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ABSTRACT 

Engagement is complex and multifaceted, but crucial to learning. 

Computerized learning environments can provide a superior 

learning experience for students by automatically detecting 

student engagement (and, thus also disengagement) and adapting 

to it. This paper describes results from several previous studies 

that utilized facial features to automatically detect student 

engagement, and proposes new methods to expand and improve 

results. Videos of students will be annotated by third-party 

observers as mind wandering (disengaged) or not mind wandering 

(engaged). Automatic detectors will also be trained to classify the 

same videos based on students’ facial features, and compared to 

the machine predictions. These detectors will then be improved by 

engineering features to capture facial expressions noted by 

observers and more heavily weighting training instances that were 

exceptionally-well classified by observers. Finally, implications of 

previous results and proposed work are discussed.  
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1. INTRODUCTION 
Most people can relate to the experience of becoming disengaged 

from almost any task where distractions occur or daydreams 

happen. For example, a student might spend nearly as much time 

in a lecture text messaging or plumbing the depths of Wikipedia 

as they do actually listening to the teacher. Similarly, while 

reading a textbook you might go through the motions of reading 

but soon find yourself thinking about something else entirely. This 

lack of engagement (in other words, disengagement) can be 

detrimental to performance in tasks such as learning [17]. 

Unsurprisingly, previous research has shown that engagement is 

positively related to learning [15]. Educational software can 

utilize this relationship to improve the learning experience for 

students and promote learning by adapting to a student’s level of 

engagement and redirecting them toward the learning goal if 

necessary (intervening). Such interventions can be triggered by 

automated engagement detection systems. For example, in a fully 

automated learning environment a hint could be given to a student 

if the system detects that the student is confused or frustrated by 

the learning material and may soon become disengaged [9].  

Accurate engagement detection is thus key to developing such 

learning systems and strategies. Many techniques have been 

employed to detect engagement and related constructs, including 

interaction log-files, eye gaze, physiological measurements, facial 

features, and others [7,16]. Each of these channels of data has 

their own advantages and disadvantages. For example, interaction 

log-files require no sensors, but are often highly context 

dependent. Gaze trackers measure the locus of attention precisely, 

but are not common in learning environments. Physiological 

sensors are increasingly popular in fitness trackers and related 

hardware, and can be used easily throughout the day. However, 

they are less accurate than other methods for detecting some 

components of engagement. Facial features are widely available 

via inexpensive and commonplace webcams, but are sensitive to 

various factors like lighting, occlusions, and movement. This 

paper focuses on face-based engagement detection methods, 

because it is potentially superior to other methods in terms of 

availability in various domains and potentially complementary to 

other modalities by focusing on visible features. 

There are several facets to engagement that must also be discussed 

to properly situate the proposed work within the body of related 

work. This paper examines three components of engagement: 

affective, cognitive, and behavioral. Examples of these might be a 

student who is interested in a topic and enjoying learning about it 

(affective engagement), a student who is reading a book and 

thinking about how the material integrates with their previous 

knowledge of the topic (cognitive), or a student diligently typing 

an essay (behavioral). Various affective states play a role in 

engagement as well. For example, frustration can lead to boredom 

[9], which in turn indicates a lack of affective and cognitive 

engagement. Figure 1 illustrates the model of affective states and 

engagement that will be considered in this paper. 

 

Figure 1. Conceptualized breakdown of engagement 

The focus of proposed research in this paper is on mind 

wandering (MW), a type of cognitive disengagement. Students 

mind wander when they shift their focus from thinking about the 

learning task at hand toward unrelated thoughts [17]. For 

example, a student might mind wander thinking about a television 

show they recently saw. Such students are no longer cognitively 
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engaged in the task at hand, though they may not immediately 

realize it. Hence, it might be useful to detect MW and refocus 

students’ attention. MW detection has been the subject of research 

efforts utilizing eye gaze and physiology [3,16], but face-based 

techniques are not yet well explored. Furthermore, it is not clear 

how well different techniques work for annotating MW. 

There are various methods of engagement annotation, which 

typically fall into two broad categories: self-reports or third-party 

observations. One of the primary advantages of self-reported 

emotions is that the student making a self-report has access to 

their own internal state of mind, which an observer does not. On 

the other hand, observations made by a third party do not require 

interrupting students at all. However, observers lack access to the 

internal state of students, and must make their judgments based on 

external cues alone (which more closely matches the method an 

automatic detector must use). 

