
1 

 

 

 

 

 

X 
Multimodal-Multisensor Affect Detection 

Sidney K. D’Mello1, Nigel Bosch2, and Huili Chen3 

1University of Colorado Boulder 

2University of Illinois Urbana-Champaign 

3Massachusetts Institute of Technology 

 

Imagine you are interested in analyzing the emotional responses of a person in some interaction 

context (i.e., with computer software, a robot, in a classroom, on the subway). You could simply 

ask the person to self-report his or her felt emotion using a questionnaire, a valence-arousal grid 

[Russell et al. 1989], a self-assessment manikin [Bradley and Lang 1994], or some such 

measurement instrument. Or you could ask trained humans to observe the person and provide 

emotion judgments [Ocumpaugh et al. 2015]. You could also record audio/video of the interaction 

and have trained coders annotate the videos for visible emotion at some later time. You can even 

use computer vision techniques to obtain automatic estimates of facial expressions in the videos 

[Girard et al. 2015]. Or you may be interested in the person’s physiological responses and can use 

a variety of sensors to collect these data.  

These examples capture some (but not all) of the contemporary approaches to measure emotional 

responses [Coan and Allen 2007]. The approaches can be categorized as subjective vs. objective, 

each with different affordances. The subjective approaches (self and observers) are best suited for 

emotion-level representations (e.g., discrete emotions like anger and fear or dimensional 

representations like valence or dominance) at coarse-grained temporal resolutions (tens of seconds 

to minutes). The objective approaches (sensors and software) are ideal for measurement of 

behavioral/physiological responses (e.g., facial expressions, electrodermal activity) at fine-grained 

temporal resolutions (milliseconds to seconds). The two approaches have complementary strengths 

and weaknesses. The subjective approaches capitalize on humans’ knowledge and reasoning 

capabilities, resulting in more nuanced and contextualized emotion assessments. However, they are 

limited by fatigue, biases (e.g., social desirability bias), errors (e.g., memory reconstruction for self-

reports), and are difficult to scale. The objective approaches are not affected by fatigue or biases 

and are more scalable, but have limited inference and reasoning capabilities, thereby mainly 

providing readouts of behavioral/physiological responses. 

Are there ways to reconcile the two approaches? One strategy is to combine both, for example, 

collecting subjective self-reports of frustration in tandem with computerized estimates of facial 

action units (AUs) [Girard, Cohn, Jeni, Sayette and De la Torre 2015]. The two are taken as 

complementary perspectives of the person’s emotional response and associations are analyzed 

offline, i.e., by correlating self-reports of frustration with AUs. But what if there was a way to 

combine both perspectives on the fly so that the measurement jointly reflects both subjective 

emotion perception by humans and objective behavioral/physiological signals recorded by sensors? 

And what if the measurement could occur in a fully automated fashion, thereby providing 
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measurement at fine-grained temporal resolutions and at scale? And further, what if the 

measurement engine was sufficiently sophisticated to model multiple expressive channels and the 

nonlinear temporal dependencies among them? This is the affective computing (AC) approach to 

emotion measurement and is the focus of this chapter.  

Affective computing [Calvo et al. 2015; Picard 1997], broadly defined as computing involving or 

arising from human emotion, is an interdisciplinary field that integrates the affective and 

computational sciences. Affect detection (or affect recognition) is one of the key subfields of 

affective computing (see reviews- [Calvo and D’Mello 2010; D'Mello and Kory 2015; Zeng et al. 

2009]). The goal of affect detection is to automatically provide estimates of latent higher-level 

affective representations (e.g., fear) from machine-readable lower-level response signals (e.g., 

video, audio, physiology). Multimodal-multisensor affect detection (MMAD) utilizes multiple 

modalities (e.g., video, cardiac activity) and/or multiple sensors (e.g., video, electromyography) as 

an alternative to unimodal affect detection (UMAD). 

In this chapter, we provide a conceptual and technical overview of the field of MMAD, ground the 

abstract ideas via walk-throughs of three MMAD systems, and provide a summative review of the 

state-of-the-art in the field. We begin with a background discussion from the affective sciences, 

starting with a very basic question: “what is affect?” 

Table 1. Key terms with operational definitions 

Term   Operational definition  

Construct  A conceptual variable that cannot be directly observed (e.g., intelligence, personality)  

Affect  Broad term encompassing constructs such as emotions, moods, and feelings. Is not the 

same as personality, motivation, and other related terms. 

 

Affective 

experience-

expression link 

 The relationship between experiencing an affective state (e.g., feeling confused) and 

expressing it (e.g., displaying a furrowed brow). 

