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ABSTRACT 
The goal of this paper is to describe methods for automatically 
extracting features for student modeling from educational data, and 
students’ interaction-log data in particular, by training deep neural 
networks with unsupervised training. Several different types of 
autoencoder networks and structures are discussed, including deep 
neural networks, recurrent neural networks, variational 
autoencoders, convolutional neural networks, and asymmetric 
network structures. Autoencoder networks are trained to find low-
dimensional, predictive embeddings of raw interaction-log data. 
These embeddings are then entered into a model as features for 
supervised classification tasks. We discuss the implications for 
training these network structures with educational data, including 
peculiarities that arise for interaction-log data that are not as 
commonly encountered in domains such as computer vision and 
natural language processing. Methods for evaluating the network 
training process are also discussed, with examples showing the 
importance and efficacy of visualizing neuron activations to 
diagnose common problems encountered during training and 
verifying that embedded representations of data follow desired 
distributions. We provide an example of how automatically 
extracted features can be used in a classification problem for the 
detection of student affect. In this example, student boredom was 
detected at levels above chance (area under the receiver operating 
characteristic curve = .673 versus .5 chance). Finally, opportunities 
for future work are discussed, including transfer learning and semi-
supervised methods. 
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1. INTRODUCTION 
Modeling students in computer-based education platforms is 
important for several reasons. A wide variety of educational 
strategies and assessment capabilities are made possible by 
automatic detection of students’ affective, cognitive, and 
behavioral states—such as when a student is bored, engaged, off-
task, or understanding a particular concept [8]. For example, 

software can automatically target interventions when students stop 
paying attention [10], track cognitive workload within a lesson 
[27], predict when a student is going to drop out of a course [39], 
and many more possibilities. 

Toward these goals, researchers have explored machine learning 
methods for student modeling based on data such as interaction logs 
[1, 32], facial features [4, 38], physiology [3, 13], and other 
modalities (see [9, 42] for reviews). Various machine-learned 
models such as Bayesian models [16], support vector machines 
[25], and logistic regression [41] have been employed. Recently, 
deep learning methods (neural networks with multiple non-linear 
hidden layers in their structure) have shown promise for student 
modeling applications [33], and are growing ever more popular in 
the broader machine learning community [17]. Applying deep 
learning methods to educational data is promising for the potential 
to not only improve accuracy but enable new possibilities for 
student modeling similar to the successes seen in other domains. 

Some of these possibilities include automatic feature extraction 
from raw data, learning the structure of time series and other 
sequential data, and more. Deep learning also offers opportunities 
for transfer learning across related domains. For example, neural 
networks trained to detect objects in images can be adapted to 
recognize students’ facial expressions [29]. In this manner, such 
models utilize much of the information learned from recognizing 
objects to avoid the need for millions of instances of labeled facial 
expression data, which are typically difficult to acquire. 

Deep learning approaches thus have much to offer for advancing 
the state of the art in student modeling for educational software. 
However, deep learning methods are still nascent in the education 
domain, and there are some unique challenges that will have to be 
addressed. 

One of the biggest challenges of training deep neural networks is 
that they are very “data hungry”, typically requiring a large number 
of labeled training instances to fit the network parameters. 
However, when modeling student features such as test results, 
course grades, graduation outcomes, and other outcomes it is 
impossible to obtain more than a few data points per student. For 
example, Klingler et al. [21] classified students as having 
developmental dyscalculia or not, which, by definition, results in 
one label per student. Similarly, when modeling student affect, 
cognition, or behavior manual labeling of students is typically 
necessary [24, 31, 38]. In these situations labeled instances are also 
limited to hundreds or thousands of instances rather than the 
hundreds of thousands or millions that are frequently employed for 
training supervised deep networks [17]. 

