
Unsupervised Deep Autoencoders for Feature Extraction
with Educational Data

Nigel Bosch
University of Illinois at Urbana-

Champaign
1205 West Clark Street
Urbana, IL, 61801, USA

pnb@illinois.edu

Luc Paquette
University of Illinois at Urbana-

Champaign
1310 South 6th Street

Champaign, IL 61820, USA
lpaq@illinois.edu

ABSTRACT
The goal of this paper is to describe methods for automatically
extracting features for student modeling from educational data, and
students’ interaction-log data in particular, by training deep neural
networks with unsupervised training. Several different types of
autoencoder networks and structures are discussed, including deep
neural networks, recurrent neural networks, variational
autoencoders, convolutional neural networks, and asymmetric
network structures. Autoencoder networks are trained to find low-
dimensional, predictive embeddings of raw interaction-log data.
These embeddings are then entered into a model as features for
supervised classification tasks. We discuss the implications for
training these network structures with educational data, including
peculiarities that arise for interaction-log data that are not as
commonly encountered in domains such as computer vision and
natural language processing. Methods for evaluating the network
training process are also discussed, with examples showing the
importance and efficacy of visualizing neuron activations to
diagnose common problems encountered during training and
verifying that embedded representations of data follow desired
distributions. We provide an example of how automatically
extracted features can be used in a classification problem for the
detection of student affect. In this example, student boredom was
detected at levels above chance (area under the receiver operating
characteristic curve = .673 versus .5 chance). Finally, opportunities
for future work are discussed, including transfer learning and semi-
supervised methods.

Keywords

Unsupervised learning, deep learning, autoencoder, affect
detection, student modeling, student interactions

1. INTRODUCTION
Modeling students in computer-based education platforms is
important for several reasons. A wide variety of educational
strategies and assessment capabilities are made possible by
automatic detection of students’ affective, cognitive, and
behavioral states—such as when a student is bored, engaged, off-
task, or understanding a particular concept [8]. For example,

software can automatically target interventions when students stop
paying attention [10], track cognitive workload within a lesson
[27], predict when a student is going to drop out of a course [39],
and many more possibilities.

Toward these goals, researchers have explored machine learning
methods for student modeling based on data such as interaction logs
[1, 32], facial features [4, 38], physiology [3, 13], and other
modalities (see [9, 42] for reviews). Various machine-learned
models such as Bayesian models [16], support vector machines
[25], and logistic regression [41] have been employed. Recently,
deep learning methods (neural networks with multiple non-linear
hidden layers in their structure) have shown promise for student
modeling applications [33], and are growing ever more popular in
the broader machine learning community [17]. Applying deep
learning methods to educational data is promising for the potential
to not only improve accuracy but enable new possibilities for
student modeling similar to the successes seen in other domains.

Some of these possibilities include automatic feature extraction
from raw data, learning the structure of time series and other
sequential data, and more. Deep learning also offers opportunities
for transfer learning across related domains. For example, neural
networks trained to detect objects in images can be adapted to
recognize students’ facial expressions [29]. In this manner, such
models utilize much of the information learned from recognizing
objects to avoid the need for millions of instances of labeled facial
expression data, which are typically difficult to acquire.

Deep learning approaches thus have much to offer for advancing
the state of the art in student modeling for educational software.
However, deep learning methods are still nascent in the education
domain, and there are some unique challenges that will have to be
addressed.

One of the biggest challenges of training deep neural networks is
that they are very “data hungry”, typically requiring a large number
of labeled training instances to fit the network parameters.
However, when modeling student features such as test results,
course grades, graduation outcomes, and other outcomes it is
impossible to obtain more than a few data points per student. For
example, Klingler et al. [21] classified students as having
developmental dyscalculia or not, which, by definition, results in
one label per student. Similarly, when modeling student affect,
cognition, or behavior manual labeling of students is typically
necessary [24, 31, 38]. In these situations labeled instances are also
limited to hundreds or thousands of instances rather than the
hundreds of thousands or millions that are frequently employed for
training supervised deep networks [17].

Additionally, the most common applications of deep learning (e.g.,
computer vision, natural language processing) deal with
homogenous data. For example, when recognizing objects in an
image, the inputs to a neural network are the numeric values of the
pixels in the image. Each pixel is the same type of data as all the
other pixels in the image (e.g., a number from 0-255). Each pixel is
also strongly related to other pixels in its local neighborhood. These
properties allow for quick development of neural networks that are
large but made up of many identical connections, with minimal data
pre-processing required. On the other hand, some types of
educational data, such as logged interaction behaviors, do not share
these properties. An interaction log might be made of up columns
describing timing information in milliseconds, integer counts of
different actions taken, and proportions of items completed. The
varied data types make transfer learning across domains all but
impossible, and different scales necessitate preprocessing to
prevent large-valued inputs from dominating the network.

