Novice Reflections During the Transition to a New
Programming Language

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

James Prather
Abilene Christian University
Abilene, Texas, USA
james.prather@acu.edu

ABSTRACT

As computing students progress through their studies they become
proficient with multiple programming languages. Prior work in-
vestigating language transitions for novices has tended to analyze
program artifacts rather than explore the benefits and difficulties as
perceived by students in their own words, and has often overlooked
problems that may arise in switching paradigms or where familiar
syntax has a different meaning in the new language. In this paper,
we ask students to reflect on the transition from an interpreted
language and environment (MATLAB) to a compiled language (C),
prompting comments on the aspects of learning the new language
that they found both easier and harder. Analysis of over 70,000
words written by 771 students revealed that the highest-performing
students expressed more negative sentiments towards the language
transition — a surprising result that we hypothesize is explained
by their generally stronger metacognitive skills. We also report
the most common difficulties described by students, which include
challenges with syntax, error messages, and the process of compi-
lation, and suggest teaching practices that might help students as
they transition to a new programming language.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS

language transition, programming, sentiment, metacognition

ACM Reference Format:

Paul Denny, Brett A. Becker, Nigel Bosch, James Prather, Brent Reeves,
and Jacqueline Whalley. 2022. Novice Reflections During the Transition to
a New Programming Language. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2022), March 3—
5, 2022, Providence, RI, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3478431.3499314

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2022, March 3-5, 2022, Providence, RI, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9070-5/22/03.

https://doi.org/10.1145/3478431.3499314

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Brent Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

Nigel Bosch
University of Illinois
Urbana—-Champaign, Illinois, USA
pnb@illinois.edu

Jacqueline Whalley
Auckland University of Technology
Auckland, New Zealand
jacqueline.whalley@aut.ac.nz

1 INTRODUCTION

Over the course of a typical undergraduate computing degree,
students take a variety of courses in which they are expected to
write programs in multiple different languages. Computing stu-
dents therefore transition from one language to another several
times during the course of their studies, each time building on
the knowledge and concepts they have developed in earlier lan-
guages. Some students may view these transitions positively, as
building competence in multiple languages contributes to their
growing identity as computing professionals [30]. Other students
may take a more negative view, finding the transitions difficult
and bothersome, preferring to rely on their existing and familiar
programming knowledge. Understanding how students perceive
learning new languages is important, given the strong connections
between emotion, self-efficacy and performance [15, 20, 25].

Although conventional wisdom states that learning a new pro-
gramming language is easier after a first language is mastered [41],
in practice such learning transfer may not be straightforward. When
two languages use the same syntax for a particular concept, but have
different semantics, this can interfere with learning [39]. Transition-
ing from a block-based to a text-based environment involves unique
challenges [28], and demands appropriate support, compared to
transitioning between procedural or object-oriented languages [29].
Explicit instruction supporting the learning of a new language
can be effective, but requires a good understanding of the difficul-
ties that students encounter for their particular language transi-
tion [17, 40]. Much of the prior work exploring these challenges has
derived insights from programming artifacts or researcher-created
instruments, rather than from the student voice.

In this work, we explore how students perceive the transition
from an interpreted language (MATLAB) to a compiled language
(C), and what difficulties they encounter. We seek to answer:

RQ1. What barriers do novice programmers face when beginning
the transition to a new programming language?

RQ2. To what extent do novice programmers enjoy or dislike learn-
ing a new programming language, and how does this senti-
ment relate to their performance?

2 RELATED WORK

The process of learning an additional programming language has
been a topic of interest in the computing education community for

https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0003-2736-2899
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0001-5781-1136
https://orcid.org/0000-0001-7633-5200
https://doi.org/10.1145/3478431.3499314
https://doi.org/10.1145/3478431.3499314
https://doi.org/10.1145/3478431.3499314

decades. In 1970, researchers and teachers were already thinking
about which language was best as a first language to make learn-
ing additional languages easier [23]. By 1990, it was well known
that both novices and seasoned professionals can struggle with
the transfer of knowledge from one language to another [35, 36].
Even moving from the procedural to the object-oriented version of
the same language can be difficult [29]. Recent data-mining from
resources like StackOverflow show that this is still a concern [37].

Transfer from block-based languages. A popular move in linguis-
tic transfer of programming languages is to first use block-based
languages like Alice or Scratch to teach concepts that can then
be transferred. Students who first learn block-based programming
often need less time to learn concepts in new languages [2]. How-
ever, there is evidence that this transfer should be explicitly taught.
Powers et al. found students struggled to switch from Alice to a text-
based language without support [31], whereas a specific pedagogy
for the transfer developed by Dann et al. proved successful [8].

Yet block-based environments are not without their shortcom-
ings. Moors et al. discuss their significant weaknesses as a way of
transitioning into text-based languages, such as their focus on ani-
mation and multimedia that is typically lacking in their text-based
counterparts [28]. Weintrop and Wilensky found no automatic bene-
fit in starting with a block-based language and then transitioning to
a text-based one [42]. They argue that there is a need for educators
and tool designers to work to help facilitate this transition.