 

 



Additionally, the most common applications of deep learning (e.g., 
computer vision, natural language processing) deal with 
homogenous data. For example, when recognizing objects in an 
image, the inputs to a neural network are the numeric values of the 
pixels in the image. Each pixel is the same type of data as all the 
other pixels in the image (e.g., a number from 0-255). Each pixel is 
also strongly related to other pixels in its local neighborhood. These 
properties allow for quick development of neural networks that are 
large but made up of many identical connections, with minimal data 
pre-processing required. On the other hand, some types of 
educational data, such as logged interaction behaviors, do not share 
these properties. An interaction log might be made of up columns 
describing timing information in milliseconds, integer counts of 
different actions taken, and proportions of items completed. The 
varied data types make transfer learning across domains all but 
impossible, and different scales necessitate preprocessing to 
prevent large-valued inputs from dominating the network. 

In this paper, we detail strategies for addressing the issue of sparse 
labels in temporally fine-grained educational data via a 
combination of supervised and unsupervised deep learning 
methods. We also propose methods for dealing with the unique 
difficulties of training such models with educational data, and 
interaction-log data in particular. 

This paper is novel in several respects. We offer an overview of 
how to construct several different types of unsupervised neural 
network models for educational interaction data for the first time, 
including fully connected, recurrent, variational, and convolutional 
autoencoder networks. We also introduce a method for improving 
unsupervised representations of interaction data by predicting 
future sequences. The code for training and testing models 
described in this paper is available online 
(https://github.com/pnb/dlwed17). 

2. RELATED WORK 
This section includes brief discussions of research related to deep 
learning in education and autoencoders for deep feature extraction. 
More specialized methods for feature extraction are detailed in the 
methods section. 

2.1 Deep learning in education 
Although deep learning research is not yet well explored for 
educational purposes, there have been a few studies that employed 
it for student modeling. For example, Metallinou et al. [26] trained 
a deep neural network model for speech recognition to improve 
assessment of children learning English. They measured speech 
recognition accuracy with word error rate (WER), where 0% 
implies perfect speech recognition (no errors). Their deep neural 
network model achieved 19.3% WER versus 27.8% WER for a 
more traditional Gaussian mixture model. This research 
demonstrates a fairly straightforward implementation of deep 
learning methodologies for speech recognition [7] adapted to an 
educational environment. 

Piech et al. [33] employed deep learning to improve student 
knowledge tracing compared to traditional methods (Bayesian 
knowledge tracing [6]). They utilized logged sequences of a 
problem identifier and problem correctness as inputs to predict the 
probability of students successfully answering a problem. Area 
under the receiver operating characteristic curve (AUC) served to 
measure prediction accuracy. Chance-level AUC is .5, while .0 
represents completely incorrect classification and 1.0 represents 
perfect classification. The deep knowledge tracing method resulted 
in an impressive AUC = .85 on one dataset, compared to the 

traditional method on the same data resulting in AUC = .68. A 
similar improvement in accuracy was observed on another dataset, 
where the deep learning method resulted in AUC = .86 versus .69 
for the traditional method. However, later research motivated by 
deep knowledge tracing showed that adding additional attributes 
(designed to model unaccounted-for aspects of student knowledge) 
to the traditional Bayesian method improved accuracy to be 
equivalent to the deep learning method [19]. This illustrates one of 
the advantages of the deep learning approach as well, in that 
attributes could be automatically discovered without explicitly 
modeling them (e.g., similarity between exercises and differences 
between students). 

Tang et al. [37] constructed deep neural networks to generate essay 
text with a neural network trained on students’ essays. They also 
predicted future student actions in a sequence from their past 
actions. These results were not better than simply predicting the 
majority class student action, but demonstrates a first effort toward 
integrating student interaction data into a deep learning framework. 
Additionally, the method of predicting future student actions from 
past actions is conceptually similar to autoencoding. 