In this paper, we detail strategies for addressing the issue of sparse
labels in temporally fine-grained educational data via a
combination of supervised and unsupervised deep learning
methods. We also propose methods for dealing with the unique
difficulties of training such models with educational data, and
interaction-log data in particular.

This paper is novel in several respects. We offer an overview of
how to construct several different types of unsupervised neural
network models for educational interaction data for the first time,
including fully connected, recurrent, variational, and convolutional
autoencoder networks. We also introduce a method for improving
unsupervised representations of interaction data by predicting
future sequences. The code for training and testing models
described in this paper is available online
(https://github.com/pnb/dlwed17).

2. RELATED WORK
This section includes brief discussions of research related to deep
learning in education and autoencoders for deep feature extraction.
More specialized methods for feature extraction are detailed in the
methods section.

2.1 Deep learning in education
Although deep learning research is not yet well explored for
educational purposes, there have been a few studies that employed
it for student modeling. For example, Metallinou et al. [26] trained
a deep neural network model for speech recognition to improve
assessment of children learning English. They measured speech
recognition accuracy with word error rate (WER), where 0%
implies perfect speech recognition (no errors). Their deep neural
network model achieved 19.3% WER versus 27.8% WER for a
more traditional Gaussian mixture model. This research
demonstrates a fairly straightforward implementation of deep
learning methodologies for speech recognition [7] adapted to an
educational environment.

Piech et al. [33] employed deep learning to improve student
knowledge tracing compared to traditional methods (Bayesian
knowledge tracing [6]). They utilized logged sequences of a
problem identifier and problem correctness as inputs to predict the
probability of students successfully answering a problem. Area
under the receiver operating characteristic curve (AUC) served to
measure prediction accuracy. Chance-level AUC is .5, while .0
represents completely incorrect classification and 1.0 represents
perfect classification. The deep knowledge tracing method resulted
in an impressive AUC = .85 on one dataset, compared to the

traditional method on the same data resulting in AUC = .68. A
similar improvement in accuracy was observed on another dataset,
where the deep learning method resulted in AUC = .86 versus .69
for the traditional method. However, later research motivated by
deep knowledge tracing showed that adding additional attributes
(designed to model unaccounted-for aspects of student knowledge)
to the traditional Bayesian method improved accuracy to be
equivalent to the deep learning method [19]. This illustrates one of
the advantages of the deep learning approach as well, in that
attributes could be automatically discovered without explicitly
modeling them (e.g., similarity between exercises and differences
between students).

Tang et al. [37] constructed deep neural networks to generate essay
text with a neural network trained on students’ essays. They also
predicted future student actions in a sequence from their past
actions. These results were not better than simply predicting the
majority class student action, but demonstrates a first effort toward
integrating student interaction data into a deep learning framework.
Additionally, the method of predicting future student actions from
past actions is conceptually similar to autoencoding.

2.2 Autoencoding neural networks
Autoencoders are a type of neural network in which the input to the
network is the same as the output. The network structure can be
designed so that the center of the network is smaller (represented
by fewer numbers) than the input. An autoencoder thus learns a
compact representation of the input, with no need for labels. It is
thus an unsupervised learning method that can be applied to vast
amounts of raw data without intractable annotation processes. In a
seminal study on autoencoders, Hinton et al. [11] showed that
autoencoders produced compact representations of images that are
more accurate representations for reconstructing the original
images than principal components analysis [40], a statistical
method frequently employed to reduce data dimensionality.

One of the biggest advantages of autoencoders is that they can be
adapted to learn different types of patterns based on the domain
knowledge of experts. Speech recognition research offers an
example of such adaptation. Maas et al. [23] developed a recurrent
network architecture, in which neurons are connected through time,
to model the temporal dependencies that are inherently present in
audio (i.e. every audio sample is highly related to the one before
and after it). They then trained autoencoders to remove noise from
audio by training a network with excess noise added to the input
(but not the output), so that the network learned to create noise-free
audio from noisy audio. They found that adding a recurrent
structure to the deep neural network dramatically improved the
accuracy of noise-removing autoencoders compared to non-
recurrent network structures (mean squared error decreased from
47.2% to 30.7% on average across all tasks).