Tools to help mediate the transition. Researchers and teachers have
been creating tools to help students move from one language to the
next for decades. In 1996, Fix and Wiedenbeck presented ADAPT, a
tool which helped students who already knew one language transi-
tion to Ada [13]. More recently, Hundhausen et al. found a positive
transfer effect with their tool, ALVIS Live, in which users fill in
dialog boxes and directly manipulate program data [19]. Holvitie et
al. built VILLE to assist students transitioning from Python to Java
[17], reporting that student outcomes improved when it was used.
Still others have shared their tools without empirical evidence, but
report student experiences were positive [21, 22], or had inconclu-
sive results [7]. Overall these reports seem to indicate that students
who have learned a first language may benefit from some kind of
assistance, either through a tool or from a teacher, when applying
what they have learned to a new language.

Metacognition and learning a second programming language. Most
studies to date have not been deeply theoretically motivated and
those that have focus on theories such as mediated learning [8].
Very recent work has sought to understand this process from the
perspective of natural language acquisition [39, 40]. In this paper,
we utilize Winne & Hadwin’s model of self-regulated learning, a
theory of metacognition, as an explanatory model that makes sense
of previous work as well as the results of our own study [43]. Recent
work has shown an increased interest in utilizing metacognitive
theory in computing education [32]. To our knowledge, this is
the first study in computing education to utilize this particular
metacognitive model.

Winne & Hadwin’s model is useful here because it splits Ban-
dura’s [3] forethought phase into two parts: task definition and goal

setting/planning [43]. The other two phases are enacting strate-
gies and metacognitive adaptation (i.e. self-reflection). This model
treats information from internal and external sources as a feedback
loop between the current state and the goal state [32]. Each phase
includes five components: conditions, operations, products, evalua-
tions, and standards. Learning a new programming language fits
into this model quite well and can explain much of the learning
difficulties presented by prior research.

Previous work has shown that even experienced programmers
need help in adapting their high-level plans (i.e. goal setting) to
the new language [36]. Those who are only familiar with a single
programming paradigm sometimes draw incorrect parallels (i.e.
task setting) when trying to transfer what they know to a different
paradigm, such as procedural to OO [29]. Even within the same par-
adigm, programmers make failed attempts to relate a new language
with what they already know, mixing up syntax and concepts [37].

Walker and Schach found that students learning Ada as their
second language primarily exhibited two types of undesirable be-
havior [41]. The first was using non-Ada constructs instead of
learning how to use the features of Ada, i.e. students were pro-
gramming in Ada as if it were the language with which they were
already familiar. This would mean they weren’t understanding the
underlying constructs of the language and therefore could not take
advantage of its unique features. In Winne & Hadwin’s model,
this would fall into a failure of enacting the correct strategies. The
second undesirable behavior the researchers noted was that stu-
dents would attempt to use Ada constructs, but then when those
didn’t work as expected the students would remove them and fall
back on non-Ada-specific (i.e. generic) constructs. This would mean
students identified the correct goal, enacted the correct strategies,
but short-circuited the feedback loop with incorrect metacognitive
adaptation when comparing their own evaluation to the standard.

We believe that a theory of metacognition is best equipped to
explain why students struggle with learning a new programming
language and to help us better understand these difficulties.

3 METHODS

In this study, we explore the written reflections of first-year en-
gineering students at the University of Auckland, a large public
research university in New Zealand. All engineering students at this
institution take a compulsory introductory programming course
which covers two languages, MATLAB and C, taught in consecutive
6-week modules. In 2020, when we conducted this study, 1,030 stu-
dents were enrolled in the course. Students were invited to respond
to an ungraded prompt during the first week of the second module,
at which time they were switching to the C programming language.
The data we present here is based on the reflections provided by
771 students who responded to this prompt.

3.1 Course context & data

3.1.1 MATLAB. The first module of the course introduces students
to MATLAB, which offers a fully-featured integrated development
environment. MATLAB is dynamically typed, such that the pro-
grammer does not explicitly define types for variables, and is an
interpreted language as scripts are executed within the MATLAB
environment without a compilation step. In the first module of the

course, students learn concepts typical of a CS1 course including
variables, arithmetic, arrays (vectors), functions, flow of control
and basic algorithms, and MATLAB-specific topics such as 2D and
3D plotting and standard matrix operations.

3.1.2 C. After completing the MATLAB programming module,
and after a two-week mid-semester break, students are introduced
to the C programming language. In comparison to MATLAB, C is
statically typed as variable types are specified by the programmer
and checked by the compiler prior to execution. In the later weeks of
this module students are introduced to an integrated environment
(Microsoft’s Visual Studio). However during the first week of the
transition — when students wrote their reflections for this study
— they edited their source code using a text-editor and compiled
using command-line tools.

3.1.3 Reflective prompt. During the first week of the C program-
ming module, students were invited to respond to a prompt that
asked them to reflect on their experience transitioning from MAT-
LAB to C. The full wording of the prompt is shown in Figure 1.
Responding to the prompt was an optional, ungraded task.

3.1.4 Performance data. Graded activities in the course include
weekly labs, one programming project and one test for each module,
and a final exam. As a result of on-campus restrictions during
2020, only two assessments were held in-person and invigilated
(proctored). These two invigilated assessments were the test for the
C module and the final exam. Our interest is understanding how
student perceptions of the transition to the C language relate to
their subsequent performance in the C module of the course. To
measure performance in the C module, we combine the weekly lab
scores, the programming project, and the invigilated test and exam
scores for this module. The invigilated scores are weighted more
highly, consistent with the grading approach used in the course.

