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Abstract. We explore the sequences of affective states that students experience 

during their first encounter with computer programming. We conducted a study 

where 29 students with no prior programming experience completed various 

programming exercises by entering, testing, and running code. Affect was 

measured using a retrospective affect judgment protocol in which participants 

annotated videos of their interaction immediately after the programming ses-

sion. We examined sequences of affective states and found that the sequences 

Flow/Engagement ↔ Confusion and Confusion ↔ Frustration occurred more 

than expected by chance, which aligns with a theoretical model of affect during 

complex learning. The likelihoods of some of these frequent transitions varied 

with the availability of instructional scaffolds and correlated with performance 

outcomes in both expected but also surprising ways. We discuss the implica-

tions and potential applications of our findings for affect-sensitive computer 

programming education systems. 
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1 Introduction 

Given the unusually high attrition rate of computer science (CS) majors in the U.S. 

[1], efforts have been made to increase the supply of competent computer program-

mers through computerized education, rather than relying on traditional classroom 

education. Some research in this area focuses on the behaviors of computer program-

ming students in order to provide more effective computerized tutoring and personal-

ized feedback [2]. In fact, over 25 years ago researchers were exploring the possibility 

of exploiting artificial intelligence techniques to provide customized tutoring experi-

ences for students in the LISP language [3]. This trend has continued, as evidenced by 

a number of intelligent tutoring systems (ITSs) that offer adaptive support in the do-

main of computer programming (e.g. [4–6]). 

One somewhat neglected area in the field is the systematic monitoring of the affec-

tive states that arise over the course of learning computer programming and the im-

pact of these states on retention and learning outcomes. The focus on affect is moti-

vated by considerable research which has indicated that affect continually operates 

throughout a learning episode and different affective states differentially impact per-
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formance outcomes [7]. Some initial work has found that affective states, such as 

confusion and frustration, occur frequently during computer programming sessions [8, 

9] and these states are correlated with student performance [10]. 

The realization of the important role of affect in learning has led some researchers 

to develop learning environments that adaptively respond to affective states in addi-

tion to cognitive states (see [11] for a review). Previous research has shown that affect 

sensitivity can make a measurable improvement on the performance of students in 

other domains such as computer literacy and conceptual physics [12, 13]. Applying 

this approach to computer programming education by identifying the affective states 

of students could yield similarly effective results, leading to more effective systems. 

Before it will be possible for an affect-sensitive intelligent tutoring system to be 

successful in the computer programming domain, more research is needed to deter-

mine at a fine-grained level what affective states students experience and how affect 

interacts and arises from the students’ behaviors. Previous work has collected affec-

tive data at a somewhat coarse-grained level in a variety of computer programming 

education contexts. [10] collected affect using two human observers, and were able to 

draw conclusions about what affective states led to improved performance on a com-

puter programming exam. [14] induced affect in experienced programmers using 

video stimuli, and found that speed and performance on a coding and debugging test 

could be increased with high-arousal video clips. 

In our previous work [15], we examined the affect of 29 novice programmers at 

20-second intervals as they solved introductory exercises on fundamentals of comput-

er programing. We found that flow/engagement, confusion, frustration, and boredom 

dominated the affect of novice programmers when they were not in a neutral state. 

We found that boredom and confusion were negatively correlated with performance, 

while the flow/engagement state positively predicted performance. This paper contin-

ues this line of research by exploring transitions between affective states. 

Specifically, we test a theoretical model on affect dynamics that has been proposed 

for a range of complex learning tasks [16]. This theoretical model (Fig. 1) posits four 

affective states that are crucial to the learning process: flow/engagement, confusion, 

frustration, and boredom. The model predicts an important interplay between confu-

sion and flow/engagement, whereby a learner in the state of flow/engagement may 

encounter an impasse and become confused. From the state of confusion, if an im-

passe is resolved the learner will return to the state of flow/engagement, having 

learned more deeply. This is in line with other research which has shown that confu-

sion helps learning when impasses are resolved [17]. On the other hand, when the 

source of the confusion is never resolved, the learner will become frustrated, and 

eventually bored if the frustration persists. 