This paper briefly reviews progress made toward the goal of 

automatic face-based engagement detection, including 

components of engagement and the affective states that manifest 

in relation to engagement (Figure 1). Both self-reported and 

observer labels of engagement have been employed for training 

the detectors as well. Proposed enhancements to engagement 

detection are then presented, focusing on a new study designed to 

capture cognitive disengagement and improve engagement 

detection via human knowledge. 

Both self-reports and observations are also considered in related 

work, since the approaches have complementary strengths and 

weaknesses. Face-based approaches to automatic detection are 

discussed for various aspect of engagement mentioned (Figure 1), 

including affective states that manifest as a part of engagement. 

2. RELATED WORK 
Many methods have been used to detect engagements and its 

components [7]. Primarily face-based approaches are reviewed 

here, as the proposed work focuses on facial features. 

2.1 Affective and cognitive state detection 
Kapoor et al. [12] developed one of the first systems for detecting 

frustration in an automated learning environment. They used 

multimodal data channels including facial features (from video), a 

posture-sensing chair, a pressure-sensitive mouse, a skin 

conductance sensor, and interaction data to predict frustration. 

They were able to predict when a user would self-report 

frustration with 79% accuracy (chance being 58%). 

Hoque et al. [11] used facial features and temporal information in 

videos to classify smiles as either frustrated or delighted – two 

states that are related to engagement and learning. They accurately 

distinguished between frustrated and delighted smiles correctly in 

92% of cases. They also found differences between acted facial 

expressions and naturalistic facial expressions. In acted data only 

10% of frustrated cases included a smile, whereas in naturally 

occurring frustration smiles were present in 90% of cases. These 

results illustrate that there can be large differences between 

naturalistic and posed data. 

The Computer Expression Recognition Toolbox (CERT) [13] is a 

computer vision tool used to automatically detect AUs as well as 

head pose and head position information. CERT uses features 

extracted from Gabor filters as inputs to SVMs to provide 

likelihood estimates for the presence of 19 different AUs in any 

given frame of a video stream. It also supplies measures of 

unilateral (one side of the face only) AUs for three action units, as 

well as “Fear Brow” and “Distress Brow,” which indicate the 

presence of combinations of AU1 (Inner Brow Raiser), AU2 

(Outer Brow Raiser), and AU4 (Brow Lowerer). CERT has been 

tested with databases of both posed facial expressions and 

spontaneous facial expressions, achieving accuracy of 90.1% and 

79.9%, respectively, when discriminating between instances of the 

AU present vs. absent [13]. 

Grafsgaard et al. [10] used CERT to recognize the level of 

frustration (self-reported on a Likert scale) in a learning session 

and achieved modest results (R2 = .24). Additionally, they found 

good agreement between the output of CERT AU recognition and 

human-coded ground truth measurements of AUs. After 

correcting for individual differences in facial feature movements 

they achieved Cohen’s kappa >= .68 for several key AUs. They 

did not perform detection at a fine-grained level (i.e. specific 

affective episodes), instead detecting the presence of affect in the 

entire learning session. However, their work does provide 

evidence of the validity of CERT for automated AU detection. 

2.2 Behavioral engagement detection 
In a recent engagement detection effort, Whitehill et al. [18] used 

Gabor features (appearance-based features capturing textures of 

various parts of the face) with a support vector machine (SVM) 

classifier to detect engagement as students interacted with 

cognitive skills training software. Labels used in their study were 

obtained from retrospective annotation of videos by third-party 

observers. Four levels of engagement were annotated, ranging 

from complete disengagement (not even looking at the material) 

to strong engagement. This type of engagement annotation 

primarily captures behavioral engagement. They were able to 

detect engagement with an Area Under the ROC Curve (AUC, 

averaged across all four levels of engagement) of .729 where 

AUC = .5 is chance level detection. 

Finally, off-task behavior detection in learning environments is 

perhaps the most clearly behavioral type of engagement detection. 

Off-task behavior has been detected with interaction log-file 

clickstream data [1]. However, face-based approaches in learning 

contexts are not yet well established. 