You have been learning MATLAB for 6 weeks now, and have just begun
to learn the C programming language. You will notice some things are
different, and some are similar. You may find it easier to learn another
language, given that you already understand basic programming princi-
ples, or you may find it harder because some things work differently to
what you are used to. Everyone will experience this differently.

Write a short reflective piece (anywhere from several sentences to several
paragraphs) in your own words, that describes how you have found this
transition to learning a new language. What are you finding easier, and
what are you finding harder about learning C compared to MATLAB?

Figure 1: Reflective prompt shown to students.

3.2 Thematic analysis

The student responses were analyzed using a grounded theory ap-
proach [14]. One author independently performed an open coding
of 119 student responses until saturation was reached, at which
point no new codes emerged from the data. Responses were ex-
amined in a random order during this initial phase. Two different
authors then coded a small random subset (30) of these responses
using the codebook produced by the initial author. The three au-
thors then met to discuss the coding, and finalise the descriptors

and examples associated with each code. Although our main in-
terest, with respect to RQ1, was to understand the difficulties that
students faced during the transition, students were prompted to
comment on all aspects of the transition and our thematic analysis
captured both positive and negative statements.

The final version of the codebook consisted of 22 codes, which
were organised into four categories: ‘difficulty’, ‘prior knowledge’,
‘language aspects’ and ‘tools/environment’. A total of nine codes
captured responses about the relative difficulty of the MATLAB
and C languages, and students’ perceptions of the transition. Three
codes were used to classify statements regarding the benefits and
drawbacks of prior knowledge, and any languages explicitly men-
tioned for which students had prior experience were recorded. Six
codes captured language aspects, including similarities and differ-
ences in syntax and conceptual understanding, as well as statements
about the transition to a statically typed and compiled language. Fi-
nally, four codes were used to classify responses relating to setting
up tools and changing to a new programming environment.

Once the codebook was finalised, all three authors independently
coded 146 randomly selected student responses (representing 20%
of the dataset). In all cases where one coder differed from the other
two, they reviewed their decision to ensure it was not the result of
a data entry error or trivial oversight. After elimination of trivial
errors the raters achieved 84% unanimous agreement across all
535 codes assigned to the 146 statements, yielding a Bray—Curtis
dissimilarity score ranging from 0.03 to 0.04 for all rater-pairs. Final
consensus was then achieved when two or three raters agreed on a
code, resulting in a total of 477 codes assigned across all 146 student
responses. The most commonly occurring individual codes were
identified, and an axial coding step involving a discussion between
all three coders was used to make connections between codes and
identify the primary themes which we report in Section 4.1.

3.3 Sentiment analysis

To measure the sentiment of the students’ reflections, we used a
deep learning model for sentiment analysis that is provided as part
of the Stanford CoreNLP natural language processing library [26].
The provided model has been trained on the Stanford Sentiment
Treebank, a corpus of fully labelled parse trees extracted from movie
reviews and consisting of more than 200,000 unique phrases [38].
The code and documented examples of use are available on the
Stanford NLP website!.

The model takes, as input, a section of text and classifies each
sentence in the text as having either a negative, neutral or positive
tone. To illustrate, a three-sentence reflection provided by one of
the students in our study was classified by the model as follows:

e Sentence 1: “Similar things are the basics such as inputting
variables and using different math functions to solve them” =>
Neutral

e Sentence 2: “However, the syntax is quite different in how you
would write the code, so that may take a bit of getting used to
I believe” => Negative

e Sentence 3: “Even though this has just started, I'm quite enjoy-
ing learning a new language and expanding my language pool,
so I'm excited to see what else we will learn!” => Positive

!https://nlp.stanford.edu/sentiment/code.html

For a given student, the sentiment analysis produces the number
of sentences in the response they provided that had a positive,
neutral and negative tone. The overall sentiment for a student was
computed as the number of negative statements subtracted from
the number of positive statements. In the example shown above, the
student has expressed an overall sentiment of 0 (with one positive
and one negative classified statement). Our hypothesis was that a
positive relationship would exist between overall sentiment and
subsequent performance. That is, students who provided reflections
using more positively toned statements would be more likely to
achieve higher scores in the C module.

3.4 Metacognitive analysis

An NLP method was used to measure metacognition in the student
reflections, because sentiment alone has a complex relationship
with learning. In some cases, negative sentiment can be positively
related to learning especially where students experience challenges
that they are able to overcome or desirable difficulties [5]. Con-
versely, difficulties that are not resolved may negatively impact
learning [11].

The NLP method we applied [6, 18] detects metacognitive phrases
that start with a first-person pronoun (e.g., I, me), end with a
metacognitive indicator word (e.g., know, thought), and may have
additional words between the two. For example, in Sentence 2
above, which was flagged by the sentiment analysis as negative,
the metacognition detection method flagged the phrase T believe”
as metacognitive.

4 RESULTS & DISCUSSION

Our findings are organised in two sections. The first section, which
addresses RQ1, presents the results of our thematic analysis involv-
ing approximately 20% of the reflection statements in our dataset.
We primarily focus on the difficulties described, as these may sug-
gest areas in which we can provide better support to students in the
future. We also report the main themes that reflect positive feed-
back from the students. The second section, which addresses RQ2,
explores the sentiment and use of metacognitive phrases in student
responses and investigates how this relates to their subsequent
performance in the course when using the new language.