2.3 Current paper
Related work involving deep learning in education is limited. The
current paper describes applications of related work to educational
interaction-log data. Specifically, we discuss applications of
different neural network architectures when designing deep
autoencoders for extracting compact representations of student
interactions. We then show the efficacy of one such representation
for detecting student boredom in a simple case study.

3. AUTOENCODER NETWORK
STRUCTURES
The unsupervised deep autoencoder methods that we focus on in
this paper are primarily intended to extract embedded

representations (embeddings) that can then serve as features for
supervised classification.

3.1 Deep neural networks (DNNs)
In its simplest form, a deep neural network simply has an input
layer, multiple hidden layers, and an output layer. The connections
between neurons in different layers in a simple network are
typically fully connected, i.e. there are connections between every
pair of neurons in consecutive layers. This structure has no built-in
representation of temporal or spatial locality, as every input is
treated equally and connected with every other neuron with no
regard for which connections are likely to be meaningful. This
strategy works well for simple problems, but educational data
typically has temporal relationships that can be exploited to extract
more effective embeddings of interaction data. The other network
structures discussed below are also deep (having multiple hidden
layers between input and output layers) but have different
connections and neurons that are designed to exploit specific
structures in data.

3.2 Recurrent neural networks (RNNs)
RNNs are a class of network structure in which the neurons at each
layer are not only connected to neurons from adjacent layers, but
also receive the inputs from the same layer at the previous step in a
sequence (e.g., the moment before in a time series). Figure 1
illustrates the connections between neurons across steps in
sequential data. With these connections the network is capable of
learning patterns that develop over time or some other dimension.
In the case of interaction-log data, RNNs can be utilized to learn
sequences that develop over time. For example, an RNN
autoencoder can learn to encode patterns of a student’s
correct/incorrect responses to questions, or to recognize sequences
of repeated hint usage in a learning environment.

One issue commonly encountered when training RNNs with
backpropagation is that the error term used to adjust weights has a
tendency to trend toward zero or infinity quickly due to
modification from activation functions in the neurons, and thus
does not allow training over many steps in sequential data. Long
short-term memory (LSTM) neurons solve this problem by storing
values in the network and passing them to the next (or previous)
step in a sequence using no activation function. The absence of an
activation function across steps in the sequence implies that the
values are not be modified, and so can be passed on for an arbitrary
number of steps, thus allowing the network to learn relationships
across longer sequences [12].

Figure 1. Connections between steps in an RNN

3.3 Convolutional neural networks (CNNs)
RNNs are not the only way to capture patterns in sequences,
however. A CNN is a type of neural network that applies a small

group of neurons (a filter) across the data for every input sample.
The neurons thus learn features that are defined by local patterns
(e.g., an eyeball in an image) but which could occur anywhere in
the input. Typically, many such filters are applied to the data, and
initialized randomly so that they eventually learn to detect different
features.
As mentioned previously, educational data are frequently
composed of features that are heterogeneous data types and not
locally related to other features in the dataset. Thus, applying
convolution across features makes little sense. However, we can
apply one-dimensional convolution across time, because each step
in time series data is semantically the same as the other steps (i.e.
has the same inputs). A CNN is thus relevant to learning from
students’ interaction data by finding patterns of interaction that are
notable but whose position within the sequence of actions is less
important to capture. This is analogous to a bag of n-grams model
of natural language processing, where short groups of words in a
sentence serve as features without capturing exactly where in the
sentence those groups of words were.

3.4 Variational autoencoders (VAEs)
RNNs and CNNs are ways of adapting neural networks to capture
temporal patterns in educational data, but there are other
considerations as well. Autoencoders are commonly trained to
minimize the difference between reconstructed inputs and the
actual inputs (i.e. reconstruction loss). This may result in highly
compact, accurate embeddings that represent the raw data well, but
embeddings can have unpredictable distributions that may not be
suitable for feeding into supervised classifiers. VAEs address this
potential issue by not only minimizing the reconstruction loss, but
also minimizing the difference between distributions of values in
the embeddings compared to a Gaussian distribution (typically with
zero mean and unit variance) [20]. The network thus learns to
compactly represent student data using features that are normally
distributed, which could theoretically improve the accuracy of
supervised classification for some classifiers (e.g., Gaussian naïve
Bayes) that assume data are normally distributed.

A further possible application of VAEs is for generating new data.
Since the embeddings are distributed predictably, it is possible to
synthesize student actions (e.g., student interactions in a system) by
sampling values from a normal distribution and feeding them into
the embedding layer in the neural network. We do not explore this
possibility further in the current paper, but it might be of benefit for
future research on student simulation.

