
features using the maximum, median, and standard deviation of the gross body 
movement within the window of time leading up to an observation, similar to the 
method used to compute FACET features. 

 

 
Fig. 3. Silhouette visualization of motion (used as a feature) detected in a video. Video was not from the 

current study due to privacy concerns. 
 

We used tolerance analysis to eliminate features with high multicollinearity 
(variance inflation factor > 5) [Allison 1999]. This was followed by RELIEF-F 
[Kononenko 1994] feature selection on the training data to rank features. We 
retained a proportion of the highest ranked features for use in the models 
(proportions of .1, .2, .3, .4, .5, and .75 were tested). Feature selection was performed 
using nested cross-validation on training data only. In particular, we ran 10 
iterations of feature selection on the training data, using data from a randomly 
chosen 67% of students within the training set in each iteration. 
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Supervised Learning. We built separate detectors for each affective state in 
order to afford parameter optimization per state (e.g., window size, features used). 
This was done with a one-versus-other approach, where each affective state was 
discriminated from all others. For example, engagement was discriminated from 
frustration, boredom, delight, and confusion instances combined (collectively referred 
to as “other”). Behaviors were grouped into off task and on task (including on-task 
conversation). 

There were large class imbalances in the distributions (e.g., .04 vs. .96 base rates 
in the boredom vs. other classification). We used two different sampling techniques 
(on training data only) to compensate for class imbalance. These included 
downsampling (removal of random instances from the majority class) and synthetic 
oversampling (with SMOTE [Chawla et al. 2011]). SMOTE creates synthetic training 
data by interpolating feature values between an instance and randomly chosen 
nearest neighbors. The distributions were not changed in the testing data. 

Aside from the basic procedure discussed above, other details were specific to each 
classification task (baseline, temporal generalization, demographic generalization) as 
discussed in the subsequent sections. 

 BASELINE CLASSIFICATION OF AFFECT 
We built supervised classification models to discriminate between five affective states 
and off task vs. on task behavior. We used 14 different classifiers, including Bayesian 
classifiers, logistic regression, classification via clustering (with k-means), C4.5 trees, 
etc., using standard implementations from the Waikato Environment for Knowledge 
Analysis (WEKA) machine learning tool [Holmes et al. 1994]. 

 Cross-Validation for Baseline Classification 
The detectors were cross-validated at the student level. Data from 67% of randomly-
chosen students were used to train each classifier, while data from the remaining 
students were used to test accuracy. This method emphasizes generalization to new 
students since training and testing data are student-independent. Cross-validation 
was repeated 150 times for each model and the results were averaged across 
iterations. 

 Results 
The best results for affect and off-task detection are presented in Table I. 

  
Table I. Details and results for baseline classification with all data. 

Classification AUC Accuracy Classifier No. 
Instances 

No.  
Features 

Window  
Size (secs) 

Boredom .610 64% Classification 
Via Clustering 
(k-means) 

1305 20 12  

Confusion .649 74% Bayes Net 1305 15 12  

Delight .867 83% Updateable 
Naïve Bayes 

1003 24 3  

Engagement .679 64% Bayes Net 1228 51 9  

Frustration .631 62% Bayes Net 1132 51 6  

              
Off Task .816 81% Logistic 

Regression 
1381 15 12  
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Note. No. Instances refers to the total number of positive and negative examples that were used to train 
the detector. This number varied because the window size differed between detectors. Shorter windows 
contain fewer video frames and are thus less likely to contain at least one second of valid data. Windows 

with less than one second of valid data were not used. 
 
Accuracy (percentage correctly classified; i.e. recognition rate) varied widely. 
However, recognition rate is unsuitable when class distributions are skewed as in 
these data. For example, delight occurred 2.3% of the time, which means a one-
versus-other detector that simply guesses “Other” for every instance would have a 
97.7% recognition rate. Metrics such as Cohen’s Kappa are also unstable when class 
distributions are highly skewed [Jeni et al. 2013]. AUC is the recommended metric 
for skewed data and is used here as the primary measure of classification accuracy. 
AUCs, shown in Table I, were above chance (AUC = .5) for each affective state and 
for off-task behavior. Parameters of the classifiers represented in the best results 
were not varied, thus no classifier parameters were reported. 

Of particular note is the fact that classification was successful despite large class 
imbalances. The confusion matrices shown in Table II reflect the fact that classifiers 
detected even the infrequent affective states. In particular, boredom, confusion, 
delight, and off-task behavior have base rates of less than 5%. 
 