 

Affect 

annotation 

 The process of assigning affective labels (e.g., bored, confused, aroused) or values 

(e.g., arousal = 5) to data (e.g., video, audio, text) 

 

Affective 

ground truth 

 Objective reality involving the “true” affective state. Is a misleading term for 

psychological constructs like affect 

 

Affective 

computing 

 Computing techniques and applications involving emotion or affect  

Multimodal 

fusion 

 The process of combining information from multiple modalities  

User-

independent 

model 

 A model that generalizes to a different set of users beyond those used to develop the 

model 
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X.1 Background from affective sciences 

Affect 

What is affect? The simple answer is that affect has something to do with feeling. Perhaps a more 

satisfactory answer is that affect is a broad label for a range of psychological phenomena involving 

feelings. This includes primitive feelings like hunger pangs to more complex social emotions like 

jealousy and pride. A more technical answer is that affect is a multicomponential construct (i.e., 

conceptual entity), that operates across neurobiological, physiological, behavioral, cognitive, 

metacognitive, and phenomenological levels [Barrett 2014; Lewis 2005; Mesquita and Boiger 

2014; Scherer 2009]. It is with good reason that none of these answers seem particularly satisfactory. 

The term affect (or emotion) has resisted attempts at crisp definition despite a century of 

concentrated effort [Izard 2010; Izard 2007]. Understanding what emotions are and how they arise 

has been a contentious issue in the affective sciences and is sometimes referred to as the “hundred 

year emotion war” [Lench et al. 2013; Lindquist et al. 2013].  For example, there has been an 

ongoing debate as to whether affect is best represented via discrete categories (e.g., angry, fearful) 

[Lerner and Keltner 2000; Loewenstein and Lerner 2003] or by fundamental dimensions (e.g., 

valence, arousal, power) [Cowie et al. 2012; Russell 2003] (and on how many dimensions are 

needed [Fontaine et al. 2007]). Other open issues pertain to whether emotions are innate or are 

learned,  whether they arise via appraisals/reappraisals or are they products of socio-constructivism, 

and whether emotions are universally expressed or if context and culture shape emotion expression 

[Barrett 2006; Barrett et al. 2007; Ekman 1992; Ekman 1994; Gross and Barrett 2011; Izard 1994; 

Izard 2010].  

Does the fact that we cannot precisely define affect imply that we cannot detect it? In our view, one 

does not need to precisely define a phenomenon in order to study it. However, researchers need to 

be mindful of the implicit assumptions in their operationalizations of affect as these are transferred 

to the affect detectors. For example, if one operationalizes anger as short-term emotional changes 

recorded while people viewing anger-eliciting films in isolation and builds an automated anger 

detector from these recordings, then the detector’s estimates of anger are inherently coupled to this 

precise operationalization and not much else (e.g., felt anger, anger in a road-rage scenario, anger 

in a social context). Thus, it is important to be mindful that measurement is informed by 

assumptions of reality (operationalizations), which, in turn, are informed by insights gleaned by 

measurement. 

The affective experience-expression link 

Affect detection assumes a link between experienced (or felt) and expressed affect. Thus, it should 

be theoretically possible to “decode” latent affect (e.g., confusion) from visible behaviors (e.g., a 

furrowed brow). This suggests that there exist “mappings” between a set of behaviors (e.g., facial 

features, gestures, speech patterns) and a set of affective states. This does not mean that one simply 

needs to learn the mappings to perfectly solve the affect detection problem because the mappings 

are imprecise. For example, although facial expressions are considered to be strongly associated 

with affective states, meta-analyses on correlations between facial expressions and affect have 

yielded small to medium effects under naturalistic conditions [Camras and Shutter 2010; Fridlund 

et al. 1987; Ruch 1995; Russell et al. 2003]. In the interest of maximizing adaptability to new 

situations and environments, the mappings have evolved to be loose and variable, not fixed and 

rigid [Coan 2010; Roseman 2011; Tracy 2014]. Thus, rather than being predefined, the affect-
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expression links emerge from dynamic interactions between internal processes and the 

environmental context. Some of these influences include the internal state of the individual, 

contextual and social factors [Parkinson et al. 2004], and individual and group (or cultural) 

differences [Elfenbein and Ambady 2002a; Elfenbein and Ambady 2002b]. 