2.2 Autoencoding neural networks 
Autoencoders are a type of neural network in which the input to the 
network is the same as the output. The network structure can be 
designed so that the center of the network is smaller (represented 
by fewer numbers) than the input. An autoencoder thus learns a 
compact representation of the input, with no need for labels. It is 
thus an unsupervised learning method that can be applied to vast 
amounts of raw data without intractable annotation processes. In a 
seminal study on autoencoders, Hinton et al. [11] showed that 
autoencoders produced compact representations of images that are 
more accurate representations for reconstructing the original 
images than principal components analysis [40], a statistical 
method frequently employed to reduce data dimensionality. 

One of the biggest advantages of autoencoders is that they can be 
adapted to learn different types of patterns based on the domain 
knowledge of experts. Speech recognition research offers an 
example of such adaptation. Maas et al. [23] developed a recurrent 
network architecture, in which neurons are connected through time, 
to model the temporal dependencies that are inherently present in 
audio (i.e. every audio sample is highly related to the one before 
and after it). They then trained autoencoders to remove noise from 
audio by training a network with excess noise added to the input 
(but not the output), so that the network learned to create noise-free 
audio from noisy audio. They found that adding a recurrent 
structure to the deep neural network dramatically improved the 
accuracy of noise-removing autoencoders compared to non-
recurrent network structures (mean squared error decreased from 
47.2% to 30.7% on average across all tasks). 

2.3 Current paper 
Related work involving deep learning in education is limited. The 
current paper describes applications of related work to educational 
interaction-log data. Specifically, we discuss applications of 
different neural network architectures when designing deep 
autoencoders for extracting compact representations of student 
interactions. We then show the efficacy of one such representation 
for detecting student boredom in a simple case study. 

3. AUTOENCODER NETWORK 
STRUCTURES 
The unsupervised deep autoencoder methods that we focus on in 
this paper are primarily intended to extract embedded 



representations (embeddings) that can then serve as features for 
supervised classification. 

3.1 Deep neural networks (DNNs) 
In its simplest form, a deep neural network simply has an input 
layer, multiple hidden layers, and an output layer. The connections 
between neurons in different layers in a simple network are 
typically fully connected, i.e. there are connections between every 
pair of neurons in consecutive layers. This structure has no built-in 
representation of temporal or spatial locality, as every input is 
treated equally and connected with every other neuron with no 
regard for which connections are likely to be meaningful. This 
strategy works well for simple problems, but educational data 
typically has temporal relationships that can be exploited to extract 
more effective embeddings of interaction data. The other network 
structures discussed below are also deep (having multiple hidden 
layers between input and output layers) but have different 
connections and neurons that are designed to exploit specific 
structures in data. 

3.2 Recurrent neural networks (RNNs) 
RNNs are a class of network structure in which the neurons at each 
layer are not only connected to neurons from adjacent layers, but 
also receive the inputs from the same layer at the previous step in a 
sequence (e.g., the moment before in a time series). Figure 1 
illustrates the connections between neurons across steps in 
sequential data. With these connections the network is capable of 
learning patterns that develop over time or some other dimension. 
In the case of interaction-log data, RNNs can be utilized to learn 
sequences that develop over time. For example, an RNN 
autoencoder can learn to encode patterns of a student’s 
correct/incorrect responses to questions, or to recognize sequences 
of repeated hint usage in a learning environment. 

One issue commonly encountered when training RNNs with 
backpropagation is that the error term used to adjust weights has a 
tendency to trend toward zero or infinity quickly due to 
modification from activation functions in the neurons, and thus 
does not allow training over many steps in sequential data. Long 
short-term memory (LSTM) neurons solve this problem by storing 
values in the network and passing them to the next (or previous) 
step in a sequence using no activation function. The absence of an 
activation function across steps in the sequence implies that the 
values are not be modified, and so can be passed on for an arbitrary 
number of steps, thus allowing the network to learn relationships 
across longer sequences [12]. 