Table II. Confusion matrices for individual affect classifications in the baseline results. 
Actual Classified Base Rate 

 Boredom All Other  
Boredom .581 (hit) .419 (miss) .041 
All Other .361 (false alarm) .639 (correct rejection) .959 

    
 Confusion All Other  
Confusion .415 (hit) .585 (miss) .027 
All Other .251 (false alarm) .749 (correct rejection) .973 

    
 Delight All Other  
Delight .693 (hit) .307 (miss) .029 
All Other .166 (false alarm) .834 (correct rejection) .971 

    
 Engagement All Other  
Engagement .655 (hit) .345 (miss) .747 
All Other .391 (false alarm) .609 (correct rejection) .253 

    
 Frustration All Other  
Frustration .588 (hit) .412 (miss) .143 
All Other .374 (false alarm) .626 (correct rejection) .857 

    
 Off Task All Other  
Off Task .645 (hit) .355 (miss) .046 
All Other .180 (false alarm) .820 (correct rejection) .954 

Note. Base rates in these confusion matrices do not perfectly match the original base rates because 
instances were removed due to face detection failures (e.g., delight is 2.9% in the test set rather than 2.9% 

in the original observations). 
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Fig. 4 illustrates the overall effect of using SMOTE compared to using no balancing 
technique. We note that the mean hit (true positive) rate improves noticeably for 
detectors built with SMOTE, though with a slightly lower correct rejection rate. This 
is because the one-versus-other detectors trained without SMOTE are biased toward 
recognizing the majority class (i.e. “other” for all detectors except engagement). On 
the other hand, detectors built with SMOTE have equal numbers of both classes in 
the training data, so they are better trained to recognize the affective state of interest. 

 
Fig. 4. Comparison of mean hit rates and correct rejection rates for the best baseline detectors built with 

and without using SMOTE, illustrating the increase in hit rate from using SMOTE. 
 

We also investigated the relationship between window size and classification 
accuracy (see Fig. 5). Window size did not have much of an effect for boredom, 
engagement, and frustration (dotted lines), but it was relevant for confusion, delight, 
and off task behavior (solid lines). The accuracy decrease for larger windows sizes for 
delight vs. confusion may be due to the fact that delight expressions may last just a 
few seconds while confusion typically lasts longer [D’Mello and Graesser 2011]. The 
results also confirm that varying the window size for different affective states was an 
important consideration in many cases. 2 

 
2 We also built models with a 20 second window. However, classification accuracy for those 

models was no better than the results reported here so they were not further analyzed.  
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Fig. 5. Detection results across window sizes in the baseline results. 

 Feature Analysis 
We report the ten most frequently selected features in each baseline model (Table III). 
Cohen’s d, computed as (mean within class – mean “other” class] / pooled standard 
deviation) provides an estimate of the effect size of that feature’s discriminability. We 
discuss features with at least small (d = .2) effect sizes [Cohen 1988]. 

Boredom. Boredom was manifested by increases in body motion and AU17 (chin 
raise) and changes in apparent face size (i.e. distance from the screen) and yaw (side-
to-side head motion). This suggests that students were likely moving away from the 
screen and looking side-to-side at other students’ computers when bored. 

Confusion. Confusion was characterized by variation in yaw and several AUs. 
AU1 (inner brow raise), AU2 (outer brow raise), AU14 (dimple), AU17 (chin raise), 
and AU18 (lip pucker) all varied more during expressions of confusion. Raised 
eyebrows in particular may indicate students’ surprise at an unexpected event 
associated with confusion. 

Delight. Effect sizes were large (d >= .8) for each of the 10 highest-ranked delight 
features. Magnitude and variation in motion predicted delight, as did pitch changes 
(head motion nodding up and down). Variation in AU6 (cheek raise), AU10 (upper lip 
raise), AU12 (lip corner pull), AU15 (lip corner depress), AU17 (chin raise), AU18 (lip 
pucker), and AU23 (lip tighten) were also associated with delight. These features 
might reflect students’ excited movement and smiles as they experienced delight. 

Engagement. The largest effect size was d = .159 (AU18, lip pucker). Students 
were engaged during most of the session (77.6%), so it is not a surprise that their 
facial expressions were fairly neutral for the majority of the time. 

Frustration. Frustration was manifested by changes in motion, more presence of 
AU25 (lips part), and increased variation in AU1 (inner brow raise) and AU10 (upper 
lip raise). AU10 and AU25 together indicate bared teeth, perhaps related to a 
frustrated smile [McDaniel et al. 2007; Hoque et al. 2012]. 