Training VAEs can be difficult because of the two-part
optimization problem. If the distribution component is weighted
too highly, the network simply learns to predict Gaussian values
with no regard for reconstructing the input data correctly. A
common solution to this issue is to “warm up” the optimization
function by initially optimizing only reconstruction of inputs, and
then gradually imposing the Gaussian restriction on the embedding
layer over the course of several epochs (iterations though all the
training data) [34]. This approach is problematic for training
autoencoders on educational data with millions of rows of student
interactions, however. Such a VAE is typically relatively well-fit
by the end of the first epoch, so the network has already learned a
non-normal distribution for the embedding layer. Instead, we
propose that warming up the distribution optimization function
over the course of the first epoch instead is more effective for such
educational data. For example, with 1 million rows of training data
divided into batches of size 100, there are 1M/100 = 10,000 batches
per training epoch. One might then linearly increase the weight of
the distribution component of the optimization over the course of

the first 1,000 batches in the first epoch. This parameter is
dependent on the specific problem and training rate selected, like
many neural network parameters.

3.5 Asymmetric network structures
Autoencoder structures are typically symmetric, having a similar
number of layers of similar size both before and after the central
embedding layer. However, researchers have shown that an
asymmetric structure leads to more robust embeddings [35]. In the
case of using autoencoders to extract features for supervised
classification, the network can be designed with the eventual
supervised classification task in mind. If a relatively simple
classifier is to be trained, the embedding should be easily
interpreted (at least by a machine). Thus, it might be prudent to
develop a decoder that is less complex than the encoder producing
the embeddings, ensuring that the embeddings the encoder
produces can be processed with a simpler function. For example,
the encoder could be composed of several LSTM layers capable of
recognizing detailed patterns to extract the embeddings, while the
decoder might be only a few layers of fully-connected neurons.
Figure 2 shows an illustration of such a network structure.

Figure 2. Asymmetric autoencoder

The asymmetric structure approach has particular importance for
educational data where there is a scarcity of labeled data. A
supervised classifier should find a relatively simple decision
boundary in such a scenario to minimize over-fitting to the few
instances of labeled data. Thus, the features extracted from
autoencoders should also be relatively straightforward to decode,
so that a simple decision boundary will suffice for classification.
Asymmetric network structure have the potential to facilitate this
goal.

3.6 Predicting future sequences
Thus far all the network structures we have discussed are designed
to predict the exact sequence of student interactions that was given
as input. However, the ultimate goal of these unsupervised models
is not to simply compress the input, but to find a representation that
can effectively be utilized as features for supervised classification.
To this end, we propose neural networks that predict future steps in
the sequence of student interaction data, rather than simply
representing the current actions (Figure 3). In this design, the
network learns to predict something new, rather than simply
learning a complicated identity function. The training process is
still unsupervised, since the network requires only data from the
raw interaction log, yet learns features from the data that are
predictive in nature.

Figure 3. Autoencoding present vs. future interaction

sequences

4. MONITORING NETWORK TRAINING
Neural networks are essentially black boxes that rarely offer
interpretability. It can therefore be difficult to determine when a
network is learning, if it is learning something useful, where
training might be going wrong, and if so how to fix it. In this
section, we discuss two common methods for monitoring the
training process, and how they relate to educational data.

4.1 Training loss
The most basic measure of learning in a neural network is the
training loss. The loss simply measures the difference between a
network’s outputs and the desired (ground truth) values. For
autoencoders the measure of loss is often mean squared error,
which offers relatively straightforward interpretation of network fit.
However, one must be cautious when evaluating an autoencoder
from a single number. The loss can decrease as a network is trained,
indicating learning, but without producing meaningful embeddings.
For example, as discussed earlier a VAE can find a local minimum
in the loss function by generating Gaussian embeddings that don’t
represent students’ interactions at all. An autoencoder trained with
time spent per problem and score on a problem could learn to
predict the mean time spent and mean score, thus decreasing loss
from an original random state but without learning any meaningful
embeddings that might be predictive in supervised classification.
Therefore, while it is important to verify that the loss is decreasing
during training (so the network is learning something), one must
delve deeper to find real issues.

4.2 Visualizing network activations
Since we are using a hidden layer of the unsupervised networks as
features (the embeddings) for a layer supervised learning task, it is
especially important that the features learned by the deep network
are suitably distributed. Embeddings are unlikely to be effective
features if they are made up of neurons that are not properly trained,
or have activations violating the distribution assumptions of the
supervised classification methods to be employed. One important
method for assessing the hidden layers of trained neural networks
is visualization of some aspects of the neurons (e.g., weights,
activations, or other properties).