At first blush, the lack of a precise experience-expression link seems to threaten the entire affect 

detection endeavor. But this is not the case. In our view, it is sufficient to assume that there is some 

link between experience and expression. The link need not be particularly strong. The link need not 

even be consistent across individuals, situations, and cultures. The only assumption is that there is 

a “beyond-chance probabilistic” [Roseman 2011 p., 440] link between affect expression and 

experience. Most affect detection systems rely on supervised learning methods to learn this link. 

Supervised learning needs supervision in the form of “ground truth” (annotations) which bring us 

to the question of “what is affective ground truth?” 

Affective ground truth 

Consider speech recognition, where the task is to translate an acoustic representation into a 

linguistic representation of speech. There is usually little dispute about the desired output (i.e., the 

words being spoken). But this is rarely the case with affect detection as affect is a psychological 

construct (see above). One exception is when the affective states are portrayed by actors or are 

experimentally induced [Kory and D'Mello 2015]. Here, the acted/induced affect can be taken as 

ground truth, but the resultant expressions more closely resemble the acting/eliciting micro-context 

and might not generalize more broadly (also see [André 2017] – this volume).  

There is no objective ground truth in the case of naturally occurring affective states. Instead, the 

truth lies in the eyes of the beholder. The beholder, in the case of humans, is the person experiencing 

the emotion (the self) or an external observer. Each has access to different sources of information 

and is subject to different biases, thereby arriving at different approximations of “ground truth.” As 

noted above, affective states are multicomponential in that they encompass conscious feelings (“I 

feel afraid”), overt actions (“I freeze”), physiological/behavioral responses (“My muscles clench”), 

and meta-cognitive reflections (“I am a coward”). Access to these components varies by source 

(self vs. observer). The self has access to some conscious feelings, some overt actions, memories 

of the experience, and meta-cognitive reflections, but usually not to some of the unconscious 

affective components. They are also more likely to distort or misrepresent their affective states due 

to biases, such as reference bias [Heine et al. 2002] or social desirability bias [Krosnick 1999]. In 

contrast, observers only have access to overt actions and behaviors that can be visibly perceived 

(e.g., facial features, postures, gestures) and must rely more heavily on inference [Mehu and 

Scherer 2012]. Observers are less likely to succumb to the same biases that befall self-reports, but 

they introduce biases of their own, such as the halo effect [Podsakoff et al. 2003]. There are 

strengths and pitfalls of reliance on either the self or external observers to establish affective 

“ground truth.” [D'Mello 2016]. Therefore, perhaps the most defensible position is to consider a 

combination of perspectives, thereby capitalizing on their merits while minimizing their flaws.  

Multimodal coordination of affective responses 

Consider the following quote from William James in his classic 1884 treatise, “What is an emotion?” 

“Can one fancy the state of rage and picture no ebullition of it in the chest, no 

flushing of the face, no dilatation of the nostrils, no clenching of the teeth, no 
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impulse to vigorous action, but in their stead limp muscles, calm breathing, and a 

placid face?” [James 1884 p. 452] 

Quotes such as the one above by James [1884] and similar ones by Darwin [1872], Tomkins [1962], 

Ekman [1992], Damasio [2003] and others, depict affective responses as being inherently 

multimodal. According to the classical model of emotion (called basic emotion theory), there is a 

specialized circuit for each (basic) emotion in the brain. Upon activation, this circuit triggers a host 

of coordinated responses encompassing peripheral physiology, facial expression, speech, 

modulations of posture, affective speech, instrumental action, cognitions, and subjective experience 

[Ekman 1992; Izard 2007]. According to this view, MMAD should be substantially more accurate 

than UMAD because MMAD approaches model this coordinated emotional response. 

In contrast to this highly integrated, tightly coupled, central executive view of emotion, researchers 

have recently argued in favor of a disparate, loosely coupled, distributed perspective [Coan 2010; 

Lewis 2005]. Here, there is no central affect neural circuit [Lindquist et al. 2016; Lindquist et al. 

2011] that coordinates the various components of an emotional episode. Instead, these components 

are loosely coupled and the situational context and appraisals determine which bodily systems are 

activated and the dynamics of activation over time. These theories would accommodate the 

prediction that that a combination of modalities might conceivably yield small improvements in 

classification accuracies, suggesting that the merits of MMAD over UMAD approaches might not 

necessarily lie in improved classification accuracy, but in other factors (e.g., increased reliability 

due to redundancy).  

We consider the extent the data supports each of these views later on in the chapter. The reader is 

also directed to Vinciarelli and Esposito [2017] (this volume) for a discussion on the conditions 

when multimodal communication should expect benefits over unimodal signaling. There is also a 

parallel line of work focused on human perception of affect from unimodal and multimodal cues 

expressed by both humans [D’Mello et al. 2013] and virtual agents [Martin et al. 2017] (this 

volume), that could establish baselines for what machines might be capable of achieving. 