Off-task behavior. Motion and variations in yaw and pitch were largely different 
(d >= .8) from on-task behavior. Variation in face size was also predictive of off-task 
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behavior, as were AU1 (inner brow raise), AU14 (dimple), AU20 (lip stretch), and 
AU28 (lip suck). The features might suggest that students were looking away from 
their own screens and moving their mouths (perhaps talking). 
 
Table III. Cohen’s d effect sizes for the inter-class difference of the 10 most frequently selected features’ values 

in each baseline model. 
Model Cohen's d  Model Cohen's d 

Boredom   Engagement  
SD of yaw 0.402  Median AU18 (lip pucker) 0.159 
Median motion 0.319  Median pitch 0.091 

SD of face size 0.276  Median AU2 (outer brow raise) -0.072 
SD of motion 0.273  Median roll 0.061 
Median AU17 (chin raise) 0.253  Median AU25 (lips part) -0.052 

SD of AU20 (lip stretch) 0.199  Median AU1 (inner brow raise) -0.044 
SD of estimated gender 0.170  Median yaw 0.036 

Median AU1 (inner brow raise) 0.098  Median AU15 (lip corner depress) -0.005 
SD of AU14 (dimple) 0.056  Median AU9 (nose wrinkle) -0.012 

Median AU2 (outer brow raise) 0.045  Median AU10 (upper lip raise) -0.016 

     
Confusion   Frustration  
SD of yaw 0.402  SD of AU10 (upper lip raise) 0.417 
SD of AU18 (lip pucker) 0.363  SD of motion 0.346 

SD of AU1 (inner brow raise) 0.323  SD of AU1 (inner brow raise) 0.279 
SD of AU17 (chin raise) 0.299  Median AU25 (lips part) 0.250 
SD of AU2 (outer brow raise) 0.258  Median AU14 (dimple) -0.158 

SD of AU14 (dimple) 0.222  Median AU15 (lip corner depress) 0.080 
Median AU1 (inner brow raise) 0.190  Median AU10 (upper lip raise) -0.071 

SD of face size 0.180  Median AU17 (chin raise) 0.050 
Median AU2 (outer brow raise) 0.165  Median AU1 (inner brow raise) 0.049 

SD of pitch 0.137  Median AU2 (outer brow raise) 0.012 

     
Delight   Off-task  
SD of AU6 (cheek raise) 2.125  Median motion 1.241 
Median motion 1.855  SD of yaw 1.112 

SD of AU18 (lip pucker) 1.474  SD of pitch 0.830 
SD of motion 1.364  SD of AU20 (lip stretch) 0.640 
SD of pitch 1.355  SD of AU28 (lip suck) 0.616 

SD of AU12 (lip corner pull) 1.336  SD of AU14 (dimple) 0.567 
SD of AU23 (lip tighten) 1.065  SD of AU1 (inner brow raise) 0.471 

SD of AU15 (lip corner depress) 1.044  SD of face size 0.433 
SD of AU17 (chin raise) 0.981  Median yaw 0.195 

SD of AU10 (upper lip raise) 0.929  Median AU1 (inner brow raise) -0.027 
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 TEMPORAL GENERALIZATION 
We have demonstrated the feasibility of video-based affect detection in a noisy 
classroom environment with an emphasis on generalization to new students. In this 
section, we study temporal generalization in terms of different days and different 
class periods within a day. The procedure was similar to the baseline procedure 
discussed above with the following exceptions. First, we only used classifiers that 
were effective in the baseline results. These included Bayes Net, Updateable Naïve 
Bayes, Logistic Regression, AdaBoost, Classification via Clustering, and LogitBoost. 
Second, we adopted a different cross-validation approach as detailed below. 

 Cross-day Generalization 
We tested generalization across days with a nested cross-validation approach. First, 
data from one day were chosen as training data. Then, 67% of students were 
randomly selected from that day and their data were used to train a detector. This 
detector was tested using data from the remaining 33% of students on the opposite 
day (cross-day generalization: e.g., train on Day 1, test Day 2) or within the same day 
(within-day generalization: e.g., train on Day 1, test on Day 1). Student-level 
independence was also ensured as testing data always contained a different set of 
students from training data as illustrated in Fig. 6. The cross-validation process was 
repeated 150 times for each detector (train-test: Day 1-Day 1; Day 1-Day 2; Day 2-
Day 1; Day 2-Day 2) and the results were averaged across iterations. The within-day 
results were averaged across both within-day detectors (e.g., train on Day 1, test on 
Day 1; train on Day 2, test on Day 2). Likewise, the cross-day results were obtained 
by averaging both cross-day detectors (train Day 1, test Day 2; train Day 2, test Day 
1). 

