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ABSTRACT 
The ability to identify whether a user is “zoning out” (mind wandering) from video has many applications 
(e.g., distance learning, high-stakes vigilance tasks). However, it remains unknown how well humans can 
perform this task, how they compare to automatic computerized approaches, and how a fusion of the two 
might improve accuracy. We analyzed videos of users’ faces and upper bodies recorded 10s prior to self-
reported mind wandering (i.e., ground truth) while they engaged in a computerized reading task. We found 
that a state-of-the-art machine learning model had comparable accuracy to aggregated judgments of nine 
untrained human observers (area under receiver operating characteristic curve [AUC] = .598 versus .589). A 
fusion of the two (AUC = .644) outperformed each, presumably because each focused on complementary 
cues. Further, adding more humans beyond 3-4 observers yielded diminishing returns. We discuss 
implications of human-computer fusion as a means to improve accuracy in complex tasks. 
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1 Introduction 
Mind wandering, or “zoning out”, occurs when a person (in our case, the user of a computer interface) 
involuntarily shifts their attentional focus from the task at hand to task-unrelated thoughts [17,84]1. These 
thoughts might involve memories of the past, current or future concerns, introspection, and other thoughts 
[37,85]. For example, when asked to report the contents of their thoughts during a mind wandering episode 
and the preceding trigger, a participant in a study [37] reported: “[Reading the word soap]TRIGGER [reminded 
me that] [I need to give my dog a bath and make an appointment for him to get his nails clipped]CONTENT”). 
Similarly, a user might be overwhelmed with thoughts of the future, such as worries over an upcoming exam, 
and struggle to keep attention focused on the current task.  

Mind wandering is estimated to occur as much as 50% of the time as people engage in everyday activities 
[53]. It is also frequent during human–computer interactions, such as electronic textbook (e-text) reading, 
video watching, automobile driving, classification tasks, and others [43,50,61,73,84,98]. Although the trait 
to mind wander has been associated with positive outcomes like creativity and planning for the future [1,63], 
meta-analyses indicate that it is consistently negatively related to performance on a variety of information 
processing lab- and real-world- tasks [24,71] that require sustained attentional focus. Mind wandering is 

	
1	Although	we	study	unintentional	attentional	shifts	in	this	paper,	there	is	debate	about	whether	mind	wandering	can	also	include	intentional	
shifts	of	attentional	focus	[81].	
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similarly negatively related to performance on HCI relevant-tasks, such as computer use in classrooms, note-
taking during lectures, watching online videos, and others [50,74,91,98]. 

Accordingly, recognizing if a user is mind wandering has widespread applications in human–computer 
interactions. In the following examples, mind wandering might be measured by human observers (example 
1 and 2) or an automated computer vision algorithm (examples 3 and 4). In some cases either human 
observation or automated methods are feasible (examples 5 and 6), as is a combination of the two. 

1) Instructors of an online classes assesses how engaging their lectures are by determining whether their 
students are zoning out 

2) A supervisor at an airport is monitoring the baggage screeners to determine whether they are focused 
or have zoned out. 

3) Students studying for an exam use a computerized mind wandering detection method to help 
determine which content to revisit based on when their attention may have waned  

4) Air traffic control software measures mind wandering over time to inform a policy of taking breaks 
to avoid waning vigilance 

5) An e-book publisher improves a draft manuscript by revising sections of the text that induce mind 
wandering in users 

6) A movie studio compares alternative cuts of a film in A/B tests to determine whether viewers mind 
wander more during one of the cuts 

 
Both human observers and computerized methods can be used to detect mind wandering. To get a sense 

of the task, consider Figure 1, recorded while users were reading text on a computer screen. Are they deeply 
engaged, superficially engaged, or have they zoned out? Most people are correct in identifying that person A 
is diligently reading while the person B has zoned out. What about C and D? Does the fact that D is yawning 
indicate that they are disengaged or just fatigued? And what can be concluded from the somewhat unusual 
gesture depicted by C? It appears that most people are confused by the displays in C and D, guessing zoned 
out about half the time and attentively reading for the other half.  

As these examples illustrate, mind wandering detection can be quite a challenging task. Whereas 
computerized approaches can use specialized sensing such as eye trackers and physiological sensing 
[9,11,50,68], human observations typically focus on visual cues [64,96]. This raises the question of whether 
humans are capable of detecting users’ mind wandering from visual cues, and how computerized approaches 
stack up when limited to the same visual cues. Would computers be more or less accurate than human 
observers, who have finely evolved abilities to read social cues? Is a combination of observer and computer 
predictions more accurate than either individually? 

Of course, we do not expect there are canonical, one-to-one mappings between users’ experiences of 
mind wandering and their facial expressions, but we do expect that context-specific expressions of mind 
wandering may arise during human–computer interaction tasks. For example, users reading text on a 
computer screen may blink more often while mind wandering [46,86]. These expressions can perhaps be 
assessed, with a modicum of accuracy, by observers (including other users, as in example 1 above) and 
automated methods. We thus seek to examine context-specific computer models for detecting mind 
wandering and compare them to human observers’ perceptions, which are informed by the context, but not 
necessarily limited to it given their enhanced social perception capabilities compared to computers. 

1.1 Research Questions 
In the present study we compare a computer algorithm to untrained human observers on the task of deciding 
whether users depicted in short video clips (similar to Figure 1) are mind wandering or not. We address three 
research questions (RQs), each of which has implications for HCI research or practice. 

RQ1. How accurately can human observers detect mind wandering from videos of users engaged in 
computer-mediated tasks and how does their accuracy compare to automatic methods? 

Implications for HCI: The question of how machines stack up to human observers is significant because 
computer systems that perform measurement of complex psychological constructs like emotion, social 
communication, psychopathologies, and similar are on the rise [6,13,14,26,30]. However, in the case of mind 
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wandering, it is unclear how accurate we might expect automated methods to be, and whether collaboration 
between computers and humans can improve accuracy. Comparing the accuracy of computers to observers 
on the same task also provides a useful measure of task difficulty and can serve to establish approximate 
guidelines on the accuracy of automated systems, which can then inform how they can be used. 

RQ2. Does a fusion of human- and machine- predictions outperform either one independently? 
Implications for HCI: A human-in-the-loop fusion approach would be valuable if it improves accuracy 

or if equivalent accuracy can be obtained at a lower cost. Fusion could occur in multiple ways, such as joint 
prediction for all cases, or a two-step approach in which observers verify machine predictions for specific 
cases (e.g., positive predictions or ambiguous cases). The latter possibility offers a compromise between 
accuracy and automation to reduce the burden of human observation. 

RQ3. What visual cues do observers utilize to make their decisions, and how are those cues 
complementary to those used by the machine? 

Implications for HCI: Discovering the cues observers and machines utilize can increase transparency by 
informing users how and why the machine offers a complementary perspective to humans and why a fusion 
approach might be effective. It may also inform future automatic methods by highlighting different types of 
information that could be extracted from videos. 

1.2 Novelty & Contribution 
The present study is concerned with comparing computers to observers on the task of detecting mind 
wandering from video, as well as investigating a hybrid method that combines observer and computer 
judgments. Our research is novel in several ways. While previous research has explored automatic mind 
wandering detection from various sources of data, including video [11,87,88], this is the first in-depth study 
of how well humans perform the same task (RQ1). These analyses contribute to a growing body of research 
into the specific situations where machines do comparatively well (or poorly) compared to observers 
[5,48,52,77,99,100]. Here, we find that the observers and computers outperform each other on different 
components of the task, suggesting that the two attend to different aspects of the videos or make different 
tradeoffs. The difficulty faced by observers also places some reasonable bounds on what computers might 
eventually achieve. This study is also the first to measure and compare fusion of human and machine 
judgments for mind wandering detection (RQ2), where we find that fusion does indeed improve accuracy, 
further implying that observer and machine judgments utilize the same data somewhat differently. To delve 
into this matter, we used natural language processing to analyze textual justifications provided by observers 
(RQ3), which revealed insights into specific cues that humans rely on, biases they might bring with them. 
These analyses also suggested some of the behavioral correlates of mind wandering that can be perceived by 
humans versus those used by the computer. 