Table 1: The five most frequent codes corresponding to diffi-
culties faced by students transitioning from MATLAB to C.

% Code Descriptor (abridged)

31.5 Syntax_Differences explicit mention of different syntax
24.7 Type_System difficulty with typing / variable types
18.5 Interpreted/Compiled manual compilation and execution

17.8 IDE/Environment challenges related to new environment
13.0 Errors/Debugging problematic error messages, debugging

4.1 Themes emerging from reflections

Recall that students were asked to describe their experience of the
transition, and were explicitly prompted to state what they were
finding easier and harder about learning the new language. Half of
the students (51%) made some mention of the fact that having prior

knowledge of programming helped in their transition. This was, in
fact, the most frequently coded type of statement in the dataset,
across all 22 codes that were used. For most students, their prior
experience with MATLAB was implicit in this type of response,
however around 15% of the responses in our sample explicitly listed
other languages. Searching for any occurrence of languages listed in
the full dataset of 771 responses, students indicated prior experience
with Python (70), C++ (20), Scratch (10), and Javascript and HTML
(both with 9 mentions).

We now present the main challenges that students wrote about
in their reflections. Table 1 lists the five most frequent codes that
correspond to difficulties encountered during the transition. The
frequency of each code is given, alongside the descriptor (which is
abridged for space reasons).

4.1.1 Syntax challenges. Differences in the syntax between MAT-
LAB and C were mentioned by one-third of the students (31.5%),
making it the most frequently cited challenge. Familiarity with
syntax is developed through practice over time, and this may be a
particular challenge in courses where students are expected to learn
two languages during a single term. Statements representative of
the challenge of transitioning to the new syntax include:

o “The difficult part for me is getting used to the new C language
and syntax.”

o ‘Tt will take a bit of time to get used to adding semicolons at
the end of every line, as well as some of the other little things
that need to be added”

Difficulty with syntax is a widely known challenge for novice
programmers [1, 9, 34], and we find evidence here that it remains a
major hurdle for students when learning a subsequent language.
Deliberate practice of syntax may therefore be beneficial for some
students, and has been the focus of recent work [24]. For example,
Edwards et al. found that over a period of five weeks, as little as 25
minutes per week of syntax practice resulted in higher exam scores
and lower course attrition rates [12].

4.1.2 Static typing and the compilation process. The next two most
common difficulties were related to the transition to a compiled lan-
guage, and in particular the static type checking that is performed
by the C compiler. More than 40% of students mentioned difficulties
relating to either types or the process of compilation. In contrast
to MATLAB’s dynamic typing, students found the need to declare
variable types in C particularly problematic.

o “The variable system feels overly complicated compared to
MATLAB”

o ‘I think the hardest part is to identify and classify the type of
variables. Compare with MATLAB, the type of variable create
many unnecessary trouble”

When writing their reflections, during the first week of learning
C, the benefits of static typing may not have been clear to students
given the relatively simple, and short, programs they were writing at
the time. For larger software systems, there is compelling empirical
evidence that static type checking improves maintainability and
debugging time [16]. Indeed, the few students who had entered
the course with prior experience using statically typed languages
preferred static type checking and explicitly noted the benefits:

o ‘Iprefer C to MATLAB because of the static typing system that
I am accustomed to from learning C++ and other statically
typed languages. I disliked MATLABs approach as it can be
harder to find bugs and MATLAB will generally try and make
things work, often resulting in it doing something unintended.”

e ‘Talready knew C before taking the course, so it’s been much
more straightforward for me than MATLAB. I prefer the more
structured nature of C, with explicit declarations and compile
time checking for typos in variable names and type checking.”

Using a command-line compiler was also a challenge for many
students. They noted the additional burden of having to manually
compile their programs before execution.

o “For C, needing to compile the code and then executing it in
Developer Command Prompt is a lot more time consuming
than being able to run the code straight away like MATLAB”

o “The thing I found most difficult was getting the hang of the
command prompt in order to compile, as previously the soft-
ware would automatically compile for me”

4.1.3 Debugging and error messages. The difficulty of locating and
fixing bugs was a common challenge. This appeared to be a com-
bination of the cryptic and unhelpful messages produced by the
C compiler, as well as observations that the MATLAB environ-
ment provided more accurate information regarding the location
of errors.

e “learning C is definitely more difficult as it is much harder
to find errors as opposed to MATLAB which provides detailed
information on where your code is wrong”

e “The only difficulty i’ve had is reading and understanding error
messages”

Again, there is much prior literature documenting the challenges
faced by novices in understanding compiler error messages [4]. In
our case, the problem may have been exacerbated by the more
pleasant experience students had when working in the MATLAB
environment. Certainly, locating an error in a source file using the
feedback from a command line compiler is less straightforward
than having the line automatically highlighted in the environment.
Students may have reported fewer difficulties with error messages
and debugging had the language transition been in the opposite
direction, from C to MATLAB.

Providing direct instruction to help students become familiar
with the new error messages may be helpful, and could be combined
with the syntax practice activities recommended earlier. In situa-
tions where students are using online programming tools, another
approach may be to adapt the presentation of error messages as fa-
miliarity develops - that is, present more understandable messages
earlier, and remove this scaffolding over time. Such approaches to
error message enhancement have proven effective in practice [10].