 

 
Fig. 6. Example of within-day and cross-day testing with student-level independence. 

 
We compared cross-day classification accuracy to the baseline and within-day 

accuracies (Fig. 7). The key result was that cross-day affect detection accuracies 
(average AUC = .627) were similar (within 2%) to within-day accuracies (average 
AUC = .640). The largest drop occurred for confusion, but it was still small (AUC 
= .665 to .639; 2.61% of the range of AUC). Similarly, off-task behavior detection was 
not negatively impacted by cross-day testing compared to within-day testing. 

Compared to the baseline, within-day affect detectors had nearly identical 
accuracy, while cross-day detectors had 1.51% lower accuracy. The decreased 
accuracy of cross-day detectors compared to the baseline may be attributable to the 
fact that the baseline detectors had the advantage of twice as much training data. 
The decreased accuracy of cross-day detectors compared to the within-day detectors 
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is likely due to differences in the data between days, which within-day detectors may 
overfit to. 

 

 
Fig. 7. Cross-day affect and off-task detection accuracy compared to baseline and within-day accuracies. 

 

 Class Period Generalization 
We tested generalization across class periods, potentially reflecting difference in time 
of day/light levels, with a leave-several-out approach. Five out of the seven class 
periods (67%) were randomly chosen as training data while data from the remaining 
two periods served as testing data. This process was repeated for 150 iterations. 
Student-level independence was guaranteed as each student was in one and the same 
class period every day. Testing across class periods also implicitly tests 
generalization across time of day, since class periods took place at unique times.  

The results are shown in Fig. 8. Cross-period affective state detection accuracy 
was on average 1.89% lower than baseline accuracy. Confusion and boredom were 
most negatively affected while delight, engagement, and frustration were more stable. 
There was also a small drop in the accuracy of the cross-period off-task behavior 
detector compared to the baseline detector. Overall, accuracy across class periods was 
still well above chance-level, suggesting that our affect detection approach 
generalized across different times of the day. 
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Fig. 8. Comparison of baseline accuracy to accuracy while generalizing across class periods (time of day). 

 

 DEMOGRAPHIC GENERALIZATION 
In the previous section, we presented methods for testing detector generalization 
across time. In this section we consider generalization across two key demographic 
factors: perceived ethnicity (as coded by researchers) and gender. 

 Perceived Ethnicity Generalization 
We did not collect self-reports of ethnicity. Hence, two researchers annotated student 
ethnicity (called perceived ethnicity) from the videos. Disagreements were 
adjudicated with assistance from a third researcher. Fifty-seven percent of the 
students were coded as Caucasians. Although the difference between other ethnic 
groups and races is also important to affect detection, no other specific group was 
sufficiently frequent in the data set to afford reliable data analysis. Therefore, we 
combined all students with other perceived ethnicities into a non-Caucasian group in 
order to create roughly balanced data sets. 

We performed within- and cross- perceived ethnicity validation experiments. 
Within perceived ethnicity testing was performed by training the detectors with data 
from 67% of students in one group and testing it on the remaining 33% of students 
within that same group (e.g., train on Caucasian students, test on Caucasian 
students). For between perceived ethnicity testing, it would have been possible to use 
100% of the data from each group (i.e. train on all Caucasian, test on all non-
Caucasian) without violating the student-level independence constraint because no 
student was annotated as both Caucasian and non-Caucasian. . However, that would 
not have allowed a fair comparison to within-perceived-ethnicity testing since the 
sizes of the data sets would be different. Hence, cross-perceived ethnicity testing was 
performed by training a detector with data from 67% of students in one group and 
testing it on 33% of students from the other group (e.g., train on 67% Caucasian 
students, test on 33% non-Caucasian students). Cross-validation was repeated for 
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150 iterations and we used the same classifiers as in the temporal generalization 
experiments. 

Since 57% of the students were coded as Caucasians, we randomly downsampled 
the Caucasian training data so as to equate the number of instances with the non-
Caucasian data. We also recreated the baseline detectors (Section 4) using the 
downsampled datasets to achieve a fair comparison. 