1.3 Current Study 
We use data from a previous study that recorded videos of computer users reading an e-text for approximately 
30-mins [54]. Users self-reported mind wandering as they read (see Section 3.1 for details on the validity of 
self-reports to measure mind wandering), which we used as ground-truth labels to train machine learning 
models that automatically classify 10-second video clips prior to the self-reports as positive (mind wandering) 
or negative (not mind wandering) [11]. We collected third-party mind wandering ratings of the same video 
clips from nine human judges (henceforth referred to as observers or humans) recruited from Amazon 
Mechanical Turk (AMT). We compared the observers’ accuracy to machine accuracy by comparing estimates 
of each to self-reported mind wandering of the original users. Similarly, we compared a computer–human 
fusion, which incorporates predictions from both as well as examine the minimum number of human 
observers needed for the task. We also asked the observers to provide brief justifications for their 
classification of each clip and used natural language processing techniques to uncover systematicities in their 
explanations to potentially identify sources of discrepancies and/or commonalities between computers and 
observers. These explanations provide insight into how observers and the computer make their decisions, 
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how they operationalize mind wandering in terms of visual cues, and ways in which human and computer 
decisions are complementary. 
 

 

A 

 

 

B 

 

 
C 
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Figure 1: Users who reported (A) paying attention, (B) mind wandering, and – less obviously – (C & D) paying 
attention. 

2 Related Work 
To date, no study has compared how accurately human observers can detect mind wandering, let alone 
compared observers to automated methods or human–computer decision fusion. However, comparative 
detection accuracy of observers vs. computers has been assessed with respect to other psychological 
constructs, which might provide some guidance. 

2.1 Accuracy of Human Detection of Related Psychological 
Constructs 

Mind wandering is closely related to other psychological constructs that are relevant in the context of HCI 
applications, including engagement – a broader construct consisting of affective, cognitive, and behavioral 
components [25,42]. Mind wandering falls primarily under the cognitive component of engagement, and 
does not necessarily have the related behavioral or affective characteristics (though research suggests mind 
wandering correlates negatively with happiness [53]). Research on assessing engagement based on markers 
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like looking at the screen, which can easily be assessed by human annotators [96], captures engagement 
defined in terms of overt behaviors. A computer user who is mind wandering, on the other hand, may be 
gazing at the screen yet not be cognitively engaged. There may indeed be behavioral markers of mind 
wandering (see RQ3), but they are likely more difficult to observe since they are correlates and byproducts 
of cognitive (not behavioral) disengagement. Mind wandering also relates to research on human observations 
of whether a user’s thoughts are directed inward or outward. Research has shown that observers were able to 
judge the direction of computer users’ thoughts while performing internally- or externally-directed tasks, and 
that observers relied especially on users’ eyes to make judgments [7]. However, mind wandering, though 
internal [84], consists of off-task thought, rather than internally-focused on-task thought. 

Though mind wandering is primarily cognitive, it may have emotional correlates that have been 
investigated more thoroughly. For example, we expect mind wandering to negatively associated with 
affective states such as confusion, frustration, and interest [2,22,27], and positively associated with boredom 
and sadness [2]. Previous work on emotion recognition suggests that observers outperform automatic 
(computer) methods in some contexts. Note that context is critical, since facial expressions vary depending 
on context [21]. An early study by Schindler, Van Gool, & de Gelder [77] found that observers were 6% 
more accurate than a computerized method for classifying stereotypical, posed expressions of emotion in 
images. In a more recent study, Holkamp & Schavemaker [48] extracted video clips of participants who 
watched affectively-charged videos and then self-reported their valence levels. They recruited 15 third-party 
human observers, who judged valence levels from facial expressions using a custom web-based annotation 
tool. Researchers compared observer ratings to computer vision methods, finding that observers 
outperformed the computer (75% versus 66% accuracy in terms of alignment with self-reports). Furthermore, 
Yitzhak et al. [99] found that observers (undergraduate students) outperformed computers when it came to 
detecting subtle, non-stereotypical facial expressions. They noted that emotion detection research has 
traditionally focused on acted, exaggerated expressions of emotion, which can be easily recognized with 
computer vision methods. For acted emotions, they found that computers exhibited 89% accuracy in a 7-way 
classification task, while observers’ annotation accuracy was similarly high with 88% accuracy. However, 
observers rated naturalistic expressions about 61% as intense as acted expressions. The computer vision 
system had a much lower (21% accuracy) compared to observers (79% accurate) on a naturalistic emotion 
dataset, where emotions were rated as less intense but more natural in appearance than acted expressions. 
Recently, researchers also compared human judges to eight different commercially-available facial 
expression recognition tools, and found that the observers significantly outperformed all of them for both 
acted and naturalistic emotion expressions, with much larger differences for naturalistic expressions [29]. 

There are also cases where computers have outperformed observers when detecting emotions from facial 
expressions [52], pain [5], and deception [100]. Janssen et al. [52] adopted a multimodal approach combining 
facial expressions, speech, and physiological data to automatically detect five experimentally-elicited 
emotions. The computerized approach was notably more accurate than observers on the same dataset (82% 
versus 63% accuracy). However, the comparison should be taken with a modicum of caution because the 
protocols may have been biased in favor of the computer as strict person-level independence between training 
and testing sets was not enforced. In more of an apples-to-apples comparison, Bartlett et al. [5] compared 
observers to computer vision methods for distinguishing between facial expressions reflecting genuine 
(experimentally-elicited) vs. fake pain. They found that observers’ accuracy was at chance-levels (50%) 
without training and only increased to 55% with training. The computer easily outperformed the observers 
with an accuracy of 85%, which was attributed to its ability to model the subtle dynamics of mouth 
movements associated with genuine pain. 

There is reason to expect that the aforementioned findings from facial expression recognition and 
experimentally induced emotions might not transfer to mind wandering. This is because some emotions have 
relatively robust visual indicators (e.g., eyebrow lowering during confusion; [59]) in service of their 
communication and social signaling functions [56]. Mind wandering, on the other hand, is an internal 
cognitive state not easily defined by observable behaviors [84]. Similar to deception, it is also likely socially 
advantageous to disguise displays of mind wandering, compared to, for example, displays of happiness (in 
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some circumstances). As such, it is unclear whether there are visual cues that indicate mind wandering. If so, 
what might those cues be? 

2.2 Automatic Mind Wandering Detection 
Recent research has revealed some insights into possible cues. One of the first studies that tracked mind 
wandering while participants read an e-text found that they blinked significantly more often when mind 
wandering compared to normal reading [86], thereby demonstrating one possible visible indicator. The same 
study found that participants were less likely to fixate their eyes on the same location frequently when mind 
wandering. Other studies have also revealed additional indicators of mind wandering such as fewer, longer 
gaze fixations and more irregular saccades (eye movements; [8,40,72]); however, gaze patterns are task-
dependent in that reading will incur very different patterns that scene viewing [38]. It is unclear from previous 
research whether observers are able to visually identify these eye-gaze-related reading behaviors from videos. 
It is also unclear if these links between mind wandering and reading behaviors are context-free or might be 
moderated by differences in difficulty, length, presentation, and other aspects of the tasks, which range from 
reading entertaining fiction one word at a time to reading scientific text one page at a time [36,41]. It also 
remains to be seen if human observers can infer mind wandering from these indicators. 

In lieu of eye gaze features, several of which might not be perceptible to human observers, researchers 
have leveraged facial features to automatically detect mind wandering. In one study, Stewart et al. [87] 
recorded videos of participants’ faces as they watched a 35-min narrative film and self-reported when they 
caught themselves mind wandering. They utilized computer vision software [58] to extract facial action units 
(AUs), which reflect facial muscle activations including eyebrow lowering, cheek raising, lip corner lowering, 
and others. They also extracted body movement features from the videos and trained user-generalizable 
machine learning classifiers to detect mind wandering from body movement and facial AUs. Their best model 
achieved an F1 score of .390, which was 13% above a random-chance baseline, demonstrating the possibility 
of face-based mind wandering detection, but also the difficulty of the task. Furthermore, the researchers found 
that head nodding and lack of facial muscle movement (i.e., neutral expression) were the clearest facial 
indicators of mind wandering.  

Stewart et al. [88] expanded on their analyses by investigating how their mind wandering detection model 
trained on a narrative film viewing task generalized to a different task: reading an e-text. They found two 
AUs that were predictive across tasks (AU23: lip tightener, and AU26: jaw drop). However, a model with a 
large combination of features generalized more effectively than any individual features, suggesting that a 
complex combination of facial cues are likely required for mind wandering detection. Overall, this study 
reported mind wandering accuracy scores reflecting 25% improvements over random chance (within-task) 
and 21-22% above chance when generalizing detectors across interaction tasks. 