 

 
Figure 1. Connections between steps in an RNN 

3.3 Convolutional neural networks (CNNs) 
RNNs are not the only way to capture patterns in sequences, 
however. A CNN is a type of neural network that applies a small 

group of neurons (a filter) across the data for every input sample. 
The neurons thus learn features that are defined by local patterns 
(e.g., an eyeball in an image) but which could occur anywhere in 
the input. Typically, many such filters are applied to the data, and 
initialized randomly so that they eventually learn to detect different 
features. 
As mentioned previously, educational data are frequently 
composed of features that are heterogeneous data types and not 
locally related to other features in the dataset. Thus, applying 
convolution across features makes little sense. However, we can 
apply one-dimensional convolution across time, because each step 
in time series data is semantically the same as the other steps (i.e. 
has the same inputs). A CNN is thus relevant to learning from 
students’ interaction data by finding patterns of interaction that are 
notable but whose position within the sequence of actions is less 
important to capture. This is analogous to a bag of n-grams model 
of natural language processing, where short groups of words in a 
sentence serve as features without capturing exactly where in the 
sentence those groups of words were. 

3.4 Variational autoencoders (VAEs) 
RNNs and CNNs are ways of adapting neural networks to capture 
temporal patterns in educational data, but there are other 
considerations as well. Autoencoders are commonly trained to 
minimize the difference between reconstructed inputs and the 
actual inputs (i.e. reconstruction loss). This may result in highly 
compact, accurate embeddings that represent the raw data well, but 
embeddings can have unpredictable distributions that may not be 
suitable for feeding into supervised classifiers. VAEs address this 
potential issue by not only minimizing the reconstruction loss, but 
also minimizing the difference between distributions of values in 
the embeddings compared to a Gaussian distribution (typically with 
zero mean and unit variance) [20]. The network thus learns to 
compactly represent student data using features that are normally 
distributed, which could theoretically improve the accuracy of 
supervised classification for some classifiers (e.g., Gaussian naïve 
Bayes) that assume data are normally distributed. 

A further possible application of VAEs is for generating new data. 
Since the embeddings are distributed predictably, it is possible to 
synthesize student actions (e.g., student interactions in a system) by 
sampling values from a normal distribution and feeding them into 
the embedding layer in the neural network. We do not explore this 
possibility further in the current paper, but it might be of benefit for 
future research on student simulation. 

Training VAEs can be difficult because of the two-part 
optimization problem. If the distribution component is weighted 
too highly, the network simply learns to predict Gaussian values 
with no regard for reconstructing the input data correctly. A 
common solution to this issue is to “warm up” the optimization 
function by initially optimizing only reconstruction of inputs, and 
then gradually imposing the Gaussian restriction on the embedding 
layer over the course of several epochs (iterations though all the 
training data) [34]. This approach is problematic for training 
autoencoders on educational data with millions of rows of student 
interactions, however. Such a VAE is typically relatively well-fit 
by the end of the first epoch, so the network has already learned a 
non-normal distribution for the embedding layer. Instead, we 
propose that warming up the distribution optimization function 
over the course of the first epoch instead is more effective for such 
educational data. For example, with 1 million rows of training data 
divided into batches of size 100, there are 1M/100 = 10,000 batches 
per training epoch. One might then linearly increase the weight of 
the distribution component of the optimization over the course of 



the first 1,000 batches in the first epoch. This parameter is 
dependent on the specific problem and training rate selected, like 
many neural network parameters. 

3.5 Asymmetric network structures 
Autoencoder structures are typically symmetric, having a similar 
number of layers of similar size both before and after the central 
embedding layer. However, researchers have shown that an 
asymmetric structure leads to more robust embeddings [35]. In the 
case of using autoencoders to extract features for supervised 
classification, the network can be designed with the eventual 
supervised classification task in mind. If a relatively simple 
classifier is to be trained, the embedding should be easily 
interpreted (at least by a machine). Thus, it might be prudent to 
develop a decoder that is less complex than the encoder producing 
the embeddings, ensuring that the embeddings the encoder 
produces can be processed with a simpler function. For example, 
the encoder could be composed of several LSTM layers capable of 
recognizing detailed patterns to extract the embeddings, while the 
decoder might be only a few layers of fully-connected neurons. 
Figure 2 shows an illustration of such a network structure. 