X.1 Modality fusion for multimodal-multisensor affect detection 

Figure 1 highlights our theoretical position on affective states (see previous section), which informs 

the steps involved in building an affect detector. Affective states are assumed to emerge from 

person-environment interactions and are reflected in changes at multiple levels (i.e., 

neurobiological changes, physiological responses, bodily expressions, action tendencies, and 

cognitive, metacognitive, and phenomenological states) in a manner that is modulated by individual 

differences (e.g., affective traits, culture). Researchers typically adopt a machine learning approach 

for affect detection, which requires the collection of training and validation data. Accordingly, in 

Step 1a, raw signals (video, physiology, event log files, etc.) are recorded as participants engage in 

some interaction of interest (including experimental elicitation). Features are then computed from 

the raw signals (Step 1b). Affect annotations (Steps 2a and 2b) are obtained from the participants 

themselves or from external observers, either online (e.g., live observations) or offline (e.g., video 

coding). If affect is experimentally induced, then the elicited condition serves as the annotation. 

Next, machine learning methods (typically supervised learning) are used to computationally model 

the relationship between the features and the affect annotations (Step 3). The models can also 

include contextual information, including both external context (e.g., situational aspects, task 
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constraints, social environment) and internal context (e.g., previous affect predictions). The 

resulting machine-learned model yields computer-generated annotations, which are compared to 

the human-provided annotations in a validation step (Step 4). Once validated, the computational 

model can now produce computer-generated affect annotations from a new set of raw signals 

without corresponding human-provided annotations.. 

 

Figure 1. Theoretical foundation and steps involved in affect detection 

The basic affect detection approach needs an update when multiple modalities and/or sensors are 

involved. They key issue pertains to how to synchronize and combine (fuse) the different 

information channels (modalities). In the remainder of this section, we explore a variety of methods 

for this task. Alternate fusion methods, specifically for online affect detection, are discussed in 

André [2017] (this volume). 

Basic methods (data, feature, decision, and hybrid fusion) 

The most basic method for fusing modalities is data-level or stream-level fusion. Here, raw signals 

are first fused before computing features. For example, one might record electrodermal activity 

(EDA) from multiple sensors to compensate for left-right EDA asymmetry [Picard et al. 2015] and 

then fuse the two signals (e.g., via convolution) prior to computing features. 

The next basic method is feature-level fusion (or early fusion), where features from different 

modalities are concatenated prior to machine learning (see Figure 2). The primary advantage of 

feature-level fusion is its simplicity and it can be effective when features from individual modalities 

are independent and the temporal dependencies among modalities are minimal.  
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Figure 2. Illustration of feature-level fusion 

An alternative is decision-level (or late fusion) fusion (Figure 3), where models are trained for each 

modality. The final decision is made by fusing the outputs of models corresponding to each 

modality via majority voting, weighting votes according to accuracy of each model, or training a 

new classifier using the outputs of each model as features (stacking). 

 

Figure 3. Decision-level fusion with two modalities 

It is also possible to combine feature- and decision- level fusion as illustrated in Figure 4. The 

resultant method, called hybrid fusion, is expected to capitalize on the merits of each approach. 
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Figure 4. Hybrid fusion with two modalities 

Model-based fusion with Dynamic Bayesian Networks (DBNs) and Hidden Markov Models (HMMs) 

The aforementioned basic fusion methods are limited in that they do not account for temporal 

relationships among modalities. There are more sophisticated fusion methods, but these also ignore 

temporal dependencies. For example, in a support vector machine classifier, a kernel function is 

used to map input data to a higher-dimensional space. Multimodal fusion can be achieved by tuning 

a different kernel for each modality (feature space) and mapping them all into the same higher-

dimensional feature space [Liu et al. 2014]. A limitation, however, is that these methods do not 

afford modeling of temporal dependencies, which is critical for MMAD. Model-based fusion 

methods model temporal dependencies as well as other relationships as illustrated with two widely 

used graphical models: Dynamic Bayesian Networks and Hidden Markov Models,  

Dynamic Bayesian Networks (DBNs) are a common graphical model used for modality fusion in 

affect detection. Links between variables in DBNs represent conditional dependencies between 

features as well as relationships across time. Figure 5 shows a DBN that fuses two modalities along 

with contextual (top-down) features with Affect being the output variable. Top-down features (e.g., 

age; context factors) influence affect, but do not change from one timestep to the next. Bottom-up 

features, such as facial expressions and bodily movements, are linked across time. Affect also 

evolves across time, [D’Mello and Graesser 2011] so the Affect variable is linked across timesteps. 