2.3 Human–Machine Fusion 
Research on face-based mind wandering detection (or related tasks) has not explored the possibility of 
human–machine decision fusion, though research in other domains suggests it may offer advantages. For 
example, in a person recognition task, researchers found that fusing algorithmic and human judgments 
enabled faster and more accurate identification of individuals in photographs from the American Civil War 
[62]. In another case, humans combined their own judgment with predictions from an algorithmic tool to 
improve their decisions about whether or not to recommend reports of child maltreatment for investigation 
[23]. A form of human–machine fusion called computer-assisted diagnosis (CAD) is prevalent in medical 
applications, where physicians combine their diagnoses with a computer’s diagnosis to improve accuracy or 
reduce labor [28]. CAD has been successfully applied across a range of medical imaging domains, such as 
chest X-rays [93], magnetic resonance images of the brain [33], and mammograms [51], with some promising 
results. For example, accuracy of a computer prediction fused with a physician’s prediction yielded similar 
accuracy to that of two physicians [44]. Researchers have also explored tradeoffs between accuracy and the 
time required of people to make annotations – for example, by dividing labor in different ways between 
humans and a machine system for detecting underwater mines in images [97], a topic we explore in this 
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paper. Specifically, this paper extends previous work on human–machine decision fusion by exploring a new 
problem domain (detecting mind wandering users in videos), and varying the amount of human involvement 
in decision making to quantify the effort vs. accuracy tradeoff in this domain. 

2.4 Interim Summary 
In summary, prior research has shown that facial features offer a promising means for automatic mind 
wandering detection including potential generalizability across tasks. Previous work also showed that in 
related tasks such as naturalistic emotion recognition, human observers may be more accurate than 
algorithmic computer methods; however, we do not know how observers compare to computers in a mind 
wandering detection task. Furthermore, though previous research identified some aspects of facial 
expressions that relate to mind wandering (e.g., blinking, specific AUs), little is known about the cues human 
observers rely on to detect mind wandering. The current study addresses these issues by comparing and 
combining machine learning methods with human observations of mind wandering across almost three 
thousand video clips as well as analyzing the justifications provided by the human observers. 

3 Data Sources 
We used data from a previous study involving participants from two universities in the United States. Key 
data details are described here, but see primary analysis publication for additional details [54]. We obtained 
university ethics board approval before collecting any data analyzed in this paper. All participants consented 
prior to the study; we analyzed data only from participants who further agreed to have their videos recorded 
and analyzed for research purposes. 

3.1 Participants & Procedure 
Data were collected from 152 participants who read the beginning 6,501 words of a text entitled “Soap-
bubbles, and the forces which mould them” by C.V. Boys [12] on a computer screen while their faces and 
upper bodies were recorded at 12.5 frames per second and at a 640x480 pixel resolution with a webcam 
placed at the top of the computer monitor. Figure 1 shows example frames from these video recordings. 
While reading, participants pressed marked keyboard keys to report episodes where they caught themselves 
mind wandering. Mind wandering (colloquially referred to as zoning out) was defined to participants before 
they started reading as follows: 

 
At some points during reading, you may realize that you have no idea what you just read. Not only 
were you not thinking about what you are actually reading, you were thinking about something else 
altogether. This is called “zoning out”. If you catch yourself zoning out at any time during reading, 
please indicate what you are thinking about at that moment during reading. 
 
When zoning out: 
If you are thinking about the task itself (e.g., how many pages are there left to read, this text is very 
interesting) or how the task is making you feel (e.g., curious, annoyed) but not the actual content of 
the text, please press the key that is labeled "task". 
OR 
If you are thinking about anything else besides the task (e.g., what you ate for dinner last night, what 
you will be doing this weekend) please press the key that is labeled "other". Please familiarize 
yourself with where these two keys on the keyboard now so that you will know their location when 
you begin reading. 
 
Please be as honest as possible about reporting zoning out. It is perfectly natural to zone out while 
reading. Responding that you were zoning out will in no way affect your scores on the test or your 
progress in this study, so please be completely honest with your reports. If you have any questions 
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about what you are supposed to do, please ask the experimenter now. Please press the right arrow 
key to begin. 
 

We relied on self-reports of mind wandering because mind wandering is an inherently internal phenomenon 
[85], which may be difficult to discern from external indicators (an issue we explore in this paper). 
Additionally, self-reports have been previously validated as a measure of mind wandering in multiple studies 
[16,40,80,83,92]. Furthermore, self-reports of mind wandering correlate with objective outcome measures, 
thereby demonstrating predictive validity [41,60,71,78]. In these data, self-reported mind wandering 
correlated r = -.229 (p = .012) with a reading comprehension posttest, which is what was expected. 

3.2 Extracting Video Clips 
Of the 152 participants, data from 10 participants were removed due to video recording errors and data from 
3 were removed because they declined to sign a data release agreement, resulting in a dataset with 139 
participants. 

Participants provided 2,577 self-caught mind wandering reports (positive mind wandering instances only) 
across 7,923 pages of text reading, or approximately 1 report every 3 pages. Participants self-reported mind 
wandering for an average of 18.5 pages (SD = 13.5). The average mind wandering report occurred 16s after 
the beginning of a page. In selecting video clip lengths, there is a tradeoff between clip length and the number 
of usable clips, given that reports occurred at different times within pages. We selected 10s as the clip length 
to compromise between obtaining many (but perhaps uninformative) short clips versus long (but fewer) clips. 
We also chose to remove clips that spanned multiple pages, since page turning movements (participant 
keypresses) interfered with the intended goal of analyzing facial features related only to mind wandering. 
Ideally, predictions could be made for all possible clips; however, including page turn clips reduced mind 
wandering detection accuracy to near chance levels (perhaps because of the added noise from page turning 
movements), so we proceeded with removing these. Since there are several seconds of gaps between 
consecutive page turn events (when participants are reading), removing these clips still allows frequent – if 
not continuous – predictions to be made. 

An additional 207 clips were removed because the face could not be detected for at least 1s within the 
10s clip, a requirement for the automatic approach as elaborated below. Face detection failures occurred 
when participants were out of the camera’s view, a common occurrence (e.g., Figure 1b). Thus, we obtained 
1,031 valid clips of mind wandering. 

Participants reported when they were mind wandering (positive mind wandering cases), but not when 
they were paying attention (negative mind wandering cases), though both positive and negative cases are 
required to train a supervised classifier. Thus, we extracted negative cases from periods of time with no mind 
wandering reports (Figure 2). We did so by dividing the reading session into 10s clips (possible negative 
cases), removing any that were within a 30s window before a mind wandering report (because indicators of 
mind wandering may emerge 20-25s before a self-report; [55]), and further removing clips that overlapped 
with page turn events (to eliminate spurious facial movements attributable to page turn keypresses). From 
these negative cases, we randomly selected 2,406 instances to yield a mind wandering rate of 30% (1,031 
positive out of 3,437 total clips), which is consistent with the current study and previous findings on the 
incidence of mind wandering during reading [24]. 

 



	 9	

 
Figure 2: Illustration of positive and negative mind wandering instances extracted from self-reports and periods 

of time between self-reports. Instances that included page turn events were removed to avoid key-pressing 
actions being captured in video clips. 

 

4 Automated Mind Wandering Detector 
We examined predictions from a previously-developed face-based mind wandering detector [11]. In this 
section we only discuss the details needed for the main study, which compares the accuracy of the automated 
detector to human observers on the task of classifying video clips as mind wandering or not. 

4.1 Facial Feature Extraction 
We focused on five different types of facial features to serve as inputs for the supervised classification 
methods. Features were extracted on a frame by frame basis and then aggregated across individual frames in 
the 10s clips. First, we estimated gross upper-body movement from video clips using a validated background 
subtraction technique [95]. Specifically, we subtracted each video frame from a continuously-updated 
estimate of the video background and measured the proportion of changed pixels as an estimate of motion. 
Second, local binary pattern (LBP) features represent textures, which could be discriminative of mind 
wandering by capturing, for example, the appearance of teeth (indicating mouth opening), or other facial 
expressions associated with skin texture changes. We used OpenFace to automatically obtain the position of 
the eyes and center of the mouth [3], and then extracted LBP patches from those positions. OpenFace is an 
open-source software package for face detection and facial feature extraction, utilizing deep neural networks 
and support vector machines trained on several datasets to provide state-of-the-art accuracy. Third, facial 
action unit (AU) features describe activations of facial muscles (e.g., AU1 is the inner brow raiser muscle; 
[32]). We automatically extracted 19 AUs that span the eyes, cheeks, nose, and mouth regions of the face 
with EmotientSDK, which is a commercial version of the Computer Expression Recognition Toolbox 
(CERT). CERT is a validated computer vision tool for automatic extraction of AUs from face videos [58]. 
Note that EmotientSDK is no longer commercially available; however, OpenFace also provides 18 AU 
estimates [3], and could perhaps serve as a replacement in future implementations. Fourth, we computed AU 
co-occurrence features to capture co-occurring (in the 10-sec window) AUs, for example, using muscle 
activations near the eyes to distinguish between smiles of enjoyment and other smiles – even if the mouth 
muscle activations appear similar [31]. Specifically, we computed the Jensen-Shannon divergence (JSD) 
distribution similarity between all pairs of AUs [57]. Finally, we used dynamic AU features to model temporal 
dynamics in AUs over time. We utilized an approach similar to Bartlett et al. [5] in which we convolved 1-
dimensional Gabor filters across AU time series with wavelengths ranging from 1 to 12 seconds, thereby 
distinguishing between fast and slow facial expression changes. 