In computer vision applications of neural networks it is common to
visualize the weights of a convolution filter and find, for example,
that the weights strongly resemble a rotated edge detector. Due to
the nature of interaction-log data, such interpretations are not so
readily available. We propose instead to randomly sample
sequences of students’ interaction data, feed these sequences into

the autoencoder, and construct histograms of the activations of
individual neurons. For the purposes of this paper, we randomly
sampled 1280 instances. For autoencoder layers with more than 15
neurons, an additional visualization was created with 15 neurons
chosen from uniformly distributed positions within the layer to
form a representative sample for easier visualization. Full
visualizations were not made for layers with more than 160 neurons
as these produced intractably large images.

Using this method, we were able to identify and troubleshoot
several problems with autoencoders trained on students’ interaction
data. Figure 4 shows activations from the embedded layer with
three neurons in an example autoencoder. We used rectified linear
unit (ReLU) activation in all layers of this example network except
the output [28]. One issue with ReLU activation is that neurons can
become stuck outputting zero [22]. The network we trained
originally learned to only predict the mean of interaction inputs.
The embedding layer represented in the top row of Figure 4 shows
that all neurons appear to be in the stuck state, instead of displaying
output values distributed across a range of different numbers. Other
layers in this network reflected many stuck neurons as well.

We first addressed this by lowering the learning rate to reduce the
incidence of stuck neurons, though at the expense of requiring more
time to train the network. The second row of Figure 4 shows that
this strategy did fix two of the neurons in the embedding. Finally,
we changed the activation functions from ReLU to exponential
linear units (ELUs), which are specifically designed to avoid the
problem of stuck neurons frequently encountered with ReLU
activation [5]. As seen in the bottom row of Figure 4, this resulted
in all neurons in the embedding layer having some non-zero
activations. Visual examination of the histograms from other layers
revealed no stuck neurons.

Figure 4. Histograms of neuron activations for an embedded

layer and two strategies for fixing stuck neurons
Examination of neuron activations can also be helpful for verifying
that a VAE is learning embeddings with a normal distribution. We
enforced a normal distribution on the embedding layer in the
previous example to construct a VAE, and visualized the
embedding again. Figure 5 illustrates the activations of neurons in
the activation layer in this VAE. The activations are now clearly far

more normally distributed than before. This does not necessarily
mean the VAE embedding will be more effective for feature
extraction, but the visualization does show that the desired
distribution is being achieved. Similarly, visualizations can be
examined to determine whether operations such as batch
normalization [14] are needed to shift the activations of layers to
improve training.

Figure 5. VAE embeddings showing activations following a

(more) normal distribution

5. SUPERVISED LEARNING EXAMPLE
In this section we show a short example utilizing features from
embeddings extracted with an autoencoder to detect student
boredom. This is a simple and preliminary example, but
demonstrates the potential of this method for future work.

5.1 Dataset
The data in this example come from student interactions with a
computer-based learning environment called Betty’s Brain [2].
Students interact with Betty’s Brain by graphically constructing a
causal map of concepts for a topic. This map becomes the “brain”
of a virtual student (Betty), who then answers questions and takes
quizzes. A student using the software thus assumes the role of
virtual teacher, and learns by reading about a topic and then
teaching it to Betty.

There were 94 students represented in these data. A total of almost
250,000 events were logged, providing a great deal of raw
interaction data from which patterns may be learned with
unsupervised methods. There were over 5,000 affect labels
associated with these interactions. Affect labels were obtained via
the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP)
[31], in which expert observers annotate student affect in real-time.

We focus on detecting student boredom, based on previous research
in other learning environments showing that boredom could be
detected with only a few features [18], thus making a
straightforward comparison between manually-engineered high-
level features and features automatically extracted with an
autoencoder.

5.2 Extracting features
Features were extracted from 20-second windows of data leading
up to each boredom label. Features were derived from three sources
of information: the number of total interaction events, the number
of times the student viewed the causal map section of the interface,
and the number of times the student viewed one of the instructional
materials pages (e.g., textbook). For the sake of comparison we
developed an autoencoder with the same three sources of
information, but without processing them into high-level features.
Instead we aggregated actions at the 1-second level.

The autoencoder was trained with 20-second sequences of the 1-
second data. We used 15 seconds of data as input and trained the
autoencoder to predict the last 5 seconds of each sequence. Thus
there were 3x15 = 45 inputs and 3x5 = 15 outputs. The network
structure consisted of: LSTM (64 outputs) à LSTM (40) à Fully-
connected embedding (3) à Fully-connected (8) à Fully-
connected (16) à Fully-connected (15). We used 80% of the

unlabeled data to train the network, and 20% as validation data to
monitor training progress. The resulting embeddings are those that
can be seen in the third row of Figure 4.