Bayesian inference is used to compute the probability of the output Affect variable given the top-

down (predictive) and bottom-up (diagnostic) features [Conati and Maclaren 2009]. 

DBNs have successfully been used in several MMAD systems. Li and Ji [2005] fused a variety of 

modalities including facial expressions, eye gaze, and top-down features (physical condition and 

time in circadian rhythm) to detect fatigue, nervousness, and confusion. Chen et al. [2009] detected 

anger, happiness, meanness, sadness, and neutral using a DBN to fuse audio and visual features. 

Jiang et al. [2011] expanded that work to detect a larger set of affective states including anger, 

disgust, fear, happiness, sadness, and surprise, using a similar DBN. In general, DBNs are quite 

flexible, allowing any structure of relationships between variables and across time. However, more 

complex DBN structures require considerably more training data to estimate the various parameters, 
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so in practice relatively simple structures like Figure 5 are used.  

 

Figure 5. Dynamic Bayesian network model fusing two modalities and top-down features 

One such structure is a Hidden Markov model (HMM), which models affect as a hidden variable 

that influences observable variables (e.g., anger influencing skin conductance and heart rate). 

Coupled hidden Markov models (CHMMs) combine two or more HMMs (one per modality), such 

that the hidden states (representing affect) of the individual HMMs interact across time (see Figure 

6). These cross-modal links in a CHMM are chosen to model temporal relationships between 

modalities that might operate at different time scales (e.g., heart rate vs. facial expressions). As an 

example, Lu and Jia [2012] used a CHMM to combine audio and video HMMs to detect affect 

represented in an evaluation-activation (valence-arousal) space. 
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Figure 6. Coupled hidden Markov model for two modalities 

CHMMs capture the temporal relationships between modalities, but consider each modality as a 

whole. Semi-coupled Hidden Markov models (SCHMMs) extend the structure of CHMMs by 

coupling modalities at the feature level. Component models are created for each pair of features, 

resulting in a large number of small models which are subsequently combined by late fusion. The 

main advantage of the SCHMM approach is that it allows the temporal relationships to vary per 

feature pair. Lin et al. [2012] demonstrated that SCHMMs were effective for recognizing affect on 

two audio-visual datasets, one with evaluation-activation dimensions and one with anger, happiness, 

sadness, and neutral. They found that SCHMMs outperformed standard CHMMs on both datasets.  

Modality fusion with neural networks and deep learning 

Neural networks have emerged as another popular approach for modality fusion. One particularly 

prominent type of network is the long short-term memory (LSTM) neural network [Hochreiter and 

Schmidhuber 1997]. In LSTMs, the artificial neurons in the hidden layers are replaced by memory 

cells, which allow the network to maintain longer temporal sequences. Thus, they improve on feed-

forward neural networks by incorporating temporal information while avoiding the vanishing 

gradient problem of recurrent neural networks. Bi-directional LSTMs or BLSTMs are a further 

extension that model both past and future information. Figure 7 shows a BLSTM network in which 

hidden layers are connected both forwards and backwards. Features from individual modalities are 

concatenated in the input layer in LSTMs or BLSTMs. However, we do not consider this to be 

feature-level fusion as the hidden layers maintain a sophisticated internal model of the incoming 

data and the networks internal context. 

LSTMs and BLSTMs have been successful with modalities such as speech where longer context 
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can provide significant discriminative power. For example, Eyben et al. [2010] fused acoustic and 

linguistic features in a BLSTM to classify affect in an evaluation-activation space, finding that it 

outperformed a basic recurrent neural network. Ringeval et al. [2015a] fused video, audio, and 

physiology and showed advantages of LSTMs and BLSTMs compared to feed-forward neural 

networks (this study is discussed in more detail below). 

 

Figure 7. BLSTM with memory cells in each hidden layer 

More recently, deep neural networks are being increasingly used for modality fusion in MMAD 

systems [Le Cun et al. 2015]. Deep networks contain multiple hidden layers and are capable of 

learning feature representations from raw data. For example, Kahou et al. [2013] used deep neural 

networks to classify affect from several modalities including video and audio. They first trained 

separate deep networks for each modality, then fused the networks together by weighting each 

network in a final prediction.  