In previous work we also analyzed head pose features as a proxy for gaze direction. However, these 
features were minimally effective for detecting mind wandering [11], so we focused on the first five facial 
feature types in this study. 
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4.2 Supervised Machine Learning 
We trained radial basis function support vector machine (SVM) classifiers to automatically detect mind 
wandering from the facial features described above. We trained one detector for each of the five sets of 
features, with person-independent nested cross-validation for selecting hyperparameters and evaluating 
classifier accuracy. In particular, we selected features and tuned the SVM hyperparameters C (from 10-2 to 
102) and gamma (from 10-5 to 102) via nested cross-validation within training data only. We selected, trained, 
and evaluated all models via the scikit-learn Python library [67]; see primary publication for additional details 
[11]. Finally, we fused the predictions of the five detectors (one for each feature set) via majority vote to 
generate the final machine-based prediction of mind wandering for each video clip (described in detail 
below). This model represents the state of the art for face-based mind wandering detection utilizing both AU 
features reported in previous work [87,88] and new features described above, the inclusion of which 
improved upon the previous approach. Thus, this model serves as a point of comparison to human 
observations on the same video clips, which is the main focus of this paper.  

5 Collecting Human Observations of Mind Wandering 
We recruited human observers (Turkers) from Amazon’s Mechanical Turk 2  web-based crowdsourcing 
platform to provide judgments about whether the person in each video clip was mind wandering or not. Video 
clips were the same as those classified with computer vision methods, thus affording a direct comparison 
between computer and observer accuracy. 

5.1 Reliability of Mechanical Turk Studies 
Previous research has shown that Turkers are representative of typical Internet user demographics [89], and 
more representative of the U.S. population than typical university students [10]. Furthermore, recent research 
has reported that studies conducted on Mechanical Turk (MTurk) consistently replicate findings from 
laboratory studies across a variety of domains, including HCI [18,45,47,49,65,82,90]. Thus, we expected 
MTurk would serve as a valid source of mind wandering ratings from typical humans. 

5.2 Recruitment of Turkers 
We recruited Turkers by submitting web-based human intelligence tasks (HITs; described below) to the 
platform, which Turkers viewed in a list of other HITs and selected if they wished to participate. We 
compensated Turkers with above minimum pay based on average time taken to complete the tasks ($15.85 
per hour). In order to obtain multiple independent judgments for each clip, we did not allow Turkers to 
complete the same HIT more than once. Additionally, we required Turkers to be at least 18 years old and 
located in the United States. In the end, 898 unique Turkers qualified and participated in the study. 

5.3 Design of Rating Task 
Each HIT contained 10 randomly-selected video clips, presented one at a time. Turkers first electronically 
consented to participate. Next, we displayed the following instructions: 
 

As you may know, sometimes it is difficult to stay focused. It is often times the case that your 
attention starts to drift away and you “zone out.” We call this mind wandering. 
 
For this task, you will be viewing 10 video clips of people as they read from a computer screen. In 
some videos the person is mind wandering, while in others they are not. There will not necessarily 
be an equal number of videos of each type. We would like you to tell us if you think that the person 
in the video is mind wandering or not, and why you think that. 

 
	

2	https://www.mturk.com	
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Although Turkers received instructions on the annotation task, we did not train them via examples or 
feedback. Whereas training may improve accuracy, it is not representative of the typical (untrained) way in 
which users assess whether others are paying attention. 

The interface consisted of an HTML form with the instructions, a video clip, two radio buttons labeled 
Mind wandering and Not mind wandering, and a free-response text box where we asked Turkers to justify 
their mind wandering judgments (screenshot in Figure 3). Specifically, we asked them “What gestures or 
parts of the face did you use to make your decision for this video?” Finally, we asked Turkers to enter a two-
digit number which was shown for two seconds after the end of each clip. We included this step to verify that 
Turkers had indeed watched the clip and followed the HIT instructions. They submitted the correct 
verification number for almost all clips (98.9% correct). To ensure validity, we re-submitted HITs for cases 
where verification numbers were incorrect. Turkers were also able to report a confidence level for their 
judgments (1 to 6), and could report situations where the face was not fully visible. Finally, Turkers pressed 
a Next button to rate the next clip, and could assess their progress through the HIT via a progress bar indicator. 
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Figure 3: Screenshot of the mind wandering annotation interface shown to Amazon Mechanical Turk workers. 

5.4 Data Collection 1: Inter-rater Reliability Estimation 
Individual observers (raters) may come to different conclusions about the same classification task for various 
reasons, such as personal biases (e.g., one observer may tend to predict mind wandering more often than 
another observer), careless errors (e.g., not watching the video clips), or ambiguities in the classification task. 
Although we attempted to minimize careless errors by including a verification number for each observation, 
some such errors may have occurred. Moreover, the classification task is expected to be difficult (as can be 
seen in Figure 1), and reliability between two independent sets of observations could be low. However, if 
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there is at least some degree of consensus (i.e., the average pairwise correlation between sets of observations 
is r > 0), however small, then averaging predictions from additional observers will approach consensus. 
Individual judgment errors tend to “cancel out” due to the principle of aggregation, resulting in a higher 
effective reliability than the reliability of individual pairs of observers [76]. 

For tasks with high pairwise reliability (strong correlations between sets of observations), few sets of 
observations will be required to achieve high effective reliability – perhaps only two sets of observations to 
verify that reliability is high. For more difficult tasks, pairwise correlations between observations might be 
much lower, and thus more observations will be required to approach consensus. Previous research has not 
studied the difficulty of third-party human observation of mind wandering; thus, we first collected two 
independent observations for each video clip to estimate the reliability between human observers. We 
measured agreement between two sets of ratings via Pearson’s r (or, equivalently, φ or Spearman’s ρ, since 
observations are binary judgments of positive or negative mind wandering cases). We chose r over tetrachoric 
correlation because mind wandering was measured on a binary scale for both the recorded users and the 
observers. Reliability for two independent sets of observations on all 3,437 clips was r = .152, indicating low 
– but above zero – reliability. More observations were thus needed to achieve medium (r = .3), large (r = .5), 
or better effective reliability effect sizes [19]. 

5.5 Data Collection 2: Improving Reliability 
We estimated effective reliability for additional rounds of observation using the Spearman–Brown prediction 
formula, which yields the effective reliability (r*) achieved by two or more sets of observations given a mean 
pairwise reliability value: 
 

𝑟∗ =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑐𝑙𝑖𝑝 × 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

1 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 × (𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑐𝑙𝑖𝑝 − 1) 

 
This enabled forecasting the impact of adding additional observations on effective reliability in advance 

of data collection 2. We estimated effective reliability for additional raters (up to 20 total raters) assuming 
mean pairwise reliability of r = .152, as was obtained in data collection 1. Figure 4 shows estimated reliability 
after collecting additional observations, illustrating the diminishing returns of additional observations as 
majority voting between observers approaches consensus. We focused on odd numbers of observations to 
avoid ties in majority voting, and found that we would need 5 observations to achieve effective reliability 
(i.e., r*) ≥ 0.4, 7 observations to reach r* ≥ 0.5, 9 to reach r* ≥ 0.6, and 15 to reach r* ≥ 0.7 (Figure 4). We 
chose nine raters as a compromise between study cost and effective reliability, and thus collected seven 
additional observations for each clip in data collection 2. 

Figure 4 also shows the effective reliability that we obtained as we collected additional observations. 
Mean pairwise correlation across all nine rounds of observation was r = .214, which was higher than the 
initial estimate from data collection 1 of r = .152. Thus, effective reliability was higher than expected as well: 
r* = 9 [raters] × .214 [average pairwise correlation] / (1 + .214 × [9 – 1]) = .710, which we deemed sufficient 
for present purposes. Final pair-wise inter-rater reliability as measured via Krippendorff’s alpha was .210. 