The traditional features (i.e. manually designed by experts)
extracted for comparison were built by averaging the values of the
three features across the 20-second sequence.

5.3 Supervised classification
We applied three classifiers for supervised classification, Gaussian
naïve Bayes, logistic regression, and decision trees. Four-fold
cross-validation was performed with different students in each fold
to ensure generalization of classification results across students
within the dataset.

We classified boredom vs. all other affective states in the dataset.
Boredom consisted of only 4.5% of the labels. Classification
accuracy was measured with AUC, since it is appropriate for
datasets such as this one with imbalanced class distributions [15].

5.4 Results
The best model built using the traditional feature extraction method
had AUC = .631, while the best model using automatic feature
extraction method had AUC = .673. Both models were better than
chance level (AUC = .5). Most notably, the model built with
features extracted using the autoencoder method was better than the
traditional feature method using the same raw data.

We also investigated the advantage afforded by predicting future
sequences (see section 3.6). Without incorporating this method into
the network structure for feature extraction, the best supervised
model using autoencoder embedding features was less accurate
(AUC = .643 vs. AUC = .673).

6. CONCLUSIONS
We were interested in outlining methods for applying deep learning
for automatic feature extraction in educational data. Toward this
goal, we detailed several different autoencoder network structures
that can be trained with educational data, and students’ interaction-
log data in particular.

There are several ways in which training autoencoders can go
wrong, including stuck neurons, networks that only predict the
mean of the data, and learned embeddings that are not effective for
supervised classification methods. We described methods for
tweaking autoencoder structures and training to extract predictive
features (section 3.6), and visualization methods to inspect neuron
activations in trained networks (section 4.2). These methods
allowed us to diagnose issues with an example neural network, and
eventually to improve on supervised classification accuracy
compared to traditional feature extraction methods.

6.1 Limitations and future work
This work is not without its limitations. The results in our example
boredom detection did not greatly exceed chance levels
(AUC = .673 versus .5 chance level). This is a difficult
classification task, however, given that there was an imbalance of
instances of boredom (4.5%). However, even if there is little
improvement in accuracy, there is a great deal of potential for future
work with this method in terms of transfer learning. In particular,
interaction-log affect detectors have been shown to generalize
poorly across populations [30]. Training a new affect detector on
each new dataset is cost- and time- prohibitive, because of the large
amount of manual labor required to collect affect labels. Using
automatic feature extraction methods, we can train an autoencoder
on a combination of existing data and data from a new population.
In this way, the learned features should be representative of both

populations. The existing labels from one population can then be
applied to train a new supervised model with the features that are
representative of both populations, in hopes that the resulting model
will generalize better across both populations.

An additional limitation of this work is the fully separated
unsupervised and supervised phases of the training process. This
limits the ability of the neural networks to learn features that are
directly related to the supervised classification goals. Instead, semi-
supervised methods, in which the network learns from labeled and
unlabeled data at the same time, might be a better strategy. For
example, adversarial autoencoders have shown to be effective for
image classification with few labels and many unlabeled instances
[36].

It is our hope that this line of research will lead to improved student
modeling in computerized educational environments. In particular,
there is still a need for scalable student modeling methods that
generalize to new populations so that educational software can
reliably assess and adapt to students’ affect, cognition, and
behavior.

7. ACKNOWLEDGMENTS
This research was supported by the National Center for
Supercomputing Applications Postdoctoral Researcher Program.

8. REFERENCES
[1] Baker, R. and Ocumpaugh, J. 2015. Interaction-based affect

detection in educational software. The Oxford Handbook of
Affective Computing. R. Calvo, S. D’Mello, J. Gratch, and A.
Kappas, eds. New York: Oxford University Press. 233–245.

[2] Biswas, G., Segedy, J.R. and Bunchongchit, K. 2016. From
design to implementation to practice - A learning by teaching
system: Betty’s Brain. International Journal of Artificial
Intelligence in Education. 26, 1 (Mar. 2016), 350–364.

[3] Blanchard, N., Bixler, R., Joyce, T. and D’Mello, S. 2014.
Automated physiological-based detection of mind wandering
during learning. Proceedings of the 12th International
Conference on Intelligent Tutoring Systems (ITS 2014) (Jun.
2014), 55–60.

[4] Bosch, N., D’Mello, S.K., Ocumpaugh, J., Baker, R.S. and
Shute, V. 2016. Using video to automatically detect learner
affect in computer-enabled classrooms. ACM Transactions on
Interactive Intelligent Systems (TiiS). 6, 2 (2016).