Classification accuracies were averaged across pairs (train on Caucasian → test 
on non-Caucasian and vice versa). Within-perceived ethnicity affect detectors were on 
average 1.9% more accurate than baseline detectors (see Fig. 9), which was expected 
as there was less variability when training and testing on the same perceived 
ethnicity. Off-task behavior detection accuracy was not notably different between 
groups. 

 

 
Fig. 9. Comparison of baseline results to generalization across perceived ethnicity. 

  
The more interesting comparison pertains to between- vs. within- perceived ethnicity 
tests. Overall accuracy for cross-perceived ethnicity detectors was consistently above 
chance (average AUC = .722), demonstrating the feasibility of generalization. We 
observed decreases in cross-perceived ethnicity detector accuracy for engagement and 
frustration, but this was not surprising as these detectors are exposed to different 
visual characteristics when tested on a new perceived ethnicity. However, there were 
some unexpected increases in accuracy, most notably in the confusion and delight 
detectors but also in boredom (details in Appendix, Table VIII). In particular, the 
confusion detector exhibited a surprising 9.3% improvement (AUC of .673 to .766) in 
the Caucasian train → non-Caucasian test analysis compared to the Caucasian train 
→ Caucasian test analysis. Similarly, the delight detector showed an 8.7% 
improvement (AUC of .840 to .927) in non-Caucasian → Caucasian testing compared 
to non-Caucasian → non-Caucasian testing. 

We examined base rates of affect within each perceived ethnicity to determine if 
they may explain these unexpected results (see Table IV). We note a general pattern 
where training on the group with a higher base rate and testing on the group with 
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the smaller base rate yields a higher accuracy. For example, the Caucasian and non-
Caucasian training sets had a 2.8% and 1.5% base rates of confusion, respectively. 
Training for confusion on Caucasian (higher base rate) and testing on non-Caucasian 
(lower base rate) resulted in a higher AUC of .766 compared to training and testing 
on Caucasian (AUC of .673). Similarly, the base rate of delight was higher in the non-
Caucasian data set (3.3%) compared to the Caucasian data set (.016). Accordingly, 
training for delight on non-Caucasian (higher base rate) and testing on Caucasian 
(lower base rate) resulted in a higher (AUC of .927) accuracy than training and 
testing on non-Caucasian (AUC of .840). 

Therefore, it appeared that base rate differences rather than appearance features 
best explain the results. Importantly, despite this base rate issue, the results provide 
strong evidence for generalization across perceived ethnicities. 

 
Table IV. Proportions of affective states and off-task behavior within each perceived ethnicity. 

Affective State 
Perceived 
Caucasian 

Perceived  
Non-Caucasian Difference 

Boredom .038 .049 29% 

Confusion .028 .015 84% 

Delight .016 .033 102% 

Engagement .792 .755 5% 

Frustration .126 .147 17% 

    
Off Task .046 .054 18% 

Note. Difference refers to the size of the larger proportion relative to the smaller one. 
(i.e. 100 × [larger / smaller – 1]). 

 Cross-Gender Generalization 
Cross-gender generalization testing was similar to cross-perceived ethnicity testing. 
However, gender was reported by students so there was no need for post-hoc 
annotation. The sample comprised 58% females, so the female data were randomly 
downsampled so as to obtain an equal distribution of males and females. Baseline 
results were also recreated based on the downsampled data set.  

Fig. 10 illustrates the main results with additional details reported in the 
Appendix (Table IX). Most importantly, overall cross-gender affect detection accuracy 
was consistently above chance (average AUC = .730), demonstrating the feasibility of 
cross-gender generalization. Moreover, cross-gender affect accuracy was similar to 
overall within-gender accuracy (AUC = .724). Cross-gender affect accuracy also 
appeared to be as good as or better than the baseline with both genders pooled 
(average AUC = .712). The baseline proportions shown in Table V also illustrate the 
same issue discussed in the perceived ethnicity generalization results wherein 
training on a larger group and testing on a smaller group resulted in higher accuracy 
attributable to differences in base rates rather than gender per se. 
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Fig. 10. Comparison of detector accuracies for within-gender versus cross-gender classification. 

 
 
 

Table V. Proportions of affective states and off-task behavior within each gender. 
Affective State Female Male Difference 

Boredom .053 .028 86% 

Confusion .030 .011 165% 

Delight .019 .030 58% 

Engagement .724 .857 18% 

Frustration .175 .074 137% 

    
Off Task .063 .028 125% 

Note. Difference refers to the size of the larger proportion relative to the smaller one 
(i.e. 100 × [larger / smaller – 1]). 