4.1.4 The benefits of prior knowledge. Despite the many challenges
students reported in transitioning to C, and the fact that many
more students stated learning C (32%) was harder than learning
MATLAB (8.2%), in general they were overwhelmingly positive
towards the benefits that prior programming knowledge offered
in easing the transition. More than half of the student responses
explicitly stated that having prior knowledge helped (51%), whereas

very few stated that this prior knowledge hindered their learning
of the new language (2.1%).

e ‘Tam finding C slightly easier (so far) compared to Matlab
since I am more familiar with the key principles whereas for
MATLAB everything was completely new”

o ‘T have found the transition relatively easy now understanding
some basic programming principles.”

The prevalance of this code may have been influenced by the
wording of the prompt (see Figure 1) which included both a positive
and negative example of how prior knowledge may help or hinder.
In addition, students were asked to write their reflections during
the first week of learning C, at which point they had encountered
only a small subset of the syntax and concepts taught in the 6-week
module. Many of the initial topics - such as assignment to variables
and arithmetic — use a similar syntax and thus may provide few
conceptual challenges following the 6 week MATLAB module. Prior
experience is more problematic when the same syntax has different
semantics in the two languages — what Tshukudu et al. refer to
as ‘false carryover constructs’ [39]. It is possible that students in
our course may have had a different view of their prior knowledge
once they encountered such constructs. An example is C’s 0-based
indexing, which differs from MATLAB’s 1-based indexing, and is
known to contribute to the high frequency of off-by-one errors
encountered by novices in introductory courses [27, 33].

4.2 Sentiment, metacognition & performance

We expected that students who wrote more positively toned state-
ments in response to the language transition prompt would be more
likely to perform well in the subsequent course activities that used
the new language. For the purpose of our analysis, we organise
students into quartiles by defining score ranges that divide the
students into four groups that are as evenly-sized as possible. Table
2 shows the score ranges for each quartile along with the length of
the responses produced by all students in a quartile, and the results
of the sentiment and metacognitive analyses.

Table 2: The total length (in characters) of written responses,
the number of positive (Pos), neutral (Neu) and negative
(Neg) statements and the number of metacognitive (MC)
statements, organised by quartile (Q).

Q n Scores Length Pos Neu Neg MC
01 191 93.0-100.0 106,396 188 242 337 299
Q2 190 86.4-92.9 87,737 185 211 269 249
Q3 192 75.2-86.3 82,794 176 236 272 246

04 198 0-75.1 73,102 160 202 210 259

Total 771 - 350,029 709 891 1088 1053

Higher performing students tended to write longer responses
and were more inclined to write negatively toned sentences. For
example, the average overall sentiment (computed as the difference
between the number of positive and negative statements) for stu-
dents in the highest performing quartile, Q1, is -0.78 compared to
-0.25 for students in Q4. To better illustrate this, Figure 2 shows the

0.3

: Quartile
N o
[e
a3
i l a4
0.0 -
3 2 4 0 1 2 3

(or more negative)

=3
[N

Proportion of quartile

o

Overall neutral
Overall Sentiment (Positive — Negative)

(or more positive)

Figure 2: Overall sentiment of responses by quartile (num-
ber of positively toned minus number of negatively toned
statements). Each bar denotes proportion of students in
quartile giving a response with corresponding sentiment.

distribution of overall sentiment broken down by quartile (propor-
tions are plotted, so for each quartile bar heights sum to 1). The
leftmost set of four bars represents the students with the most neg-
ative overall sentiment (-3 or more), and these students were much
more likely to perform well in the course (13% of Q1 are in this
group compared to less than 3% of Q4). To interpret this finding,
we consider that the ability to identify and verbalise difficulties
and anticipate future challenges demonstrates higher self-reflective
capability — metacognitive adaptation within the self-regulated
learning model of Winne & Hadwin [43] — and is thus a positive
predictor of future performance.

We find additional support for this interpretation as the highest
performing students tended to write more metacognitive statements
than the lowest performing students (299 statements for Q1 versus
259 for Q4; Table 2). However, the differences here are small, and it
must be noted that the automated metacognitive classification is
sensitive to the specific phrasing that students use.

In Section 4.1 we reported the main themes emerging from all
student reflections. We observe an interesting trend when addition-
ally taking into account subsequent performance in the C module.
The second most frequent type of statement coded in our thematic
analysis (36%) involved students indicating that they found the tran-
sition straightforward, simple or ‘OK’ (or other synonymous terms).
The lower performing students in the course were much more likely
to have made such a statement. Across the four performance quar-
tiles, decreasing in performance from Q1 to Q4, the proportion of
students who made a statement classified in this way was: 29%, 36%,
39%, 48%. This trend — a negative correlation between the perceived
ease of the transition and subsequent performance — appears to
mirror that seen in our automated sentiment analysis.

Finally, the representative quotes provided above fit well into
the model by Winne & Hadwin. Students answering the prompt
were specifically in the final metacognitive adaptation phase as

they reflected on their transition from MATLAB to C. We can see
examples of how their reflections fit into the COPES (Conditions,
Operations, Products, Evaluations, Standards) acronym, which de-
scribes the different facets of each metacognitive phase. Students
frequently mentioned the Conditions, which are both the reality of
each language (i.e. syntax, typing, etc.) and their own personal prior
experience with either language. Examples of Operations are found
in student reflection on error messages and their difficulty under-
standing them. The Products include the code students had written
to that point in either language, as well as information they’ve
learned and their own cognitive offloading of that information (i.e.
notes). Evaluations abound in the data as students compare their
Products to both their own personal Standards as well as the stan-
dard for each language. We believe our analysis provides support
for using a metacognitive model to understand language transition
and look to future work for further investigation.