 

 
Figure 2. Asymmetric autoencoder 

The asymmetric structure approach has particular importance for 
educational data where there is a scarcity of labeled data. A 
supervised classifier should find a relatively simple decision 
boundary in such a scenario to minimize over-fitting to the few 
instances of labeled data. Thus, the features extracted from 
autoencoders should also be relatively straightforward to decode, 
so that a simple decision boundary will suffice for classification. 
Asymmetric network structure have the potential to facilitate this 
goal.  

3.6 Predicting future sequences 
Thus far all the network structures we have discussed are designed 
to predict the exact sequence of student interactions that was given 
as input. However, the ultimate goal of these unsupervised models 
is not to simply compress the input, but to find a representation that 
can effectively be utilized as features for supervised classification. 
To this end, we propose neural networks that predict future steps in 
the sequence of student interaction data, rather than simply 
representing the current actions (Figure 3). In this design, the 
network learns to predict something new, rather than simply 
learning a complicated identity function. The training process is 
still unsupervised, since the network requires only data from the 
raw interaction log, yet learns features from the data that are 
predictive in nature. 

 

 
Figure 3. Autoencoding present vs. future interaction 

sequences 

4. MONITORING NETWORK TRAINING 
Neural networks are essentially black boxes that rarely offer 
interpretability. It can therefore be difficult to determine when a 
network is learning, if it is learning something useful, where 
training might be going wrong, and if so how to fix it. In this 
section, we discuss two common methods for monitoring the 
training process, and how they relate to educational data. 

4.1 Training loss 
The most basic measure of learning in a neural network is the 
training loss. The loss simply measures the difference between a 
network’s outputs and the desired (ground truth) values. For 
autoencoders the measure of loss is often mean squared error, 
which offers relatively straightforward interpretation of network fit. 
However, one must be cautious when evaluating an autoencoder 
from a single number. The loss can decrease as a network is trained, 
indicating learning, but without producing meaningful embeddings. 
For example, as discussed earlier a VAE can find a local minimum 
in the loss function by generating Gaussian embeddings that don’t 
represent students’ interactions at all. An autoencoder trained with 
time spent per problem and score on a problem could learn to 
predict the mean time spent and mean score, thus decreasing loss 
from an original random state but without learning any meaningful 
embeddings that might be predictive in supervised classification. 
Therefore, while it is important to verify that the loss is decreasing 
during training (so the network is learning something), one must 
delve deeper to find real issues. 

4.2 Visualizing network activations 
Since we are using a hidden layer of the unsupervised networks as 
features (the embeddings) for a layer supervised learning task, it is 
especially important that the features learned by the deep network 
are suitably distributed. Embeddings are unlikely to be effective 
features if they are made up of neurons that are not properly trained, 
or have activations violating the distribution assumptions of the 
supervised classification methods to be employed. One important 
method for assessing the hidden layers of trained neural networks 
is visualization of some aspects of the neurons (e.g., weights, 
activations, or other properties). 

In computer vision applications of neural networks it is common to 
visualize the weights of a convolution filter and find, for example, 
that the weights strongly resemble a rotated edge detector. Due to 
the nature of interaction-log data, such interpretations are not so 
readily available. We propose instead to randomly sample 
sequences of students’ interaction data, feed these sequences into 



the autoencoder, and construct histograms of the activations of 
individual neurons. For the purposes of this paper, we randomly 
sampled 1280 instances. For autoencoder layers with more than 15 
neurons, an additional visualization was created with 15 neurons 
chosen from uniformly distributed positions within the layer to 
form a representative sample for easier visualization. Full 
visualizations were not made for layers with more than 160 neurons 
as these produced intractably large images. 