3. CURRENT RESULTS 
The results described briefly in this paper extend the related work 

to demonstrate the feasibility of automatic face-based detection of 

components of engagement. 

Some of the completed results used texture-based facial features 

and heart rate detected from changes in skin color to detect 

behavioral engagement [14]. Students wrote essays and self-

reported engagement (i.e., if they were working on the essay) both 

during the writing task and afterword. Engagement was detected 

with accuracy of AUC = .758 (versus chance = .5), using a fusion 

of both types of features extracted. 

Completed work also included detection of components of 

cognitive and affective engagement using facial features. In one 

study confusion and frustration were detected at 22.1% and 23.2% 

above chance respectively [4]. In another study, both confusion 

(AUC = .637) and frustration (AUC = .609) were detected above 

chance levels. Importantly, engagement detectors fit to specific 

learning scenarios were more effective (average AUC = .595) than 

general detectors (average AUC = .554), indicating that the 

learning task can have an appreciable effect on detector accuracy. 

Finally, research so far also explored some engagement detection 

aspects in the wild, using facial features extracted from face 



videos in a computer-enabled classroom. Boredom (AUC = .610), 

confusion (.649), delight (.867), engaged concentration (.679), 

frustration (.631), and off-task behavior (.816) were all detected at 

levels above chance. These results demonstrated the feasibility of 

detecting various facets of engagement in the wild, despite the 

noisy nature of data collected in a classroom environment. 

4. PROPOSED WORK 
Completed work has primarily focused on affective, behavioral, 

and related facets of engagement. As discussed previously, MW is 

a cognitive component of engagement that has not been well 

researched in terms of facial features or automatic face-based 

detection. The proposed work (not yet completed) focuses on 

answering questions about human observer perception of MW, 

automated MW detection, and if observers can improve detection. 

Data collection will consist of obtaining observer ratings of face 

videos of humans MW or not MW. These video clips come from a 

study in which 98 participants read an instructional text and self-

reported MW whenever they realized they had been MW. Video 

clips for observer annotation will then be extracted in 12-second 

windows leading up to MW self-reports. 12 seconds was chosen 

to correspond to the average MW report time within a page, as a 

compromise between shorter windows (less data to use) and 

longer windows (fewer windows can be extracted because they 

won’t fit between page start and MW report). Non-MW video 

clips will be similarly extracted from periods of time where there 

were no MW self-reports, with windows ending at the average 

MW report position. In total, there are 3,272 such clips available 

from the original dataset collected for proposed work. 

Clips will be rated by observers on Amazon Mechanical Turk, 

which has been used in many previous studies (e.g., [6]). 

Observers will be shown a sequence of 10 clips asked to judge 

each clip as MW or non-MW and provide a confidence rating 

regarding their observation. Additionally, observers will be asked 

to describe the reason for each of their observations in a text box. 

They will be provided with detailed descriptions of MW to aid 

them in determining what constitutes MW and what does not. 

After all videos have been coded by observers, the text responses 

will be examined to identify common themes (e.g., selected MW 

because participant yawned). The most frequent themes will then 

be made into checkboxes in the observation interface, and the text 

response will be removed. Clips will then be rated on Mechanical 

Turk repeatedly to improve reliability of ratings. 

4.1 Observer-based MW classification 
Maximum Likelihood Estimation (MLE) will be used to calculate 

the set of clip labels that is most consistent with the observer 

ratings. Observers who tend to disagree with other observers are 

likely less reliable and thus will have all of their ratings weighted 

lower, and vice versa. In the event of ties the clip label will be 

randomly assigned. This analysis will be the first measure of how 

well third-party observers can detect MW from facial expressions. 

4.2 Automatic MW classification 
One third of students (33 students) will be randomly chosen and 

their clips will be reserved as the evaluation set. The rest of the 

clips (roughly 2,200) will compose the development set which 

will be used to create automatic MW detectors. 

A unique set of high- and low- level facial features will be 

extracted for MW classification. High level features will be based 

on action units extracted using EmotiontSDK for each video 

frame. AUs will then be aggregated across the duration of each 12 

second clip to obtain the mean and standard deviation of each AU. 