4.3 Threats to validity

We presented challenges described by students when reflecting on
the very early stages of transitioning from MATLAB to C. We cannot
generalise these findings to transitions between other languages or
claim that reflections would be similar if collected at a later stage.
Indeed, we find that some of the stated difficulties (e.g., those related
to static typing) are specific to our context. Future work should
explore learner reflections of transitions in other contexts.

In this study we lacked demographic data for the students includ-
ing potentially relevant background knowledge such as program-
ming experience prior to enrolment in the course. We did, however,
observe that students seemed willing to share this information in
their statements. It also seems likely that very few of the students
had experience with C or any statically typed compiled language.
Only 2.5% of students mentioned prior experience with C++, and
in an earlier survey of incoming students to the university, roughly
2% indicated familiarity with C.

5 CONCLUSIONS

Students encounter several key challenges when transitioning from
one programming language to another. Traditionally, prior work
has analyzed program artifacts or used researcher-created instru-
ments to understand these difficulties. In this paper, we asked stu-
dents to reflect on the transition in their own words, collecting
statements from 771 students transitioning from MATLAB to C.
We found that adjusting to the syntax of the new language was the
most common challenge, and that students also struggled with the
transition to static type checking as well as finding errors and un-
derstanding cryptic error messages. Contrary to our expectations,
we found that students who used more negatively toned statements
in their reflections were more likely to perform well when using the
new language. This may be a consequence of lower performing stu-
dents not recognising where they are struggling, or where they are
likely to struggle in the future, due to less well-developed metacog-
nitive skills. As educators, we can help students transition to a new
language through syntax drilling activities, explicit highlighting of
the differences between languages, teaching error messages, and
utilizing reflective activities that strengthen metacognition.

REFERENCES

(1]

[2

[

[3

[4

flaa

=

[10

(1]

[12

[13]

[14

[15]

[16]

[17]

(18]

[19]

[20

[21

[22]

Alireza Ahadi, Raymond Lister, Shahil Lal, and Arto Hellas. 2018. Learning
Programming, Syntax Errors and Institution-Specific Factors. ACM, NY, NY, USA,
90-96. https://doi.org/10.1145/3160489.3160490

Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
Scratch to “Real” Programming. ACM Trans. Comput. Educ. 14, 4, Article 25 (feb
2015), 15 pages. https://doi.org/10.1145/2677087

Albert Bandura. 1986. The Explanatory and Predictive Scope of Self-Efficacy
Theory. Journal of social and clinical psychology 4, 3 (1986), 359-373.

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages
Considered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proc. of ITICSE WG Reports (ITiCSE-WGR ’19). ACM, NY, NY, USA,
177-210. https://doi.org/10.1145/3344429.3372508

Elizabeth L. Bjork and Robert A. Bjork. 2011. Making Things Hard on Yourself,
but in a Good Way: Creating Desirable Difficulties to Enhance Learning. In
Psychology and the Real World: Essays Illustrating Fundamental Contributions
to Society, Morton Ann Gernsbacher, Richard W. Pew, Leaetta M. Hough, and
James R. Pomerantz (Eds.). Worth, NY, NY.

Nigel Bosch, Yingbin Zhang, Luc Paquette, Ryan S. Baker, Jaclyn Ocumpaugh, and
Gautam Biswas. 2021. Students’ Verbalized Metacognition During Computerized
Learning. In Proc. of CHI 2021. ACM, NY, NY, 680:1-680:12. https://doi.org/10.
1145/3411764.3445809

Neil Brown, Charalampos Kyfonidis, Pierre Weill-Tessier, Brett Becker, Joe Dillane,
and Michael Kélling. 2021. A Frame of Mind: Frame-Based vs. Text-Based Editing.
In Proc. of UKICER 2021. (Glasgow, UK) (UKICER 21). ACM, NY, NY, USA, Article
2,7 pages. https://doi.org/10.1145/3481282.3481286

Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper. 2012.
Mediated Transfer: Alice 3 to Java. In Proc. of SIGCSE 2012 (SIGCSE ’12). ACM,
NY, NY, USA, 141-146. https://doi.org/10.1145/2157136.2157180

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the Syntax Barrier for Novices. In Proc. of ITiCSE 2011 (ITiCSE
’11). ACM, NY, NY, USA, 208-212. https://doi.org/10.1145/1999747.1999807
Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proc. of ITiCSE 2020 (Trondheim, Norway)
(ITiCSE °20). ACM, NY, USA, 480-486. https://doi.org/10.1145/3341525.3387384
Sidney K. D’Mello, Blair Lehman, Reinhard Pekrun, and Art Graesser. 2014.
Confusion Can Be Beneficial for Learning. Learning and Instruction 29, 1 (2014),
153-170. http://www.sciencedirect.com/science/article/pii/S0959475212000357
John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swanson, Shelsey Sullivan,
and Chad Mano. 2020. Syntax Exercises in CS1. In Proc. of ICER 2020 (ICER 20).
ACM, NY, NY, USA, 216-226. https://doi.org/10.1145/3372782.3406259

Vikki Fix and Susan Wiedenbeck. 1996. An Intelligent Tool to Aid Students
in Learning Second and Subsequent Programming Languages. Computers &
Education 27, 2 (1996), 71-83. https://doi.org/10.1016/0360-1315(96)00022-X
Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter, NY, NY.