Using this method, we were able to identify and troubleshoot 
several problems with autoencoders trained on students’ interaction 
data. Figure 4 shows activations from the embedded layer with 
three neurons in an example autoencoder. We used rectified linear 
unit (ReLU) activation in all layers of this example network except 
the output [28]. One issue with ReLU activation is that neurons can 
become stuck outputting zero [22]. The network we trained 
originally learned to only predict the mean of interaction inputs. 
The embedding layer represented in the top row of Figure 4 shows 
that all neurons appear to be in the stuck state, instead of displaying 
output values distributed across a range of different numbers. Other 
layers in this network reflected many stuck neurons as well. 

We first addressed this by lowering the learning rate to reduce the 
incidence of stuck neurons, though at the expense of requiring more 
time to train the network. The second row of Figure 4 shows that 
this strategy did fix two of the neurons in the embedding. Finally, 
we changed the activation functions from ReLU to exponential 
linear units (ELUs), which are specifically designed to avoid the 
problem of stuck neurons frequently encountered with ReLU 
activation [5]. As seen in the bottom row of Figure 4, this resulted 
in all neurons in the embedding layer having some non-zero 
activations. Visual examination of the histograms from other layers 
revealed no stuck neurons. 

 

 
Figure 4. Histograms of neuron activations for an embedded 

layer and two strategies for fixing stuck neurons 
Examination of neuron activations can also be helpful for verifying 
that a VAE is learning embeddings with a normal distribution. We 
enforced a normal distribution on the embedding layer in the 
previous example to construct a VAE, and visualized the 
embedding again. Figure 5 illustrates the activations of neurons in 
the activation layer in this VAE. The activations are now clearly far 

more normally distributed than before. This does not necessarily 
mean the VAE embedding will be more effective for feature 
extraction, but the visualization does show that the desired 
distribution is being achieved. Similarly, visualizations can be 
examined to determine whether operations such as batch 
normalization [14] are needed to shift the activations of layers to 
improve training. 

 

 
Figure 5. VAE embeddings showing activations following a 

(more) normal distribution 

5. SUPERVISED LEARNING EXAMPLE 
In this section we show a short example utilizing features from 
embeddings extracted with an autoencoder to detect student 
boredom. This is a simple and preliminary example, but 
demonstrates the potential of this method for future work. 

5.1 Dataset 
The data in this example come from student interactions with a 
computer-based learning environment called Betty’s Brain [2]. 
Students interact with Betty’s Brain by graphically constructing a 
causal map of concepts for a topic. This map becomes the “brain” 
of a virtual student (Betty), who then answers questions and takes 
quizzes. A student using the software thus assumes the role of 
virtual teacher, and learns by reading about a topic and then 
teaching it to Betty. 

There were 94 students represented in these data. A total of almost 
250,000 events were logged, providing a great deal of raw 
interaction data from which patterns may be learned with 
unsupervised methods. There were over 5,000 affect labels 
associated with these interactions. Affect labels were obtained via 
the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP) 
[31], in which expert observers annotate student affect in real-time. 

We focus on detecting student boredom, based on previous research 
in other learning environments showing that boredom could be 
detected with only a few features [18], thus making a 
straightforward comparison between manually-engineered high-
level features and features automatically extracted with an 
autoencoder. 

5.2 Extracting features 
Features were extracted from 20-second windows of data leading 
up to each boredom label. Features were derived from three sources 
of information: the number of total interaction events, the number 
of times the student viewed the causal map section of the interface, 
and the number of times the student viewed one of the instructional 
materials pages (e.g., textbook). For the sake of comparison we 
developed an autoencoder with the same three sources of 
information, but without processing them into high-level features. 
Instead we aggregated actions at the 1-second level. 