Prior work has shown that various time scales are effective for 

different classification tasks [5]. Thus, AUs will also be 

aggregated for 3, 6, and 9 second subsections of each clip to 

create a set of multiscale features. Relationships between AUs 

will be captured by features measuring the Jensen-Shannon 

divergence (JSD) of AU pairs. Finally, temporal features of AUs 

will be encoded by applying 1-dimensional Gabor filters to each 

detected AU signal and measuring the patterns of presence and 

absence of each AU within the clip [2]. 

Low-level facial features will be extracted using Local Binary 

Patterns in Three Orthogonal Planes (LBP-TOP) and 2-

dimensional Gabor filters. These features have been shown to be 

effective for engagement classification [14,18]. LBP-TOP features 

capture texture patterns, which can be indicative of facial 

expression changes. For example, if a student smiles the texture 

pattern near the mouth will change from ordinary skin texture to a 

lip texture as the mouth widens. Gabor filters are particularly well 

suited for detecting edges, which can capture not only the edges of 

facial features such as eyes and eyebrows, but also skin wrinkles 

that occur in some facial expressions (e.g., on the nose when the 

brow is furrowed). 

Support vector machine (SVM) classifiers will be trained using 

leave-one-student-out cross validation on the development data. 

SVMs will be used because they have been used successfully in 

previous engagement detection research [18], and because they 

lend themselves to modification for improving predictions using 

human observations of MW (section 4.3). Individual SVMs will 

be trained for each group of related features (e.g., LBP-TOP 

features) and combined with a logistic regression. The feature set 

will be reduced using feature selection. 

This analysis will provide a baseline for improvement of MW 

classification. It is also novel in that student MW during reading 

has not been well studied before. Additionally, timescale-invariant 

features have not been explored for MW detection. 

4.3 Improving automatic predictions 
Knowledge gained from observer ratings may be useful for 

improving the accuracy of automatic detectors. The first step will 

be to compare the accuracies of observer and automatic 

predictions. This will be done on the evaluation dataset. F1 score 

of MW will be the primary accuracy metric, area under the 

receiver operating characteristic curve (AUROC) and area under 

the precision-recall curve (AUPRC) will also be considered as 

they are common metrics. 

There are several potential avenues for improving the automatic 

detectors by integrating observer knowledge. Even if humans 

prove less accurate than computers at classifying MW, their input 

could prove valuable if they are able to classify different instances 

well than the automatic methods. First, instances in the 

development set that were poorly classified by the detectors but 

classified well by observers will be isolated. Then, the observers 

justifications for their ratings (both text responses and check 

boxes) will be examined to determine if there are facial cues that 

should be added as features. For example, LBP-TOP features 

could be engineered to capture features from a very specific part 

of the face, or more heavily weight features from that part of the 

face. Second, weights will be assigned to instances during training 

so this set of important isolated instances will be more influential 

in training, and thus influence the position of the SVM 

hyperplane. Similarly, instances that cannot be well classified by 

either humans or computers will be weighted lower as they are 



likely unhelpful for classification. Third, examples from this set of 

isolated instances will be annotated by researchers to determine if 

there are additional clues observers may have used to accurately 

classify these instances. All of these methods will utilize the 

development training set only, to avoid overfitting to 

characteristics of the evaluation dataset. 

Finally, observer judgments will be augmented with the automatic 

predictions by training a model using observer judgments and 

automatic predictions as features. This model will serve as a 

further comparison to determine if observers are utilizing 

important features that are not captured by automatic detectors. 

This analysis will be the first to compare third-party observations 

with automatic face-based predictions of MW. It will also be the 

first to explore the possibility of improving face-based MW 

detection using knowledge gleaned from human observers. 

5. CONCLUSIONS 
Engagement is important for learning [8,17]. Engagement 

detection thus offers opportunities for improving learning through 

automated engagement evaluation and targeted interventions. This 

paper describes prior work laying the ground for automatic face-

based detection of various aspects of engagement. Face-based 

detection is particularly attractive for practical applications due to 

its potential for context generalizability. MW is a relatively 

unexplored facet of engagement detection, especially with face-

based approaches. This paper proposed work to address questions 

of how well third-party observers can detect MW and what can be 

done to improve automatic detection. The proposed work, if 

effective, will provide a powerful addition to computerized 

learning environments in the future by automatically detecting 

MW from faces and improving detection by incorporating 

observer annotations of MW. 
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