Patricia Haden, Dale Parsons, Krissi Wood, and Joy Gasson. 2017. Student Affect
in CS1: Insights from an Easy Data Collection Tool. In Proc. of Koli Calling 2017.
ACM, NY, NY, USA, 40-49. https://doi.org/10.1145/3141880.3141881

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Eric Tanter, and
Andreas Stefik. 2014. An Empirical Study on the Impact of Static Typing on
Software Maintainability. Empirical Software Engineering 19, 5 (2014), 1335-1382.
https://doi.org/10.1007/s10664-013-9289-1

Johannes Holvitie, Teemu Rajala, Riku Haavisto, Erkki Kaila, Mikko-Jussi Laakso,
and Tapio Salakoski. 2012. Breaking the Programming Language Barrier: Using
Program Visualizations to Transfer Programming Knowledge in One Program-
ming Language to Another. In 2012 IEEE 12th Int. Conf. on Adv. Learning Tech.
(Rome, Italy). IEEE, NY, USA, 116-120. https://doi.org/10.1109/ICALT.2012.186
Eddie Huang, Hannah Valdiviejas, and Nigel Bosch. 2019. I'm Sure! Automatic
Detection of Metacognition in Online Course Discussion Forums. In Proceedings
of the 8th Int. Conf. on Affective Computing and Intelligent Interaction (ACII 2019).
IEEE, Piscataway, NJ, 241-247. https://doi.org/10.1109/ACII.2019.8925506
Christopher D. Hundhausen, Sean F. Farley, and Jonathan L. Brown. 2009. Can
Direct Manipulation Lower the Barriers to Computer Programming and Promote
Transfer of Training? An Experimental Study. ACM Trans. Comput.-Hum. Interact.
16, 3, Article 13 (Sept. 2009), 40 pages. https://doi.org/10.1145/1592440.1592442
Paivi Kinnunen and Beth Simon. 2012. My Program is OK - Am I? Computing
Freshmen’s Experiences of Doing Programming Assignments. Computer Science
Education 22, 1 (2012), 1-28. https://doi.org/10.1080/08993408.2012.655091
Michael Kélling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based
Editing: Easing the Transition from Blocks to Text-Based Programming. In Proc
of WiPSCE 2015 (London, UK) (WiPSCE ’15). ACM, NY, NY, USA, 20-38. https:
//doi.org/10.1145/2818314.2818331

D. Krpan, S. Mladenovi¢, and G. Zaharija. 2017. Mediated Transfer From Visual
to High-Level Programming Language. In 2017 40th Int. Conv. on Inf. and Comm.

[23

[24

[25

™
2

[27

(28]

[29

[30

[31

(32

[33

&
=)

[35

[36

[37

&
&,

[39

[40

[41

[43

Technology, Electronics and Microelectronics (MIPRO) (Opatija, Croatia). IEEE, NY,
NY, USA, 800-805. https://doi.org/10.23919/MIPRO.2017.7973531

MP Lee, JD Pryce, and A Harrison. 1970. Prolog as a First Programming Language.
WIT Transactions on Information and Communication Technologies 7 (1970).
Antti Leinonen, Henrik Nygren, Nea Pirttinen, Arto Hellas, and Juho Leinonen.
2019. Exploring the Applicability of Simple Syntax Writing Practice for Learning
Programming. In Proc. of SIGCSE 2019 (Minneapolis, MN, USA) (SIGCSE ’19).
ACM, NY, NY, USA, 84-90. https://doi.org/10.1145/3287324.3287378

Alex Lishinski, Aman Yadav, Jon Good, and Richard Enbody. 2016. Learning to Pro-
gram: Gender Differences and Interactive Effects of Students’ Motivation, Goals,
and Self-Efficacy on Performance. In Proc. of ICER 2016 (Melbourne, Australia)
(ICER ’16). ACM, NY, USA, 211-220. https://doi.org/10.1145/2960310.2960329
Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55-60. http://www.aclweb.org/anthology/P/P14/P14-5010
Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: A Review of the Literature
From an Educational Perspective. Computer Science Education 18, 2 (2008), 67-92.
https://doi.org/10.1080/08993400802114581

Luke Moors, Andrew Luxton-Reilly, and Paul Denny. 2018. Transitioning from
Block-Based to Text-Based Programming Languages. In 2018 Int. Conf. on Learning
and Teaching in Computing and Engineering (LaTICE) (Auckland, New Zealand).
IEEE, NY, NY, USA, 57-64. https://doi.org/10.1109/LaTICE.2018.000-5

H.James Nelson, Gretchen Irwin, and David E. Monarchi. 1997. Journeys up
the Mountain: Different Paths to Learning Object-Oriented Programming. Ac-
counting, Management and Information Technologies 7, 2 (1997), 53-85. https:
//doi.org/10.1016/S0959-8022(96)00024-0

Anne-Kathrin Peters and Arnold Pears. 2013. Engagement in Computer Science
and IT - What! A Matter of Identity?. In 2013 Learning and Teaching in Computing
and Engineering. IEEE, NY, USA, 114-121. https://doi.org/10.1109/LaTiCE.2013.42
Kris Powers, Stacey Ecott, and Leanne M. Hirshfield. 2007. Through the Looking
Glass: Teaching CS0 with Alice. SIGCSE Bull. 39, 1 (March 2007), 213-217. https:
//doi.org/10.1145/1227504.1227386

James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2020. What Do We Think We Think We Are Doing? Metacog-
nition and Self-Regulation in Programming. In Proc. of ICER 2020. 2-13.

Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. 2020. A Miss is as Good as a
Mile: Off-By-One Errors and Arrays in an Introductory Programming Course. In
Proceedings of the Twenty-Second Australasian Computing Education Conference.
ACM, NY, NY, USA, 31-38. https://doi.org/10.1145/3373165.3373169

Anthony Robins, Patricia Haden, and Sandy Garner. 2006. Problem Distributions
in a CS1 Course. In Proceedings of the 8th Australasian Conf. on Comp Ed - Vol. 52
(Hobart, Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 165-173.
Jean Scholtz and Susan Wiedenbeck. 1990. Learning Second and Subsequent Pro-
gramming Languages: A Problem of Transfer. Int. J. Human—Computer Interaction
2,1(1990), 51-72. https://doi.org/10.1080/10447319009525970

Jean Scholtz and Susan Wiedenbeck. 1992. Learning New Programming Lan-
guages: An Analysis of the Process and Problems Encountered. Behaviour & Info.
Tech. 11, 4 (1992), 199-215. https://doi.org/10.1080/01449299208924339

Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We Go
Again: Why Is It Difficult for Developers to Learn Another Programming Lan-
guage?. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE) (Seoul, Korea). IEEE, NY, NY, USA, 691-701.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for Seman-
tic Compositionality Over a Sentiment Treebank. In Proc. of the 2013 Conf. on
Empirical Methods in NLP. Association for Computational Linguistics, Seattle,
Washington, USA, 1631-1642. https://aclanthology.org/D13-1170

Ethel Tshukudu and Quintin Cutts. 2020. Understanding Conceptual Transfer for
Students Learning New Programming Languages. In Proc. of ICER 2020 (Virtual
Event, New Zealand) (ICER °20). ACM, NY, NY, USA, 227-237. https://doi.org/
10.1145/3372782.3406270

Ethel Tshukudu and Siri Annethe Moe Jensen. 2020. The Role of Explicit
Instruction on Students Learning Their Second Programming Language. In
Proc. of UKICER 2020 (Glasgow, UK) (UKICER °20). ACM, NY, NY, USA, 10-16.
https://doi.org/10.1145/3416465.3416475

Karen P. Walker and Stephen R. Schach. 1996. Obstacles to Learning a Second
Programming Language: An Empirical Study. Computer Science Education 7, 1
(1996), 1-20. https://doi.org/10.1080/0899340960070101

David Weintrop and Uri Wilensky. 2019. Transitioning From Introductory Block-
Based and Text-Based Environments to Professional Programming Languages in
High School Computer Science Classrooms. Computers & Education 142 (2019),
103646. https://doi.org/10.1016/j.compedu.2019.103646

Philip H Winne and Allyson F Hadwin. 1998. Studying as Self-Regulated En-
gagement in Learning. Metacognition in educational theory and practice (1998),
277-304.

https://doi.org/10.1145/3160489.3160490
https://doi.org/10.1145/2677087
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3411764.3445809
https://doi.org/10.1145/3411764.3445809
https://doi.org/10.1145/3481282.3481286
https://doi.org/10.1145/2157136.2157180
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/3341525.3387384
http://www.sciencedirect.com/science/article/pii/S0959475212000357
https://doi.org/10.1145/3372782.3406259
https://doi.org/10.1016/0360-1315(96)00022-X
https://doi.org/10.1145/3141880.3141881
https://doi.org/10.1007/s10664-013-9289-1
https://doi.org/10.1109/ICALT.2012.186
https://doi.org/10.1109/ACII.2019.8925506
https://doi.org/10.1145/1592440.1592442
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.23919/MIPRO.2017.7973531
https://doi.org/10.1145/3287324.3287378
https://doi.org/10.1145/2960310.2960329
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1109/LaTICE.2018.000-5
https://doi.org/10.1016/S0959-8022(96)00024-0
https://doi.org/10.1016/S0959-8022(96)00024-0
https://doi.org/10.1109/LaTiCE.2013.42
https://doi.org/10.1145/1227504.1227386
https://doi.org/10.1145/1227504.1227386
https://doi.org/10.1145/3373165.3373169
https://doi.org/10.1080/10447319009525970
https://doi.org/10.1080/01449299208924339
https://aclanthology.org/D13-1170
https://doi.org/10.1145/3372782.3406270
https://doi.org/10.1145/3372782.3406270
https://doi.org/10.1145/3416465.3416475
https://doi.org/10.1080/0899340960070101
https://doi.org/10.1016/j.compedu.2019.103646

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Course context & data
	3.2 Thematic analysis
	3.3 Sentiment analysis
	3.4 Metacognitive analysis

	4 Results & Discussion
	4.1 Themes emerging from reflections
	4.2 Sentiment, metacognition & performance
	4.3 Threats to validity

	5 Conclusions
	References