 GENERAL DISCUSSION 
Affect detection is a crucial component for interfaces that aspire to dynamically 
respond to affect. The inexpensive, ubiquitous nature of webcams makes facial 
expressions an attractive modality for affect detection. We were interested in the 
feasibility of utilizing face-based affect detection methods in noisy computer-enabled 
classrooms. In this environment, students were subject to distractions, uncontrolled 
lighting, and other factors which complicated affect detection. Additionally, we were 
interested in the detectors’ ability to generalize across time and student 
demographics – both underexplored aspects of affect detection. In this section, we 
discuss our main findings with respect to detection accuracy and generalization, as 
well as the implications of these findings, their limitations, and future directions. 
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 Main Findings 
Our first contribution was to develop face-based detectors of learning-centered 
affective states in a noisy school environment. We demonstrated the feasibility of 
automatic detection of boredom, confusion, delight, engagement, frustration, and off-
task behavior as students used an educational game. There were many sources of 
noise. With respect to class distractions, students fidgeted, talked with one another, 
asked questions, left the classroom, and occasionally even used their cellphones 
(against classroom policy). On some occasions multiple students crowded around the 
same screen to view something that another student had done. Additionally, lighting 
conditions were inconsistent across students, in part due to placement of computers. 
We were able to create detectors without excluding any of these difficult but realistic 
situations, except where faces could not be automatically detected in the video. In 
fact, despite using modern computer vision techniques, we were unable to register 
the face in 34% of the instances. This goes to illustrate the challenge of detecting 
affect in the wild. 

We also experimented with various classification methods and parameters. 
Creating one universal detector for all affective states is attractive for the sake of 
simplicity. However, we found that ideal methods and parameters varied as a 
function of affective state. For example, the confusion and off-task detectors were 
more accurate with larger window sizes, while the delight detector worked better on 
smaller windows. Frequently selected features also differed between models. The 
optimal classifiers and feature selection parameters also varied across affective 
states. This suggests that accuracy can be improved by tailoring the parameters used 
to distill data sets to specific affective states. 

Imbalanced (or skewed) affective state distributions are another challenge for the 
detectors. This was a major concern with the present data, as three of the affective 
states were observed at rates less than 5%, while the most frequent occurred at a 
rate nearing 80%. To overcome this, we synthetically oversampled the training data 
to create detectors that predicted the less common states well. This is particularly 
important for applications of the detectors in affect-sensitive educational interfaces 
(see below). Detectors must be able to recognize relatively infrequent affective states 
that are important to learning (e.g., confusion) [D’Mello 2013], because infrequent 
does not mean inconsequential. Indeed, one or two episodes of intense frustration can 
disrupt an entire learning experience. 

Generalization is another important but often overlooked aspect of real-world 
affect detection. After showing that our baseline models generalized to new students, 
we studied generalization across time and demographics. Temporal generalizability 
is a key feature of affect detectors that are intended for real-world use as they will 
inevitably encounter data that is temporally distant from training data. We expected 
detector accuracy to be diminished by training on one day and testing on another due 
to confounds such as changes in lighting, mood, and other factors (e.g., novelty 
effects). However, we found that average cross-day classification accuracy was 
reduced by less than 2% compared to combined-days baseline detectors and within-
day detectors. We had similar expectations for generalization across class periods, 
where additional factors such as time of day might diminish affect detection accuracy. 
However, cross-period detection was also successful with less than 2% average 
reduction in accuracy compared to baseline. Therefore, we have some evidence that 
our affect detectors demonstrated adequate temporal generalization. 
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We also investigated, for the first time, generalization of face-based affect 
detection across demographic variables – specifically perceived ethnicity (Caucasian 
or non-Caucasian) and gender. We expected that detectors trained and tested on the 
same perceived ethnicity or gender would yield improved performance over the 
combined ethnicity and gender detectors, respectively. We found this to be the case, 
as there were average improvements of 1.9% and 1.1% (compared to baseline AUC) 
for perceived-ethnicity- and gender- specific detectors, respectively. We anticipated a 
reduction in accuracy when within-group detectors were applied to the 
complementary group (e.g., train on Caucasian, test → non-Caucasian) because 
detectors are likely calibrated to the specific training group. In fact, we found that 
accuracy actually improved slightly in some cases (average improvement of 1.6% for 
cross-perceived-ethnicity and 0.7% for cross-gender). Follow-up analyses indicated 
that the differences in class base rates were likely responsible for this unexpected 
effect. Specifically, accuracy was higher when the training data had more instances 
of the target class label than the testing set. Despite these somewhat unexpected 
findings, the core research question of whether the detectors could generalize across 
demographic factors of perceived ethnicity and gender was answered in the 
affirmative. 