Turkers generally reported high confidence in their judgments with little variance (M = 4.97 on a 1–6 
scale, SD = 0.419). Preliminary analyses indicated no accuracy advantage in weighing Turker’s decisions by 
their reported confidence scores, so we did not utilize these scores further. Additionally, there was only one 
clip for which they agreed that the face was not fully visible, though for this clip mean confidence was 4.13 
(out of 6) and 8 of 9 Turkers agreed that the person in the clip was mind wandering; thus, we did not remove 
the clip from analyses. 
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Figure 4: Estimated effective reliability for multiple rounds of data collection on Mechanical Turk (computed 
before performing data collection 2) and observed effective reliability after data collection was complete. 

5.6 Analyzing Observations with Open-Vocabulary Models 
We sought to understand the visual cues that observers used to make their judgments as part of RQ3. To do 
so, we trained open-vocabulary natural language processing models to find associations between observers’ 
justifications (text responses) and the judgments that they made. 

The model building process proceed as follows. First, we concatenated the nine observers’ justifications 
for each clip to form one justification per clip. Next, we performed stemming to enable matching of different 
forms of the same word (e.g., “looking” and “looked” became “look”; [69]. We then computed counts of n-
grams including unigrams (single words), bigrams (pairs of consecutive words), and trigrams (three 
consecutive words) for each clip. We filtered the set of n-grams by calculating the pointwise mutual 
information (PMI) of each bigram and trigram within the training data [79]. PMI measures the probability of 
an n-gram occurring relative to the probability of its individual constituent words, thereby favoring n-grams 
with words that primarily occur together (e.g., “glance down”) over those that occur independently as well 
(e.g., “might”, “be”). Note that bigrams and trigrams could occur across sentences or concatenated 
justifications, but would have low PMI unless the constituent words were statistically related, and thus they 
would not be included. 

We utilized 10-fold clip-level cross validation for these models, selecting hyperparameters by grid-
searching with nested 5-fold cross-validation in the training data only. Hyperparameters for selecting n-grams 
included minimum PMI (2, 3, or 4), minimum proportion of documents (justifications for a clip) an n-gram 
was represented in (0, .01, …, .06), and n-gram size (n ≤ 1, 2, or 3). We also tuned a Laplace smoothing 
hyperparameter for the multinomial naïve Bayes model (α = .10, .25, .50, .75) to improve accuracy. 

Model AUC was .727; additionally, accuracy for positive mind wandering instances was F1 = .724 
(versus .336 random-chance baseline3), and for negative instances F1 = .877 (versus .664 chance level). Thus, 

	
3	Random-chance	baseline	was	computed	by	making	random	mind	wandering	predictions	aligned	with	the	base	rate	in	the	data	(i.e.,	the	human	
judgments	of	mind	wandering),	then	computing	F1.	We	constructed	the	negative	mind	wandering	baseline	in	the	same	manner.	
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the model predicted observers’ labels at levels well above random chance, indicating that n-grams were 
closely related to observers’ judgments. 

Finally, in order to identify which words were most effective at discriminating positive from negative 
mind wandering responses, we computed the correlation (Pearson’s r) between each n-gram and the self-
reported mind wandering labels (1 or 0) in each cross-validation fold, then calculated the mean across all 
folds. Each of the 10 cross-validation folds could have potentially utilized a different set of n-grams since n-
grams were filtered based on the hyperparameters described above. If an n-gram did not appear in a particular 
fold, we set the correlation for that fold to 0 so that it would penalize the overall mean. This analysis revealed 
which words and phrases observers used to indicate mind wandering along with the strength of these 
relationships. 

6 RQ1: Comparing Observer vs. Computer Assessments of 
Mind Wandering 

Research question 1 (RQ1) asks how accurately can human observers detect mind wandering from videos of 
users engaged in computer-mediated tasks and how does their accuracy compare to automatic methods? We 
computed accuracy of observers to answer the first part of RQ1, and compared that to the computer to answer 
the second part of RQ1. We measured accuracy for both computers and observers by comparing their 
judgments of mind wandering to in situ mind wandering self-reports from the participants who read the e-
text. For observers, we calculated the classification probability for each clip as the proportion of positive 
(mind wandering) votes among the nine Turkers for that particular clip. For example, if 6 of the 9 votes were 
positive, the final probability would be 6 / 9 = .667.  

Similarly, the computer classification probability was based on majority voting from the five individual 
machine learning models trained on each of the five sets of features as discussed above. For example, if 2 of 
the 5 models made positive (mind wandering) predictions for a particular instance (video clip), we would 
calculate the predicted probability as 2 / 5 = .400 for that instance. Another possibility would be to average 
the confidences of the individual models with the distance of instances from the SVM hyperplane serving as 
a measure of confidence. However, hyperplane distances are not comparable across models, and thus we 
focused on majority vote (as with human observations). Further, as also noted in our previous work [11], 
slightly higher AUC can be obtained via stacking (training an additional classifier on the outputs of base 
classifiers); however, this resulted in predictions that were biased in favor of positive mind wandering reports, 
yielding machine predictions distribution that were dissimilar to the distribution of observers’ predictions. 
Since this violated the distribution exchangeability assumption of our AUC comparisons [94], we focused on 
the majority vote computer model.  

6.1 Overall Results 
Table 1 reports precision, recall, and F1 scores of positive (mind wandering) and negative (not mind 
wandering) video clips based on majority votes; Table 2 reports the confusion matrices. For positive cases, 
both the computer and observers had equivalent precision, but the computer had higher recall, leading to 
higher F1 scores and more true-positive predictions. In contrast, the computer had higher precision, but 
observers had higher recall, for negative cases. Whereas these results reflect accuracy comparisons at one 
particular decision threshold (.500), we can compare the precision-recall tradeoff across all possible threshold 
with the receiver operating characteristic (ROC) curves of computers and observers. In particular, we 
compared area under the ROC curve (AUC) using the bootstrap method [15], and we compared the curves 
themselves with Venkatraman’s test [94]. 

We first statistically compared overall AUC between the computer (AUC = .598) and all nine observers 
voting together (AUC = .589) with the bootstrap test (using 10,000 bootstrap samples) for the difference in 
area between two correlated ROC curves, implemented in the pROC package in R [70,75]. The difference 
was not significant (p = .572), indicating that AUCs were indeed similar. However, both AUCs exceeded 
chance (AUC of 0.5) suggesting that both the computer and observers were detecting a signal, albeit 
somewhat faintly. 
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We also observed that the shape of the ROC curves appeared notably different for observers and the 
computer (Figure 5), despite the AUCs being similar. Thus, we compared the ROC curves with 
Venkatraman’s test, also with 10,000 sampling iterations. Venkatraman’s test measures whether the shapes 
of the ROC curves themselves are different, even if the area under those curves may be similar. The test was 
significant (p < .005), supporting the hypothesis that the shape of the ROC curves differed. 

 

 
Figure 5: Receiver operating characteristic (ROC) curves for human (nine observers) and computer 

classifications of mind wandering. 

 
Given that the ROC curves differed, we computed partial AUC (pAUC) values for the high precision 

(low false-positive rate) and high recall (high true-positive rate) portions of the ROC curve separately, 
splitting the ROC curve at the point where the computer and observer curves intersected (at true-positive rate 
= .496, false-positive rate = .366; see Figure 5). After splitting the ROC curve into two parts, we rescaled 
each pAUC to match the typical range of AUC scores – i.e., [0, 1] with .5 as the random chance level. For 
the low false-positive rate ROC portion, the computer’s pAUC was .634, while observers’ pAUC was .717. 
We compared these two partial AUCs with the bootstrap method, which showed that observers were indeed 
significantly more accurate in the low false-positive ROC portion (p < .005). Similarly, we compared the 
high true-positive rate portion for both curves, where the computer’s pAUC was .586 and observers’ pAUC 
was .547. This difference was also significant (p < .005), confirming that the computer was more accurate in 
the high true-positive portion of the AUC curve. Additionally, the computer appeared to be more consistent 
in terms of accuracy than the observers with the computer absolute pAUC difference = |.586 - .634| = .048, 
versus observers’ difference = |.716 - .546| = .170.  
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Table 1: Mind wandering detection accuracy for automatic computer vision-based method 
(computer) versus human observers. 