[5] Clevert, D.-A., Unterthiner, T. and Hochreiter, S. 2015. Fast
and accurate deep network learning by exponential linear
units (ELUs). arXiv:1511.07289 [cs]. (Nov. 2015).

[6] Corbett, A.T. and Anderson, J.R. 1994. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
Modeling and User-Adapted Interaction. 4, 4 (Dec. 1994),
253–278.

[7] Dahl, G.E., Yu, D., Deng, L. and Acero, A. 2012. Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition. IEEE Transactions on Audio,
Speech, and Language Processing. 20, 1 (Jan. 2012), 30–42.

[8] D’Mello, S., Blanchard, N., Baker, R., Ocumpaugh, J. and
Brawner, K. 2014. I feel your pain: A selective review of
affect-sensitive instructional strategies. Design
Recommendations for Intelligent Tutoring Systems - Volume
2: Instructional Management. R. Sottilare, A. Graesser, X.
Hu, and B. Goldberg, eds. 35–48.

[9] D’Mello, S. and Kory, J. 2015. A review and meta-analysis of
multimodal affect detection systems. ACM Computing
Surveys. 47, 3 (Feb. 2015), 43:1–43:36.

[10] D’Mello, S., Olney, A., Williams, C. and Hays, P. 2012. Gaze
tutor: A gaze-reactive intelligent tutoring system. Int. J.
Hum.-Comput. Stud. 70, 5 (May 2012), 377–398.

[11] Hinton, G.E. and Salakhutdinov, R.R. 2006. Reducing the
dimensionality of data with neural networks. Science. 313,
5786 (Jul. 2006), 504–507.

[12] Hochreiter, S. and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation. 9, 8 (Nov. 1997), 1735–1780.

[13] Hussain, M.S., AlZoubi, O., Calvo, R.A. and D’Mello, S.K.
2011. Affect detection from multichannel physiology during
learning sessions with AutoTutor. Proceedings of the 15th
International Conference on Artificial Intelligence in
Education (Jun. 2011), 131–138.

[14] Ioffe, S. and Szegedy, C. 2015. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv:1502.03167 [cs]. (Feb. 2015).

[15] Jeni, L.A., Cohn, J.F. and De la Torre, F. 2013. Facing
imbalanced data–Recommendations for the use of
performance metrics. Proceedings of the 5th International
Conference on Affective Computing and Intelligent
Interaction (Sep. 2013), 245–251.

[16] Jiang, D., Cui, Y., Zhang, X., Fan, P., Ganzalez, I. and Sahli,
H. 2011. Audio visual emotion recognition based on triple-
stream dynamic Bayesian network models. Affective
Computing and Intelligent Interaction. S. D’Mello, A.
Graesser, B. Schuller, and J.-C. Martin, eds. Berlin
Heidelberg: Springer-Verlag. 609–618.

[17] Jordan, M.I. and Mitchell, T.M. 2015. Machine learning:
Trends, perspectives, and prospects. Science. 349, 6245 (Jul.
2015), 255–260.

[18] Kai, S., Paquette, L., Baker, R., Bosch, N., D’Mello, S.,
Ocumpaugh, J., Shute, V.J. and Ventura, M. 2015.
Comparison of face-based and interaction-based affect
detectors in physics playground. Proceedings of the 8th
International Conference on Educational Data Mining (EDM
2015) (2015), 77–84.

[19] Khajah, M., Lindsey, R.V. and Mozer, M.C. 2016. How deep
is knowledge tracing? Proceedings of the 9th International
Conference on Educational Data Mining (EDM 2016) (2016),
94–101.

[20] Kingma, D.P. and Welling, M. 2013. Auto-encoding
variational bayes. arXiv:1312.6114 [cs, stat]. (Dec. 2013).

[21] Klingler, S., Käser, T., Busetto, A.-G., Solenthaler, B., Kohn,
J., Aster, M. von and Gross, M. 2016. Stealth assessment in
ITS - A study for developmental dyscalculia. Intelligent
Tutoring Systems (Jun. 2016), 79–89.

[22] Maas, A.L., Hannun, A.Y. and Ng, A.Y. 2013. Rectifier
nonlinearities improve neural network acoustic models.
Proceedings of the 2013 International Conference on
Machine Learning (ICML) (2013).

[23] Maas, A.L., Le, Q.V., O’Neil, T.M., Vinyals, O., Nguyen, P.
and Ng, A.Y. 2012. Recurrent neural networks for noise
reduction in robust ASR. INTERSPEECH (2012), 22–25.