 Implications 
The primary implication of our findings is that our affect detectors can be effective in 
a noisy computer-enabled classroom context. Previous affect-detection work in 
computer-enabled classrooms has been limited, so these results establish some 
expectations of moderate accuracy for future work. Additionally, previous work had 
not explicitly tested generalization of face-based affect detectors across time and 
demographics, which our results showed was indeed possible.  

A limitation of face-based detectors is that they can only be used when the face 
can be automatically detected in the video. This is not always the case outside of the 
lab, where there is little control over movement, occlusions, poor lighting, and other 
complicating factors. In fact, the face could only be detected in about 65% of the 
instances in this study. To address this, we [Bosch, Chen, Baker, Shute and D’Mello 
2015] developed additional detectors based on features extracted from the ongoing 
interaction context (and stored in log files), such as the difficulty of the current game 
level attempted, the student’s actions, the feedback received, response times, and so 
on. The interaction-based detectors (mean AUC of .569) were less accurate than the 
face-based detectors (mean AUC of .668), but could be applied in almost all of the 
cases. Logistic regression models were trained to adjudicate between the outputs of 
the video- and interaction- based detectors. The resultant multimodal model was 
almost as accurate as the face-based detector (mean AUC of .637 for multimodal 
versus .668 for face-based), but was highly applicable (98% for multimodal vs. 65% 
for face-based). These results are notable because they suggest the feasibility of 
multimodal affect detection in noisy real-world environments. 

The next step is to use the detectors in an affect-sensitive version of Physics 
Playground with intelligent strategies that respond to student affect. Confusion and 
frustration offer opportunities to intervene in the form of hints or revisiting 
introductory material related to the current game level. If the student was recently 
frustrated and unable to solve a level, the game might suggest an easier level. 
Conversely, a more difficult level might be appropriate if the student has become 
bored because challenge is too low. 
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Much work remains to be done in determining what interventions should be used 
in this context and how frequently they should be applied. Special considerations 
must also be given to the probability of spurious detection (false alarms) when 
designing these strategies, since incorrect interventions could cause confusion or 
annoyance. Although the results presented here are modest and there is clearly 
considerable room for improvement, it should be noted that affect detection is 
inherently an imperfect science due to numerous challenges discussed in previous 
reviews [Calvo and D’Mello 2010; D’Mello and Kory 2015; Zeng et al. 2009]. Detection 
accuracy is unlikely to ever be perfect, hence, the challenge is to develop 
interventions that take into account ambiguity in affect detection (via probabilistic 
approaches). Furthermore, interventions must be fail-soft so that learning is not 
negatively impacted if delivered incorrectly. For example, subtle strategies, such as 
re-ordering levels to display an easier level after a frustrating experience, may be 
preferred over more explicit ones – e.g., directly commenting that the student is 
frustrated. 

 Limitations and Future Work 
Like most research, this study has a number of limitations as discussed below. 

First, the number of positive training instances was limited for some affective 
states, due (in part) to the difficulty of collecting data in the wild. This limitation was 
partially overcome by using SMOTE to create synthetic training data, but 
oversampling is not a perfect substitute for the diversity of genuine data.  

Second, the distribution of affective states depends on the interface used. The 
interface in this study was game-based, which may have increased engagement and 
decreased other affective states compared to some other types of interfaces, though 
perhaps not intelligent tutoring systems (cf. [D’Mello 2013]). Initial work in this 
direction was done by [D’Mello 2013] in his meta-analysis of affect incidence across 
24 studies involving learning with technology. However, this work can be expanded 
to include a larger set of educational interfaces in order to ascertain if different 
affective profiles emerge as a function of the nature of the interaction (e.g., one 
profile for reading text, another for interacting with an intelligent tutoring system, a 
third for an educational game). 

Third, the affect annotation protocol we used requires observers to be in the 
classroom, which could influence students’ displays of affect akin to a Hawthorne 
effect [Cook 1962]. A different distribution would be possible if students self-reported 
their affective states [D’Mello in press]. This issue needs to be studied by comparing 
different affect annotation methods similar to [Graesser et al. 2006] and to consider a 
combination of annotation methods as discussed in [D’Mello et al. 2008]. 