 
Computer 
performance 

Observers 
performance 

Base 
rate 

Predicted rate 
(computer) 

Predicted rate 
(observers) 

Positive mind wandering   

F1 .439 .406 .300 .445 .336 

Precision .368 .384 .300 .445 .336 

Recall .545 .431 .300 .445 .336 

      

Negative mind wandering   

F1 .667 .723 .700 .555 .664 

Precision .754 .743 .700 .555 .664 

Recall .599 .704 .700 .555 .664 

      

AUC .598 .589    

Table 2: Confusion matrices for computer and human observers’ classification of mind wandering, 
assuming a 0.5 (i.e., majority vote) decision threshold. 

  Computer’s predicted  
mind wandering 

  Positive Negative 

Self-reported 
mind wandering 

Positive 562 (.545) 469 (.455) 

Negative 966 (.401) 1440 (.599) 

    

  Observers’ predicted  
mind wandering 

  Positive Negative 

Self-reported 
mind wandering 

Positive 444 (.431) 587 (.569) 

Negative 711 (.296) 1695 (.704) 

6.2 Varying the Number of Observers 
With nine observers, observer and computer accuracies differed in different regions of the ROC curve, but 
overall accuracies were not statistically different. However, in practical HCI applications nine observers is 
likely an unrealistically large number. We thus varied the number of observers by randomly selecting one or 
more observers per video clip, then averaging votes as before (Figure 6). With one randomly-chosen observer 
per clip, observer AUC was just .548 – significantly lower than the computer’s .598 AUC (p < .001). With 
two observers, AUC was .563 (also significantly lower than the computer; p = .014). However, with three 
observers, AUC was .574, and did not significantly differ from the computer (p = .096). Thus, three or more 
observers were needed to match the accuracy of the computer. 

To explore the trend more generally, we quantified the improvement in AUC due to each additional 
observer by sampling n=1..9 observers repeatedly (1000 times per n) and averaging AUCs obtained. We then 
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calculated the improvement in AUC for n observers versus n–1 observers as the percentage increase (past the 
accuracy of n-1 observers) in AUC obtained for n observers after mean-centering at chance level (i.e., [AUCn 
– .5] / [AUCn–1 – .5] – 100%). Results in Figure 7 show that the improvement per added observer decreased 
quickly, but that small improvements were obtained even with the ninth observer. In fact, adding a second 
observer produced over 35% improvement in AUC for the human predictions. Conversely, adding a fifth 
observer produced less than 5% improvement for both humans, and the eighth and ninth observers improved 
AUC by less than 2.5%.  

 

 
Figure 6. AUC as a function of the number of observers included in the human predictions (RQ1) and the fusion 

predictions (RQ2). Bootstrap 95% confidence intervals are shown with shading. 
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Figure 7. Additive value of each additional observer as a percentage of improvement in AUC. 

7 RQ2: Fusing Observer and Computer Assessments of Mind 
Wandering 

RQ2 builds on RQ1 by examining cooperation between observers and the computer. Specifically, RQ2 asks 
does a fusion of human- and machine- predictions outperform either one independently? We fused observers’ 
and the computer’s predictions by averaging the prediction from each. We then compared the fused 
predictions to the computer and the observers alone. Similar to RQ1, we also varied the number of observers 
included in the fusion to determine whether adding a limited number of observers would yield improvements 
over a computer-only approach. Additionally, we examined conditional fusion in which observers only 
provide judgments for a specific case (i.e., when the computer predicts positive mind wandering), thus 
reducing the labor required from observers. 

7.1 Overall Results 
Table 3 compares F1, precision, recall, and AUC for human–computer decision fusion models alongside the 
individual observer and computer accuracies. Comparisons showed that the human–computer fusion AUC 
(.644) was significantly better than observers (AUC = .589; p < .001) and the computer (AUC = .598; p < 
.001). Results for positive and negative mind wandering cases separately showed that the fusion model 
combined the strengths of the computer and observers. For positive mind wandering, the fusion had a similar 
F1 score (.444) compared to the computer (.439), and slightly higher than observers (.406). For negative mind 
wandering, the fusion model had an F1 score similar to the observers (.726 versus .723), and higher F1 than 
the computer (.667). A similar pattern is apparent for precision, where the fusion model matched or exceeded 
the observers (.407 versus .384) and the computer (.368) for positive mind wandering, and matched observers 
and the computer for negative mind wandering (.760 versus .743 and .754, respectively). In terms of recall, 
however, fusion was between the computer and observers for positive mind wandering (.488 versus .545 and 
.431), but surpassed the computer for negative mind wandering (.695 versus .599) and matched the observers 
(.704). Taken together, these results indicate that the fusion matched the better of the computer’s and 
observers’ predictions, and thus was more accurate overall; however, this fusion required all nine observers 
to contribute to the decision. 
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Table 3. Classification metrics for fusion models, with individual computer and observer values 
reproduced from Table 1 for comparison purposes 

 
Computer 
performance 

Observers 
performance 

Observers + 
computer fusion 

Positive-
only fusion 

Base 
rate 

Positive mind wandering   

F1 .439 .406 .444 .389 .300 

Precision .368 .384 .407 .397 .300 

Recall .545 .431 .488 .381 .300 

      

Negative mind wandering   

F1 .667 .723 .726 .746 .700 

Precision .754 .743 .760 .739 .700 

Recall .599 .704 .695 .752 .700 

      

AUC .598 .589 .644 .612  
 

7.2 Varying Observer Involvement in Fusion 
As in section 6.1, we varied the number of observers included in the observers’ classification decision. In 
this case, we added one randomly-chosen observer at a time to the fusion model to determine how many 
observers were needed for the fusion to outperform the computer-only decisions. With one randomly-chosen 
observer, the fusion’s AUC of .602 was not significantly (p = .790) better than the computer (AUC = .598). 
With two observers in the fusion model, AUC was .616 (p = .217), and with three observers AUC was .629 
(p = .026). Thus, at least three observers were needed in the fusion model to significantly outperform the 
computer-only model. However, including all nine observers further outperformed fusion with three (p = 
.009; see Figure 6). 

We measured the improvement per observer for the fusion method, like in section 6.1, and found a similar 
trend such that the first few observers had notable positive impacts on AUC while the later observers yielded 
marginal improvement (Figure 7). In particular, adding a second observer produced over 15% improvement 
versus one observer, while the sixth through ninth observers provided less than 2.5% improvement. 
Additional observers were less impactful, as a percentage, for fusion compared to observer-only predictions 
since the computer predictions constituted only a portion of the overall accuracy for the fusion. 

We also explored reducing human labor by having observers provide predictions only where the computer 
predicted positive mind wandering. The resulting fusion had an AUC of .612, which was significantly higher 
than the computer (p = .003) but not better than the observers alone (p = .090). However, this method required 
judgments for only 44.5% of instances, rather than all instances as in the observers-only method. Table 3 
shows that the positive-only fusion primarily improved on the computer predictions in terms of precision for 
positive mind wandering cases (.398 versus .368) and recall for negative mind wandering (.752 versus .599). 
The confusion matrix (Table 4) also shows that the positive-only fusion model had many more true negatives 
than the computer model (1824 versus 1440). This was expected since, in this fusion, only the computer’s 
positive mind wandering predictions were fused with observer predictions (i.e., potentially turning a 
borderline positive prediction into a negative prediction). The result is a model that is more selective about 
predicting positive mind wandering cases than the computer-only approach, which is more accurate in the 
high false-positive region of the ROC curve (see RQ1). 
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The improved accuracy of fusion models compared to individual computer or human predictions indicates 
that these predictions are complementary. In fact, the two sets of predictions were negatively correlated (r = 
-.124, p < .001), despite both being positively related to the same outcome (mind wandering). This suggests 
that observers and the computer differed substantially in how they made their predictions, which we explore 
in depth in RQ3. 