[24] McDaniel, B.T., D’Mello, S.K., King, B.G., Chipman, P.,
Tapp, K. and Graesser, A. 2007. Facial features for affective

state detection in learning environments. Proceedings of the
29th Annual Cognitive Science Society (2007), 467–472.

[25] McQuiggan, S.W., Lee, S. and Lester, J.C. 2007. Early
prediction of student frustration. Proceedings of the
International Conference on Affective Computing and
Intelligent Interaction (Sep. 2007), 698–709.

[26] Metallinou, A. and Cheng, J. 2014. Using deep neural
networks to improve proficiency assessment for children
English language learners. INTERSPEECH (2014), 1468–
1472.

[27] Mock, P., Gerjets, P., Tibus, M., Trautwein, U., Möller, K.
and Rosenstiel, W. 2016. Using touchscreen interaction data
to predict cognitive workload. Proceedings of the 18th ACM
International Conference on Multimodal Interaction (New
York, NY, USA, 2016), 349–356.

[28] Nair, V. and Hinton, G.E. 2010. Rectified linear units improve
restricted boltzmann machines. Proceedings of the 27th
international conference on machine learning (ICML) (2010),
807–814.

[29] Ng, H.-W., Nguyen, V.D., Vonikakis, V. and Winkler, S.
2015. Deep learning for emotion recognition on small datasets
using transfer learning. Proceedings of the 2015 ACM on
International Conference on Multimodal Interaction (New
York, NY, USA, 2015), 443–449.

[30] Ocumpaugh, J., Baker, R., Gowda, S., Heffernan, N. and
Heffernan, C. 2014. Population validity for educational data
mining models: A case study in affect detection. British
Journal of Educational Technology. 45, 3 (May 2014), 487–
501.

[31] Ocumpaugh, J., Baker, R. and Rodrigo, M.M.T. 2015. Baker
Rodrigo Ocumpaugh Monitoring Protocol (BROMP) 2.0
Technical and Training Manual. Technical Report (2015).

[32] Paquette, L., de Carvalho, A.M. and Baker, R.S. 2014.
Towards understanding expert coding of student
disengagement in online learning. Proceedings of the 36th
Annual Cognitive Science Conference (2014), 1126–1131.

[33] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L.J. and Sohl-Dickstein, J. 2015. Deep knowledge
tracing. Advances in Neural Information Processing Systems
28 (2015), 505–513.

[34] Sønderby, C.K., Raiko, T., Maalø e, L., Sønderby, S.K. and
Winther, O. 2016. Ladder Variational Autoencoders.
Advances in Neural Information Processing Systems 29
(2016), 3738–3746.

[35] Sun, Y., Mao, H., Guo, Q. and Yi, Z. 2016. Learning a good
representation with unsymmetrical auto-encoder. Neural
Computing and Applications. 27, 5 (Jul. 2016), 1361–1367.

[36] Tachibana, R., Matsubara, T. and Uehara, K. 2016. Semi-
supervised learning using adversarial networks. 2016
IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS) (Jun. 2016), 1–6.

[37] Tang, S., Peterson, J.C. and Pardos, Z.A. 2016. Deep neural
networks and how they apply to sequential education data.
Proceedings of the Third (2016) ACM Conference on
Learning @ Scale (New York, NY, USA, 2016), 321–324.

[38] Whitehill, J., Serpell, Z., Lin, Y.-C., Foster, A. and Movellan,
J.R. 2014. The faces of engagement: Automatic recognition

of student engagement from facial expressions. IEEE
Transactions on Affective Computing. 5, 1 (Jan. 2014), 86–98.

[39] Whitehill, J., Williams, J.J., Lopez, G., Coleman, C.A. and
Reich, J. 2015. Beyond prediction: First steps toward
automatic intervention in MOOC student stopout.
Proceedings of the 8th International Conference on
Educational Data Mining (EDM 2015) (2015), 171–178.

[40] Wold, S., Esbensen, K. and Geladi, P. 1987. Principal
component analysis. Chemometrics and Intelligent
Laboratory Systems. 2, 1 (Aug. 1987), 37–52.

[41] Xu, Y. and Mostow, J. 2010. Using logistic regression to trace
multiple sub-skills in a dynamic bayes net. Proceedings of the
4th International Conference on Educational Data Mining
(EDM 2011) (2010), 241–245.

[42] Zeng, Z., Pantic, M., Roisman, G.I. and Huang, T.S. 2009. A
survey of affect recognition methods: Audio, visual, and
spontaneous expressions. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 31, 1 (2009), 39–58.