Researchers have found some support for this theoretical model of affective dy-

namics in learning contexts such as learning computer literacy with AutoTutor [16], 

unsupervised academic research [18], and narrative learning environments [19]. We 

expect the theoretical model to apply to computer programming as well. 



We posit that en-

countering unfamiliar 

concepts, syntax and 

runtime errors, and 

other impasses can 

cause confusion in a 

computer programmer. 

When those impasses 

are resolved, the pro-

grammer will be better 

equipped to anticipate 

and handle such im-

passes in the future, 

having learned some-

thing. Alternatively, if 

the impasses persist, 

programmers may become frustrated and eventually disengage, entering a state of 

boredom in which it is difficult to learn. 

To explore the applicability of this model to the domain of novice computer pro-

gramming, this paper focuses on answering the following research questions: 1) what 

transitions occur frequently between affective states? 2) how are instructional scaf-

folds related to affect transitions? and 3) are affective transitions predictive of learn-

ing outcomes? These questions were investigated by analyzing affect data collected in 

a previous study [15] where 29 novice programmers learned the basics of computer 

programming over the course of a 40-minute learning session with a computerized 

environment, as described in more detail below. 

2 Methods 

Participants were 29 undergraduate students with no prior programming experience. 

They were asked to complete exercises in a computerized learning environment de-

signed to teach programming fundamentals in the Python language. Participants 

solved exercises by entering, testing, and submitting code through a graphical user 

interface. Submissions were judged automatically by testing predetermined input and 

output values, whereupon participants received minimal feedback about the correct-

ness of their submission. For correct submissions they would move on to the next 

exercise, but otherwise would be required to continue working on the same exercise. 

The exercises in this study were designed in such a way that participants would 

likely encounter some unknown, potentially confusing concepts in each exercise. In 

this manner we elicited emotional reactions similar to real-world situations where 

computer programmers face problems with no predefined solutions and must experi-

ment and explore to find correct solutions. Participants could use hints, which would 

gradually explain these impasses and allow participants to move on in order to pre-

 

Fig. 1. Theoretical model of affect transitions. 



vent becoming permanently stuck on an exercise. However, participants were free to 

use or ignore hints as they pleased. 

Exercises were divided into two main phases. In the first phase (scaffolding), par-

ticipants had hints and other explanations available and worked on gradually more 

difficult exercises for 25 minutes. Performance in the scaffolding phase was deter-

mined by granting one point for each exercise solved and one point for each hint that 

was not used in the solved exercises. Following that was the second phase (fadeout), 

in which they had 5 minutes to work on a debugging exercise, and 10 minutes to work 

on another programming exercise with no hints. In this study we will not consider the 

debugging exercise because it was only 5 minutes long. Performance was determined 

by two human judges who examined each participant’s code, determined the number 

of lines matching lines in the correct solution, and resolved their discrepancies. 

Finally, we used a retrospective affect judgment protocol to assess student affect 

after they completed the 40-minute programming session [20]. Participants viewed 

video of their face and on-screen activity side by side, and were polled at various 

points to report the affective state they had felt most at the polling point. The temporal 

locations for polling were chosen to correspond with interactions and periods of no 

activity such that each participant had 100 points at which to rate their affect, with a 

minimum of 20 seconds between each point. Participants provided judgments on 13 

emotions, including basic emotions (anger, disgust, fear, sadness, surprise, happi-

ness), learning-centered emotions (anxiety, boredom, frustration, flow/engagement, 

curiosity, confusion/uncertainty) and neutral (no apparent feeling).The most frequent 

affective states, reported in [15], were flow/engagement (23%), confusion (22%), 

frustration (14%), and boredom (12%), a finding that offers some initial support for 

the theoretical model discussed in the Introduction. 

3 Results and Discussion 

We used a previously developed transition likelihood metric to compute the likeli-

hood of the occurrence of each transition relative to chance [21]. 