Table 4: Confusion matrices for the human–machine decision fusion model with observer input on 
only positive computer predictions; computer’s matrix reproduced from Table 2 for comparison 

purposes 

  Computer’s predicted  
mind wandering 

  Positive Negative 

Self-reported 
mind wandering 

Positive 562 (.545) 469 (.455) 

Negative 966 (.401) 1440 (.599) 

    

  Positive-only fusion  
predicted mind wandering 

  Positive Negative 

Self-reported 
mind wandering 

Positive 393 (.381) 638 (.619) 

Negative 596 (.248) 1810 (.752) 
 

8 RQ3: Visual Cues of Mind Wandering 
Research question 3 asks what visual cues do observers utilize to make their decisions, and how are those 
cues complementary to those used by the machine? We examined the justifications observers provided for 
their mind wandering labels to identify cues that the observers used to inform their decision. On average, 
there were 5.09 words per justification (SD = 5.35). There were 8.66 justifications per clip (out of a maximum 
possible 9), indicating that nearly all Turkers provided justifications. For this analysis we adapted an open-
vocabulary analysis similar to Park et al. [66] with the goal of using natural language processing and machine 
learning to identify words and phrases (n-grams) that are diagnostic of observers’ mind wandering ratings in 
a generalizable manner. We inspected machine learning model features to discover which n-grams related to 
positive or negative mind wandering judgments, and thus whether observers were assessing mind wandering 
via previously-observed indicators of mind wandering – such as gaze, blinks, and fidgeting – or via other 
behaviors. Accordingly, we trained multinomial naïve Bayes models to predict the observers’ labels from the 
n-gram counts (features) using nested-cross validation (see section 5.6 for methodological details) to ensure 
generalizability across video clips. 

8.1 N-gram Word Clouds from Open-Vocabulary Models 
We generated word clouds where the size of each word (n-gram) was proportional to the correlation 
(Pearson’s r) between that n-gram and both the observers’ majority vote label and the computer’s predicted 
label (top row of Figure 8). Several broad patterns are evident. Observers provided specific justifications 
about positive instances of mind wandering, such as close (referring to eyes), asleep, yawn, blink, and other 
words that refer to physical motions apparent in the videos. However, observers also made more subjective 
judgments about the appearance of mind wandering, such as participants who are drift[ing] away or are 
zon[ing out]. Similarly, observer justifications for negative mind wandering labels include specific actions 
related to effortful reading such as follow, side to [side], and move, as well as subjective descriptions such as 
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focus and not drift [away]. Results differed for the automated computer method. Correlations between 
observer n-grams and computer predictions (bottom row of Figure 8) showed little overlap with the observer 
word-clouds, which is unsurprising since the computer models were trained on self- and not observer- reports. 
Nevertheless, it is interesting that some n-grams appeared in both computer and observer word clouds but in 
the opposite direction (e.g., are drift[ing] away, yawn, bod[ily/y], and follow). The n-grams correlated with 
computer predictions were predominately related to body movement, mouth movement, and blinking, 
whereas observers’ predictions were correlated with higher-level behaviors inferred from these activities, 
such as reading, drifting away, zoning out, and sleeping. Both relied on eye-related cues, though the specific 
cues differed (e.g., eyes closing versus blinking).  

Previous work shows that among the individual types of features used by the computer for automatic 
mind wandering detection (see section 2.2), LBP features provided the most accurate results [11]. These 
features represent relatively low-level facial textures only a few pixels wide, in contrast to the higher-level 
features like AUs (e.g., jaw drop) that are more similar to justifications given by observers. Hence, the 
computer appeared to attend to some visual characteristics that observers did not, though it is difficult to 
interpret these low-level features to discover what they represent and whether observers could potentially be 
trained to recognize the same features. 

To characterize observers’ judgments further, we selected the n-grams with the largest correlations to 
observers’ mind wandering predictions and matched them to the full justification text (reproduced without 
editing spelling; Table 5). This further illustrates many of the specific actions that observers observed when 
categorizing mind wandering. For example, yawning, scratching, and eyes closing were all correlated with 
positive mind wandering labels. Conversely, participants’ eyes following the text repeatedly occurred in 
justifications for negative mind wandering observations – e.g., “eyes focused on text”, “eyes were moving 
side to side.” Observers were not entirely consistent, however; head scratching was noted as a sign of mind 
wandering by one person, but as alertness by another. 
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Observers, negative correlation 

 

Observers, positive correlation 

 
Computer, negative correlation 

 

Computer, positive correlation 

 

Figure 8. Word clouds with n-grams that were negatively (left; red) and positively (right; green) correlated with 
mind wandering predictions from the observers (top) and computer (bottom). Underscores indicate bigrams or 

trigrams. Text size is relative to correlation magnitude. 
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Table 5: Example observer justifications for the 10 n-grams that were most positively or negatively 
correlated with observer mind wandering labels. 

n-gram r Example observer justification 

Positive mind wandering judgments 

close .347 He had his head laying on his hands and his eyes were closing as if he was 
falling asleep. 

fall .303 Looked like she was falling asleep. 

out while .283 Eyes are zoning out while reading. 

are zone .283 Eyes are zone out while reading 

are drift away .256 Eyes are drift away while reading. 

asleep .250 Falling Asleep 

almost .208 Her eyes´s movement. She is almost slept 

yawn .199 She let out a BIG yawn, showing she was tired, and she was scratching her 
head (boredom). She simply looked fatigue. 

fell .175 He fell asleep while reading. 

sleepi .145 Seems disinterested & sleepy - no focus! 

Negative mind wandering judgments 

not drift -.295 Eyes are not drift away while reading. 

read -.218 Eyes moving as if reading entire time. Mouth moving as if speaking the 
words aloud. 

follow -.198 Granted he was yawning, but his eyes followed the text. 

move -.198 Her eyes were moving side to side and she appeared to be reading aloud to 
herself 

away while -.144 Eyes are not drift away while reading. He is concentrating. 

focus -.128 eyes focused on text and moving with it 

text -.116 She was not only following text with her eyes, but she appeared to be reading 
the text aloud as well. 

alert -.111 I think she stayed with it, eyes kept their alertness and attention. She 
scratched her head and shifted a bit to stay alert I think. 

what -.101 His eyes were following along with what he was reading 

look care -.090 The person is looking carefully at the screen 
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8.2 Visual Inspection of Example Observations 
We extracted frames from video clips of positive and negative mind wandering instances to ground the 
provided justifications more clearly in visual examples. In particular, we examined video clips where 
observer justifications included the three justifications with the highest most positive or negative correlation 
to observer mind wandering labels (Figure 9). 

For the positive mind wandering clips (rows A, B, and C in Figure 9), it appears that all three participants 
were disengaging from the task, either by drifting toward sleep or simply ignoring the task. The participant 
who observers labeled as “zoning out” (row C) has closed eyes in some frames as well. This participant did, 
however, self-report mind wandering for this clip, indicating that they self-caught mind wandering. 

We note three different behaviors for the negative mind wandering clips. In Figure 9 row D is a participant 
whose eyes are scanning the text; in row E, the participant is reading aloud, and row F features a participant 
who yawns but apparently is reading the e-text.  

 

 
Figure 9: Examples of correctly-identified positive and negative mind wandering video clips, with sample 

observer justifications for each clip. 
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9 Discussion and Conclusions 
The ability to identify mind wandering from video has implications for a variety of HCI contexts including 
education, medicine, safety, and so on. Automatic computerized methods for assessing mind wandering may 
be able to help users with observation, either by improving accuracy or reducing the labor required. We 
addressed two research questions centered on these issues, as well as a third question exploring the 
differences between observer and computer perceptions of mind wandering. In this section we discuss the 
main findings from our three research questions and their implications for HCI. 

9.1 Main Findings 
It was possible that mind wandering would be only subtly apparent from facial expressions during the present 
computerized reading context. Indeed, the subtlety of expressions was apparent in our results as evidenced 
by the modest detection accuracies achieved by both observers and computers (RQ1). Although we expected 
observers might outperform computers, given related work judging subtle emotional expressions [99], we 
found that overall accuracies were similar. Importantly, when examining detection accuracy across different 
decision thresholds in ROC curves, we found that the automated method outperformed observers in the high 
false-positive, low false-negative region of the ROC curve, while observers outperformed the automated 
method for the high false-negative, low false-positive region. These results indicated that observers and 
computers made complementary, but non-redundant predictions, which suggested that a fusion of the two 
might yield improved accuracy by combining the strengths of each. 

Our experiments with human–computer decision fusion indeed showed that human and computer 
predictions were complementary (negatively correlated with each other), and that accuracy improved 
significantly when observer and computer predictions were combined (RQ2). We also found that only three 
observers were sufficient to significantly outperform the computer-only approach, though including all nine 
observers improved accuracy further. The fusion approach in which observers only provided their judgments 
for cases where the computer predicted positive mind wandering also improved accuracy over the computer-
only approach, and resulted in more selective mind wandering predictions (higher precision, but lower recall). 