The extremely large amounts of data required for deep learning are difficult to acquire in affect 

detection applications. However, a two-step approach can be employed to decrease the need for 

large affect databases (although this is more common for video rather than other modalities). First, 

deep networks that have been trained for more general classification tasks (e.g., object recognition) 

are obtained (presumably one for each modality). Second, affect detectors are developed by 

combining the last few hidden layers from each deep network into a new final layer and training 

that final layer using affect databases (example network in Figure 8). This method utilizes the sparse 

feature representations that have been learned by the deep networks in their deeper hidden layers 

without requiring prohibitively large affect databases, and can be considered a form of transfer 

learning. For example, Ng et al. [2015] found a 16% improvement by fine-tuning an object 

recognition deep network using multiple affect databases versus training on only one affect 

database. 
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Figure 8. Fusion of deep neural networks by re-training final layers from networks representing each 
modality 

X.1 Walk-throughs of sample multisensor-multimodal affect detection systems 

We present three walk-throughs to serve as concrete renditions of MMAD systems. The walk-

throughs were selected to emphasize the wide variability of research in the area and to highlight 

the various challenges and design decision facing MMAD systems. 

Walk-through 1 – Feature-level fusion for detection of basic emotions 

Our first walk-through was concerned with detection of emotions elicited through an affect 

elicitation procedure. Janssen et al. [2013] compared automatic detection vs. human perception of 

three basic emotions (happy, sad, angry), relaxed, and neutral, which were induced via an 

autobiographical recall procedure [Baker and Guttfreund 1993]. According to this procedure, 17 

stimulus subjects were asked to write about two events in their life associated with experiences of 

these emotions. They were then asked to recall a subset of those events in a way that made them 

relive the emotions experienced. They then verbally described each event (in Dutch) in 2-3 minute 

trials. Audio, video, and physiological signals (electrodermal activity, skin temperature, respiration, 

and electrocardiography) were recorded while the stimulus subjects recalled and described the 

events. Each recording was associated with the label of the corresponding emotion being recalled, 

which was taken to be the “ground truth.” 

The authors extracted a variety of features from the signals. Facial features included movement of 

automatically tracked facial landmarks around the mouth and the eyes, as well as head position. 

Standard acoustic-prosodic features (e.g., fundamental frequency (pitch), energy, jitter, shimmer, 

formants) were extracted from the speech signal. Example physiological features included 

respiration rate, interbeat intervals, mean skin temperature, and number of skin conductance 

responses. A support vector machine classifier was trained to discriminate among the elicited 

emotions (five-way classification) using features from the individual modalities as well from 
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feature-level modality fusion and best-first search (see Figure 9). The multimodal model obtained 

a classification accuracy of 82%, which was greater than the individual modalities: 39% for audio, 

59% for video, and 76% for physiology. 

The authors compared computer vs. human affect detection accuracy. This was done by asking a 

set of human judges to classify the elicited emotions based on various stimuli combinations (audio-

only, video-only, audio-video). Both U.S. and Dutch judges were used, but we only report results 

from the Dutch judges since they match the stimulus subjects. The Dutch judges were the most 

accurate (63%) when provided with audio (which was also in Dutch), compared to video (36%), 

and combined audio-video (48%). However, their accuracy was considerably lower than the 

automated detector (82%), although this result should be interpreted with caution as the testing 

protocols may have been biased in favor of the computer as strict person-level independence 

between training and testing sets was not enforced. Nevertheless, this remains one of the few studies 

that has contrasted human- vs. machine- classification on a multimodal dataset. 

 

Figure 9. Schematic for walk-through 1 

Walk-through 2 – Decision-level fusion for detection of learning-centered affective states 

Our second walk-through focuses on multimodal affect detection in a computer-enabled classroom 

[Bosch et al. 2015b]. The researchers collected training data from 137 (8th and 9th  grade) U.S. 

students who learned from a conceptual physics educational game called Physics Playground 

[Shute et al. 2013]. Students played the game in two 55-minute sessions across two days. Trained 

observers performed live annotations of boredom, engaged concentration, confusion, frustration, 

and delight using the Baker-Rodrigo Observation Method Protocol (BROMP) [Ocumpaugh et al. 

2012]. According to BROMP, the live annotations were based on observable behavior, including 

explicit actions towards the interface, interactions with peers and teachers, body movements, 
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gestures, and facial expressions. The observers had to achieve a kappa of 0.6 (inter-rater reliability) 

with an expert to be certified as a BROMP coder. Videos of students’ faces and upper bodies and 

log files from the game were recorded and synchronized with the affect annotations.  

The videos were processed using FACET – a computer-vision program [FACET 2014] which 

estimates the likelihood of 19 facial action units along with head pose and position. Body 

movement was also estimated from the videos using motion filtering algorithms [Kory et al. 2015]. 