The autoencoder was trained with 20-second sequences of the 1-
second data. We used 15 seconds of data as input and trained the 
autoencoder to predict the last 5 seconds of each sequence. Thus 
there were 3x15 = 45 inputs and 3x5 = 15 outputs. The network 
structure consisted of: LSTM (64 outputs) à LSTM (40) à Fully-
connected embedding (3) à Fully-connected (8) à Fully-
connected (16) à Fully-connected (15). We used 80% of the 



unlabeled data to train the network, and 20% as validation data to 
monitor training progress. The resulting embeddings are those that 
can be seen in the third row of Figure 4. 

The traditional features (i.e. manually designed by experts) 
extracted for comparison were built by averaging the values of the 
three features across the 20-second sequence. 

5.3 Supervised classification 
We applied three classifiers for supervised classification, Gaussian 
naïve Bayes, logistic regression, and decision trees. Four-fold 
cross-validation was performed with different students in each fold 
to ensure generalization of classification results across students 
within the dataset. 

We classified boredom vs. all other affective states in the dataset. 
Boredom consisted of only 4.5% of the labels. Classification 
accuracy was measured with AUC, since it is appropriate for 
datasets such as this one with imbalanced class distributions [15]. 

5.4 Results 
The best model built using the traditional feature extraction method 
had AUC = .631, while the best model using automatic feature 
extraction method had AUC = .673. Both models were better than 
chance level (AUC = .5). Most notably, the model built with 
features extracted using the autoencoder method was better than the 
traditional feature method using the same raw data. 

We also investigated the advantage afforded by predicting future 
sequences (see section 3.6). Without incorporating this method into 
the network structure for feature extraction, the best supervised 
model using autoencoder embedding features was less accurate 
(AUC = .643 vs. AUC = .673). 

6. CONCLUSIONS 
We were interested in outlining methods for applying deep learning 
for automatic feature extraction in educational data. Toward this 
goal, we detailed several different autoencoder network structures 
that can be trained with educational data, and students’ interaction-
log data in particular. 

There are several ways in which training autoencoders can go 
wrong, including stuck neurons, networks that only predict the 
mean of the data, and learned embeddings that are not effective for 
supervised classification methods. We described methods for 
tweaking autoencoder structures and training to extract predictive 
features (section 3.6), and visualization methods to inspect neuron 
activations in trained networks (section 4.2). These methods 
allowed us to diagnose issues with an example neural network, and 
eventually to improve on supervised classification accuracy 
compared to traditional feature extraction methods. 

6.1 Limitations and future work 
This work is not without its limitations. The results in our example 
boredom detection did not greatly exceed chance levels 
(AUC = .673 versus .5 chance level). This is a difficult 
classification task, however, given that there was an imbalance of 
instances of boredom (4.5%). However, even if there is little 
improvement in accuracy, there is a great deal of potential for future 
work with this method in terms of transfer learning. In particular, 
interaction-log affect detectors have been shown to generalize 
poorly across populations [30]. Training a new affect detector on 
each new dataset is cost- and time- prohibitive, because of the large 
amount of manual labor required to collect affect labels. Using 
automatic feature extraction methods, we can train an autoencoder 
on a combination of existing data and data from a new population. 
In this way, the learned features should be representative of both 

populations. The existing labels from one population can then be 
applied to train a new supervised model with the features that are 
representative of both populations, in hopes that the resulting model 
will generalize better across both populations. 

An additional limitation of this work is the fully separated 
unsupervised and supervised phases of the training process. This 
limits the ability of the neural networks to learn features that are 
directly related to the supervised classification goals. Instead, semi-
supervised methods, in which the network learns from labeled and 
unlabeled data at the same time, might be a better strategy. For 
example, adversarial autoencoders have shown to be effective for 
image classification with few labels and many unlabeled instances 
[36]. 

It is our hope that this line of research will lead to improved student 
modeling in computerized educational environments. In particular, 
there is still a need for scalable student modeling methods that 
generalize to new populations so that educational software can 
reliably assess and adapt to students’ affect, cognition, and 
behavior. 
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