Analyses of observers’ open-ended justifications for their predictions (RQ3) showed that observers made 
their predictions based on high-level user behavioral states inferred from videos, including reading, 
sleepiness, focusing, and zoning out. They also made observations about lower-level, specific user behaviors, 
such as blinking, yawning, and hand movements, but these were largely uncorrelated with their predictions 
of positive or negative mind wandering (with the exception of eyes closing). Conversely, the computer’s 
predictions were more correlated with low-level behaviors noted in observers’ justifications. These results 
highlight the fact that observers and the computer were relying on different cues to make their judgments, 
which explains why fusions of observer and computer predictions produced additive results (improved 
accuracy) rather than being redundant. Differences between observer and computer predictions also highlight 
aspects of the videos that observers deemed important but were overlooked by the computer, and could be 
explored to improve the computer’s predictions in future work. 

To this point, one aspect that observers frequently noted were reading-related eye movements when they 
classified a clip as negative mind wandering (see Table 5 and Figure 9). For example, justifications such as 
“eyes were moving side to side”, “following text with her eyes”, and “eyes moving as if reading” indicate 
that observers were paying close attention to eye movements. On the other hand, observers also mentioned 
“sleep”, fidgeting (“body”, “hand”, “neck” movements), “rub[bing]” (Figure 8), and similar appearances as 
justifications for rating a clip as a positive mind wandering episode. However, these may be more directly 
related to boredom and only tangentially related to mind wandering, which the computer (with no 
preconceptions of mind wandering) would be better able to avoid. Users are perhaps more likely to be familiar 
with related constructs like behavioral engagement (e.g., looking at the screen), boredom, confusion, and 
frustration, rather than mind wandering. In other words, observers’ top-down biases appear to be influencing 
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their judgments, which was an effective strategy for negative cases of mind wandering but not for positive 
mind wandering instances. The computer, with no preconceived biases, is largely driven by the stimulus itself. 

9.2 Implications of Results for HCI Research and Application 
Our findings have important implications for 1) research scenarios where accuracy is essential, and 2) 
software applications where the accuracy of the observers, computer, and human–machine decision fusion 
provides guidance on how to measure mind wandering while minimizing user input. We discuss these both 
of these aspects here with respect to our three research questions. 

RQ1 Implications. Accuracy with a single human observer (AUC = .548) was only slightly better than 
chance level, indicating that a lone observer is not likely to be able to effectively judge mind wandering in 
other users in a computer-mediated interaction. A team of nine observers was significantly better, and 
comparable to the automatic computerized method. However, additional observers beyond the first few 
yielded rapidly diminishing improvements in accuracy, suggesting only 3-4 observers are needed to approach 
consensus. In some applications this level of cooperation between observers may be feasible; in retrospective 
analysis of video clips for research purposes, it certainly is. However, given the comparable accuracy of the 
computer method, an automatic approach is a potentially viable replacement for tedious human observation, 
most definitely for real-time applications and when multiple users are involved (e.g., simultaneously 
monitoring the attention of 10 participants in an online study over Zoom). 

RQ2 Implications. Fusion of observer and computer predictions of mind wandering did indeed improve 
accuracy, suggesting that it is a viable approach. When accuracy is paramount, computer predictions fused 
with a team of observers’ predictions produces the highest accuracy by a significant margin. For less-sensitive 
applications, such as online learning, a fusion including a team of just three observers (e.g., teaching 
assistants) significantly outperformed the computer alone. Our findings also inform the number of observers 
needed based on how much each additional observer improves prediction accuracy in the fusion model; 
specifically, additional observers beyond 3-4 offer little accuracy improvement for fusion, as in the observers-
only model. Additionally, we found that observer effort could be reduced by more than half by having 
observers only provide judgments in the cases where the computer predicts positive mind wandering; this 
significantly improved accuracy over the computer alone. Reducing observer effort is essential for 
applications where it is impractical to have observers remain constantly vigilant for an extended period of 
time. 

RQ3 Implications. We found that the computer’s predictions aligned with observers’ observations of 
low-level behaviors (e.g., blinks) rather than higher-level inferences like reading or zoning out. This finding 
offers some insight into how the computer makes its predictions, and how that compared to human 
observations. This is an especially important for HCI applications given previous research that shows users 
will form their own “folk theories” (which may be quite inaccurate) of how algorithms work if they are not 
given explanations [34] , and that misunderstandings can lead to negative experiences like attributing 
incorrect algorithmic predictions to the behaviors of other users [35]. Further, findings in RQ3 imply that 
there are opportunities to improve automatic mind wandering assessment methods by developing features for 
higher-level behaviors like reading. Automatic, video-based approaches to estimate gaze are still in the early 
stages of research, but are becoming increasingly accurate (e.g., [3]). These approaches might eventually 
improve to the point that gaze-related reading features – such as fixations and saccades – can be accurately 
extracted from video and used to improve the accuracy of mind wandering detectors. 

Observers’ justifications also covered many different behaviors and facial expressions, indicating that 
there is not a one-to-one mapping of mind wandering to a facial expression, even in this specific context. 
Rather, there are many expressions (which could also vary across contexts), implying that it may be difficult 
to train observers to detect mind wandering based on a canonical “mind wandering expression”; see [4] for 
a parallel argument for emotion detection. Finally, RQ3 findings suggest that users may sometimes equate 
mind wandering with related, but theoretically distinct constructs, such as boredom (as mentioned explicitly 
by an observer in Table 5). Future work training users to recognize mind wandering in video-based 
interactions might include distinctions between related constructs, and compare users’ ability to distinguish 
between these constructs. 
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9.3 Limitations and Future Work 
Our study has some limitations that should be addressed. First, we only evaluated mind wandering detection 
in the context of task (e-text reading on a computer). Given the task-specific justifications observers provided 
for their negative mind wandering reports (e.g., eyes moving with text), accuracy might be notably different 
for different tasks where eye movements might be less predictable (e.g., scene viewing [55]). Thus, 
replication in situations where users were performing different tasks, such as viewing a film, is warranted. 

Second, computer-mediated interactions are often social, and observers may detect mind wandering more 
(or less [39]) accurately in social contexts in which they are active participants and have a stake in the 
outcomes. Moreover, facial expressions themselves may differ in some social situations, given that facial 
expressions are often only present as a social communication tool [20]. In contrast, the present stimuli, which 
feature non-interactive videos of a person reading an e-text, were devoid of social cues that might have aided 
in their judgments. As such, replicating the study by using videos collected in more engaging social contexts 
might be an important next step. However, the current context is representative of several computer-mediated 
interactions, such as online video-based lectures with limited interactivity. 

Third, the laboratory context in which users read the e-text allowed precise control of potential 
distractions, lighting, camera placement, seating, thereby mitigating environmental factors that could 
introduce variance into video recordings of users. It remains an open question whether computers and 
observers can recognize mind wandering “in the wild” when confounding factors may make the task more 
difficult. Conversely, as mentioned above, these factors may add valuable context to the recognition task. 

Finally, our results showed that human observers, while capable of recognizing mind wandering at above-
chance levels, were far from perfect. Many of the false-positive and false-negative classifications made by 
observers could be due to the subtle, internal nature of mind wandering, but it is also possible that training 
observers to detect mind wandering may improve their accuracy for a specific context in which the space of 
mind wandering facial expressions may be limited (though perhaps not limited enough, as RQ3 findings 
suggest). Whereas our goal was to investigate the accuracy of untrained observers, future work could include 
strategies such as providing observers with labeled examples before annotation, or providing feedback after 
each annotation they make to promote learning. Previous research on detection of pain from facial 
expressions found that training observers resulted in minimal improvements [5], so we do not anticipate 
training would make a substantial difference here, though this has yet to be empirically tested. 

10 Concluding Remarks 
This study is part of a broader field of HCI research seeking to understand the characteristics of mind 
wandering during computer-based tasks and how mind wandering can be measured, and thus accounted for, 
in these tasks. We were particularly interested in how third-party human observers perceive mind wandering, 
and whether observers are more accurate at detecting it than a computer vision-based machine learning 
approach. We confirmed that mind wandering is very difficult to visually detect for both observers and 
computers. However, both outperformed chance baselines, suggesting that there is a signal amidst the noise; 
moreover, combining the computer’s predictions to those of the observers was effective for improving 
accuracy and reducing the need for human labor. 

Importantly, the computers and observers have complementary strengths and weaknesses, with the 
computer outperforming the observers for high true-positive decision thresholds and observers outperforming 
the computer for low false-positive thresholds. We also found that the visual cues that observers use in 
making their decisions were different from the computer’s cues, which can be incorporated to improve the 
accuracy of the computer models. Further research will lead to a better understanding of mind wandering and 
methods to detect it, thereby opening the door for automated measurement of a ubiquitous component of 
every human-computer interaction and to attention-aware systems that aim to make interactions with 
computers more engaging, enjoyable, and effective by attending to attention. 
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