Supervised learning methods were used to discriminate each affective state from the other states 

(e.g., boredom vs. confusion, frustration, engaged concentration, and delight) and were validated 

by randomly assigning students into training and testing sets across multiple iterations. The models 

yielded an average accuracy of 0.69 (measured with area under the receiver operating characteristic 

curve (AUROC or AUC), where a chance model could yield a value of 0.5). Follow-up validation 

analyses confirmed that the models generalized across multiple days (i.e., training on subset of 

students from day 1 testing on different students in day 2), class period, genders (i.e., training on 

males, testing on females and vice versa), and ethnicity as perceived by human coders [Bosch et al. 

2016]. 

A limitation of video-based measures is that they are only applicable when the face can be detected 

in the video. This is not always the case outside of the lab, where there are occlusions, poor lighting, 

and other complicating factors. In fact, the face could only be detected about 65% of the time in 

this study. To address this, Bosch et al. [2015a] developed an additional computational model based 

on interaction/contextual features stored in the game log files (e.g., difficulty of the current game 

level, the student’s actions, the feedback received, response times). The log-based models were less 

accurate (mean AUC of .57) than the video-based models (mean AUC of .67 after retraining), but 

could be applied in almost all of the cases. Separate logistic regression models were trained to 

adjudicate among the face- and log-based -models, essentially weighting their relative influence on 

the final outcome via stacking (see Figure 10). The resultant multimodal model was almost as 

accurate as the video-based model (mean AUC of .64 for multimodal vs .67 for face only), but was 

applicable almost all of the time (98% for multimodal vs. 65% for face only). These results are 

notable given the noisy nature of the real-world environment with students incessantly fidgeting, 

talking with one another, asking questions, and even occasionally using their cellphones. They also 

illustrate how a MMAD approach addressed a substantial missing data problem despite it not 

improving detection accuracy. 
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Figure 10. Schematic for walk-through 2 

Walk-through 3 – Model-based fusion for modeling of affective dimensions 

The previous two case studies focused on detecting discrete affective states with feature- or 

decision- level fusion. Our third walk-through used a neural network for modality fusion in the 

course of modeling time-continuous annotations of valence (unpleasant to pleasant) and arousal 

(sleepy to active) [Ringeval, Eyben, Kroupi, Yuce, Thiran, Ebrahimi, Lalanne and Schuller 2015a]. 

The authors recorded audio, facial video, electrocardiogram (ECG), and electro-dermal activity 

(EDA) as dyads completed a “winter survival” collaborative task. A total of 46 participants 

completed the task, of whom 34 provided permission for their data to be used. Data from a further 

7 participants had recording errors, yielding a final data set of 27 participants. Six observers 

annotated the first five minutes of each participant’s data by providing time-continuous ratings of 

valence and arousal. The recordings and annotations are distributed as part of the RECOLA dataset 

[Ringeval et al. 2013], which has been used in recent MMAD challenges [Ringeval et al. 2015b]. 

A variety of features were extracted from each of the modalities (audio, video, ECG, and EDA). 

Audio features captured spectral, prosodic, and voice quality metrics. Video features included 15 

automatically extracted facial action units (AUs) and head pose. ECG features primarily consisted 

of heart rate, heart rate variability, and spectral features. EDA features mainly emphasized changes 

in skin conductance. LSTM and BLSTM networks (as discussed above) were trained to estimate 

continuous valence and arousal annotations by fusing features from the various modalities (Figure 

11). The networks were validated in a person-independent fashion. The concordance correlation rc 

(combining Pearson’s r and mean squared error) was used to measure model accuracy.  

The authors performed several experiments, including both early and late fusion and various 

combinations of modalities; here we focus on each feature (from any modality or combination) 

being an input node in the network. The best model-level fusion achieved a rc of .769 for arousal 

and a rc of .492 for valence. These best results were obtained using a combination of audio and 

video features. Further, when compared to standard feed-forward neural networks, the BLSTM 

models were more accurate across shorter windows of time (2-3 secs) but accuracy was equitable 

across longer windows (4-5 secs). Finally, when compared to individual modalities, there was a 

multimodal advantage for valence (rc = .492 vs. .431), but not for arousal (rc = .769 vs. .788), once 
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again highlighting selective conditions where MMAD led to improvements over UMAD. 

 

Figure 11. Schematic for walk-through 3 

X.1 General trends and state of the art in multisensor-multimodal affect detection 

D'Mello and Kory [2015] recently performed a review and meta-analysis of 90 MMAD systems. 