                 
       |                  

           
 (1) 

This likelihood metric determines the conditional probability of a particular affec-

tive state (next), given the current affective state. The probability is then normalized 

to account for the overall likelihood of the next state occurring. If the affective transi-

tion occurs as expected by chance, the numerator is 0 and so likelihood is as well. 

Thus we can discover affective state transitions that occurred more (L > 0) or less (L < 

0) frequently than expected by chance alone. 

Before computing L scores we removed transitions that occurred from one state to 

the same state. For example, a sequence of affective states such as confusion, frustra-

tion, frustration, boredom would be reduced to confusion, frustration, boredom. This 

was done because our focus in this paper is on the transitions between different affec-

tive states, rather than on the persistence of each affective state [16, 18]. Furthermore, 



although transition likelihoods between all 13 states (plus neutral) were computed, the 

present paper focuses on transitions between states specified in the theoretical model 

(boredom, confusion, flow/engagement, and frustration), which also happen to be the 

most frequent affective states. 

What transitions occur frequently between affective states? We found the tran-

sitions that occurred significantly more than chance (L = 0) by computing affect tran-

sition likelihoods for individual participants and then comparing each likelihood to 

zero (chance) with a two-tailed one-sample t-test. Significant (p < .05) and marginally 

significant (p < .10) transitions are shown in Figure 2 and are aligned with the theoret-

ical model on affect dynamics. 

Three of the predicted tran-

sitions, Flow/Engagement 

→ Confusion, Confusion → 

Frustration, and Frustration 

→ Confusion, were signifi-

cant and matched the theo-

retical model. Confusion → 

Flow/Engagement was in 

the expected direction and 

approached significance (p 

= .108), while Boredom → 

Frustration was in the ex-

pected direction but not 

significant. The Frustration 

→ Boredom transition was 

not in the expected direction 

and was also not significant. 

Hence, with the exception 

of the Frustration ↔ Bore-

dom links, there was sup-

port for four out of the six 

transitions espoused by the theoretical model. This suggests that the components of 

the model related to the experience of successful (Flow/Engagement ↔ Confusion) 

and unsuccessful (Confusion ↔ Frustration links) resolution of impasses were con-

firmed. Therefore, the present data provide partial support for the model. 

The Boredom → Flow/Engagement transition, which occurred at marginally sig-

nificant levels (p  = .091), was not predicted by the theoretical model. It is possible 

that the nature of our computerized learning environment encouraged this transition 

more than expected. This might be due to the fast-paced nature of the learning ses-

sion, which included 18 exercises and an in-depth programming task in a short 40-

minute session. Furthermore, participants had some control over the learning envi-

ronment in that they could use bottom-out hints to move to the next exercise instead 

of being forced to wallow in their boredom. The previous study that tested this model 

used a learning environment (AutoTutor) that did not provide any control over the 

learning activity, which might explain the presence of Frustration → Boredom (dis-

 

Fig 2. Frequently observed affective state transitions. Edge 

labels are mean likelihoods of affective state transitions. 

Grey arrows represent transitions that were predicted by the 

theoretical model but were not significant. The dashed 

arrow represents a transition that was marginally significant 

but not predicted. *p < .10, **p < .05 



engaging from being stuck) and Boredom → Frustration (being frustrated due to 

forced effort) links in the earlier data [16]. 

How are instructional scaffolds related to affect transitions? To answer this 

question we looked at the differences between the scaffolding and fadeout phases of 

the study, as previously described. We discarded the first 5 minutes of the scaffolding 

phase to allow for a “warm-up” period during which participants were acclimating to 

the learning environment. We also discarded the 25 to 30 minutes portion, which was 

the debugging task in the fadeout phase. The debugging task was significantly differ-

ent from the problem-solving nature of the coding portions, and so we excluded it 

from the current analysis to increase homogeneity. Differences between likelihoods of 

the five significant or marginally significant transitions from Figure 2 were investi-

gated with paired samples t-test (see Table 1). 

Table 1. Means and standard deviations (in parentheses) for common transitions in the 

scaffolding phase (5-25 minutes) and the coding portion of the fadeout phase (30-40 minutes). 