Fourth, lighting conditions and students themselves varied somewhat between 
days. However, additional sources of variation, such as from different learning 
environments and multiple schools, might make classification even more difficult and 
produce new insights on generalization to new contexts. Additionally, the amount of 
time represented in this study (two different days) was sufficient for an initial 
analysis of cross-day generalization, but not for larger temporal differences, such as 
cross-seasonal generalization (i.e. train detectors in fall → test in spring). 
Longitudinal data collection across multiple school years and across different grade 
levels will be needed to resolve questions of generalization across longer periods of 
time and across age groups. This will also provide more accurate estimates of how 
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usable models are under varying lighting conditions and other sources of noise in 
different classrooms. 

Finally, true cross-ethnicity testing would require measuring ethnicity from 
student self-reports or from administrative data, rather than the post hoc perceived 
ethnicity labels used in this study. The number of students per perceived ethnicity 
did not afford fine-grained testing across perceived ethnicities either, which could 
have yielded additional insight into differences between, for example, Asian and 
Latino students. Additionally, generalization across culture and age were not tested 
in this study, but may be possible challenges for face-based affect detection (see 
Grafsgaard et al. [2015] for recent work comparing facial expressions across age) and 
should be more thoroughly explored with expanded and diverse data collection. 

 Concluding Remarks 
Our long term vision is for next-generation learning environments to improve the 
process and products of learning by considering affect in addition to cognition. We 
hope that the present research that detects students’ affect in a noisy real-world 
environment and with evidence of multiple levels of generalizability takes us towards 
this goal. The next critical step is to use the detectors to trigger affect-sensitive 
interventions in order to provide a more enjoyable, efficient, and effective learning 
experience for all students. 
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 APPENDIX 
Details of results 
 

Table VI. Results of cross-day compared to within-day detection. 

Classification 
Baseline 
AUC 

Within- 
day AUC 

Cross-
day AUC 

Change 
(Cross-day - 
Within-day) 

Change 
(Cross-day - 
Baseline) 

Boredom .610 .574 .577  0.23% -3.34% 

Confusion .649 .665 .639 -2.61% -1.02% 

Engagement .679 .679 .662 -1.72% -1.70% 

Frustration .631 .643 .631 -1.21%  0.02% 

Mean Affect .642 .640 .627 -1.33% -1.51% 

      
Off Task .816 .774 .781 0.72% -3.48% 

 Note. Cross-day change is percentage of change in AUC, which is bounded on [0, 1]. 
 

 
Table VII. Cross-period detection accuracy vs. combined (baseline results) accuracy. 

Classification Baseline AUC Cross-period AUC 
Change (Cross-period – 
Baseline) 

Boredom .610 .579 -3.10% 

Confusion .649 .590 -5.83% 

Delight .867 .862 -0.48% 

Engagement .679 .672 -0.74% 

Frustration .631 .638  0.72% 

Mean Affect .687 .668 -1.89% 

    
Off-task .816 .793 -2.27% 

Note. Cross-period change is percentage of change in AUC, which is bounded on [0, 1]. 
 

Table VIII. Results (AUC) of within- and cross- perceived ethnicity testing. 

Classification 
Recreated 
Baseline 

Caucasian 
→ 
Caucasian 

Caucasian  
→ 
Non-Caucasian 

Non-Caucasian 
→  
Non-Caucasian 

Non-Caucasian 
→ 
Caucasian 

Boredom .621 .638 .651 .645 .668 

Confusion .644 .673 .766 .682 .684 

Delight .850 .883 .874 .840 .927 

Engagement .672 .663 .697 .721 .653 

Frustration .645 .620 .673 .692 .626 

Mean Affect .687 .695 .732 .716 .711 

      
Off-task .806 .846 .756 .786 .834 
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Table IX. Results (AUC) of within- and cross- gender testing. 

Classification 
Recreated 
Baseline 

Female → 
Female 

Female → 
Male 

Male → 
Male 

Male → 
Female 

Boredom .659 .679 .692 .708 .690 

Confusion .743 .768 .775 .659 .691 

Delight .886 .905 .872 .880 .920 

Engagement .662 .666 .688 .679 .656 

Frustration .611 .612 .700 .683 .621 

Mean Affect .712 .726 .745 .722 .716 

      
Off-task .828 .806 .832 .725 .799 

 
 
 