Transition Scaffolding Fadeout Coding N 

Flow/Engagement → Confusion **.115 (.308) **.354 (.432) 20 

Confusion → Flow/Engagement .101(.241) .029(.331) 27 

Confusion → Frustration .105 (.276) .184 (.416) 27 

Frustration → Confusion .047 (.258) .116 (.445) 21 

Boredom → Flow/Engagement .096 (.166) .226 (.356) 14 

*p < .10, **p < .05 

 

The likelihood of participants transitioning from flow/engagement to confusion 

was significantly higher in the fadeout phase compared to the scaffolding phase. This 

may be attributed to the fact that participants have hints and explanations in the scaf-

folding phase, so in the event of a confusing impasse, a hint may be helpful in resolv-

ing the impasse, thereby allowing participants to return to a state of flow/engagement. 

With no such hints, confused participants may become more frustrated in the fadeout 

phase, as evidenced by a trend in this direction. This finding is as expected from the 

theoretical model, which states that confusion can lead to frustration when goals are 

blocked and the student has limited coping potential (e.g. being unable to progress on 

an exercise in this case). 

Although not significant, there also appears to be an increase in the Boredom → 

Flow/Engagement affect transition in the fadeout phase. It is possible that too much 

readily available assistance prevents students from re-engaging on their own. 

Are affective transitions predictive of learning outcomes? To determine what 

affective state transitions were linked to performance on the programming task, we 

correlated the likelihood of affect transitions with the performance metrics described 

in the Methods. In previous work we found correlations between performance and the 

proportions of affective states experienced by students [15]. Hence, when examining 

the correlations between affect transitions and performance, partial correlations were 

used to control for the proportions of the affective states in the transitions. 



Table 2 lists correlations between frequent transitions and performance. These in-

clude correlations between affect transitions in the scaffolding phase with perfor-

mance in the scaffolding phase (Scaffolding column) and transitions in the fadeout 

phase with performance in the fadeout coding phase (Fadeout Coding 1). We also 

correlated transitions in the scaffolding phase with performance in the fadeout coding 

phase (Fadeout Coding 2). This allows us to examine if affect transitions experienced 

during scaffolded learning were related to future performance when learning scaffolds 

were removed. Due to the small sample size, in addition to discussing significant 

correlations, we also consider non-significant correlations approaching 0.2 or larger to 

be meaningful because these might be significant with a bigger sample. These correla-

tions are bolded in the table. 

Table 2. Correlations between affect transitions and performance. 

Transition Scaffolding Fadeout 

Coding 1 

Fadeout 

Coding 2 

Flow/Engagement → Confusion .046 -.094 -.098 

Confusion → Flow/Engagement -.274 -.256 *-.365 

Confusion → Frustration .114 **.499 **.424 

Frustration → Confusion *-.368 .051 -.275 

Boredom → Flow/Engagement -.034 .050 -.063 

*p < .10, **p < .05 

 

The correlations were illuminating in a number of respects. The Confusion → 

Flow/Engagement transition correlated negatively with performance. This is contrary 

to the theoretical model which would predict a positive correlation to the extent that 

confused learners return to a state of flow/engagement by resolving troublesome im-

passes with effortful problem solving. It is possible that students who frequently expe-

rienced this transition were doing so by taking advantages of hints as opposed to re-

solving impasses on their own. This would explain the negative correlation between 

Confusion → Flow/Engagement and performance. 

To investigate this possibility we correlated hint usage in the scaffolding phase 

with the Confusion → Flow/Engagement transition, controlling for the proportion of 

confusion and flow/engagement. The number of hints used in the scaffolding phase 

correlated positively, though not significantly, with the Confusion → 

Flow/Engagement transition in the scaffolding phase (r = .297) and the fadeout cod-

ing phase (r = .282). Additionally, hint usage correlated negatively with score in the 

scaffolding phase (r = -.202) and the fadeout coding phase (r = -.506). This indicates 

that students using hints tended to experience the Confusion → Flow/Engagement 

transition more (as expected) but this hindered rather than helped learning because 

students were not investing the cognitive effort to resolve impasses on their own. 

Similarly, the correlation between Confusion → Frustration and performance is in-

consistent with the theoretical model, which would predict a negative relationship 

between these variables. This unexpected correlation could also be explained on the 

basis of hint usage. Specifically, the number of hints used in the scaffolding phase 



correlated negatively, though not significantly, with the Confusion → Frustration 

transition in the scaffolding phase (r = -.258) and the fadeout coding phase (r = -

.171).  This finding suggests that although hints can alleviate the Confusion → Frus-

tration transition, learning improved when students are able to resolve impasses on 

their own, which is consistent with the theoretical model. 

Finally, the correlation between Frustration → Confusion was in the expected di-

rection. The Frustration → Confusion transition occurs when a student experience 

additional impasses while in the state of frustration. This transition is reflective of 

hopeless confusion, which is expected to be negatively correlated with performance, 

as revealed in the data. 

4 General Discussion 

Previous research has shown that some affective states are conducive to learning in 

the context of computer programming education while others hinder learning. 

Flow/engagement is correlated with higher performance, while confusion and bore-

dom are correlated with poorer performance [10, 15]. Transitions between affective 

states are thus important because they provide insight into how students enter into an 

affective state. Affect-sensitive ITSs for computer programming may be able to use 

this information to better predict affect, intervening when appropriate to encourage 

the flow/engagement state and minimize the incidence of boredom and frustration. 

We found that the presence or absence of instructional scaffolds were related the 

affect transitions experienced by students, especially the Flow/Engagement → Confu-

sion transition. Our findings show that this transition is related to the presence of 

hints, a strategy which might be useful in future affect-sensitive ITS design for com-

puter programming students. Similarly, we found that instructional scaffolds were 

related to the Boredom → Flow/Engagement transition, which is not part of the theo-

retical model. Future work on ITS design might also need to take into account this 

effect and moderate the availability of scaffolds to promote this affect transition. 

The affect transitions that we found partially follow the predictions of the theoreti-

cal model. Impasses commonly arise in computer programming, particularly for nov-

ices, when they encounter learning situations with which they are unfamiliar. New 

programming language keywords, concepts, and error messages present students with 

impasses that must be resolved before the student will be able to continue. Unresolved 

impasses can lead to frustration and eventually boredom. The alignment between the 

theoretical model and the present data demonstrates the model’s applicability and 

predictive power in the context of learning computer programming. 

That being said, not all of the affect transitions we found matched predictions of 

the theoretical model. This includes lack of data to support the predicted Frustration 

→ Boredom and Boredom → Frustration transitions and the presence of an unex-

pected Boredom → Flow/Engagement transition. Limitations with this study are like-

ly responsible for some of these mismatches. The sample size was small, so it is pos-

sible that increased participation in the study might confirm some of these expected 

transitions. In particular, the Boredom → Frustration transition was in the predicted 



direction but not significant in our current sample. Additionally, we exclusively fo-

cused on affect, but ignored the intermediate events that trigger particular affective 

states (e.g., system feedback, hint requests, etc.). We plan to further explore our data 

by incorporating these interaction events as possible triggers for the observed transi-

tions between affective states. This will allow us to more deeply understand why 

some of the predicted transitions did not occur (e.g., Frustration → Boredom) and 

some unexpected transitions did (e.g., Boredom → Flow/Engagement). 

It is also possible that some aspects of the model might need refinement. In par-

ticular there appears to be an important relationship between Confusion → Frustration 

transitions, Confusion → Flow/Engagement transitions, performance, and hint usage. 

While hints may allow students to move past impasses and re-enter a state of 

flow/engagement, they may lead to an illusion of impasse resolution, which is not 

useful for learning. Conversely, resolving impasses without relying on external hints 

might lead a confused learner to momentarily experience frustration, but ultimately 

improve learning. Future work that increases sample size and specificity of the data 

(i.e., simultaneously modeling dynamics of affect and interaction events) will allow 

us to further explore the interaction of hints with the theoretical model, and is ex-

pected to yield a deeper understanding of affect dynamics during complex learning. 
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