We highlight some of their key findings, both in terms of trends in MMAD system design as well 

as classification accuracy of MMAD vs. UMAD. Table 2 lists a subset (about 1/3) of the more 

recent studies (2011 to 2013) reviewed in D'Mello and Kory [2015] along with a few more recent 

studies (2014-) published since their review. 

Table 2. Selective sample of recent MMAD systems in the D'Mello and Kory [2015] review  (2011 to 
2013), further extended to include more recent systems (2014 and 2015) 

Reference   Modalities  Fusion 

[Chanel et al. 2011]  EEG + Physiology  Decision 

[Datcu and Rothkrantz 2011]  Face + Voice  Feature 

[Jiang, Cui, Zhang, Fan, Ganzalez and Sahli 2011]  Face + Voice  Model 

[Lingenfelser et al. 2011]  Face + Voice  Decision 

[Nicolaou et al. 2011]  Face + Voice + Body  Model 

[Schuller 2011]  Voice + Text  Feature 

[Vu et al. 2011]  Voice + Body  Decision 

[Wagner et al. 2011]  Face + Voice + Body  Decision 

[Walter et al. 2011]  Voice + Physiology  Decision 

[Wu and Liang 2011]  Voice + Text  Decision 
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Reference   Modalities  Fusion 

[Hussain et al. 2012]  Face + Physiology  Decision 

[Koelstra et al. 2012]  EEG + Physiology + Content  Decision 

[Lin, Wu and Wei 2012]  Face + Voice  Model 

[Lu and Jia 2012]  Face + Voice  Model 

[Metallinou et al. 2012]  Face + Voice  Model 

[Monkaresi et al. 2012]  Face + Physiology  Feature 

[Park et al. 2012]  Face + Voice  Decision 

[Rozgic et al. 2012]  Face + Voice + Text  Feature 

[Savran et al. 2012]  Face + Voice + Text  Model 

[Soleymani et al. 2012]  EEG + Gaze  Decision 

     

[Baltrušaitis et al. 2013]  Face + Voice  Model 

[Dobrišek et al. 2013]  Face + Voice  Decision 

[Glodek et al. 2013]  Face + Voice  Decision 

[Hommel et al. 2013]  Face + Voice  Decision 

[Krell et al. 2013]  Face + Voice  Decision 

[Rosas et al. 2013]  Face + Voice + Text  Feature 

[Rosas, Mihalcea and Morency 2013]  Face + Voice + Text  Feature 

[Wang et al. 2013]  EEG + Content  Feature 

[Wöllmer et al. 2013a]  Face + Voice  Model 

[Wöllmer et al. 2013b]  Face + Voice + Text  Hybrid 

     

[Williamson et al. 2014]  Face + Voice  Decision 

[Grafsgaard et al. 2014]  Face + Posture + Interaction  Feature 

[Soleymani et al. 2014]  Face + EEG  Model 

[Bosch, Chen, Baker, Shute and D'Mello 2015a]  Face + Interaction  Decision 

[Zhou et al. 2015]  Face + Interaction + Content   Feature 
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Reference   Modalities  Fusion 

[Barros et al. 2015]  Face + Body  Model 

[Monkaresi et al. 2017]  Face + Remote Physiology  Decision 

Note. Physiology refers to one or more peripheral physiological channels such as electrodermal activity,  

heart rate variability, etc. 

Trends in MMAD systems 

D'Mello and Kory [2015] coded each MMAD system across a number of dimensions, such as 

whether the training data consisted of acted, induced, or naturalistic affective expressions, the 

specific modality combinations used, the most successful fusion method, and so on. Below are 

some of the highlights of MMAD as of 2013. 

 MMAD systems were trained on small samples. The studies had on average of 21 

participants and 97% of the studies had fewer than 50 participants. 

 Training data for about half the studies were obtained by actors portraying affective 

expressions. Affective states were induced in 28% of the studies using validated elicitation 

methods [Coan and Allen 2007]. Very few studies (20% of studies) used naturalistic 

affective states (i.e., affective states that spontaneously arise as part of an interaction). 

 In terms of MMAD, bimodal systems were far more common (87%) than trimodal systems 

(13%). 

 The face and voice (paralinguistics) were the two most frequent modalities, each occurring 

in over 75% of the studies. By comparison, peripheral physiology was only used in 11% 

of the systems and other modalities (e.g., eye tracking) were much rarer. 

 About a 1/3 of the studies (37%) focused on detecting the basic emotions of anger, fear, 

happiness, sadness, disgust, and surprise [Ekman 1992] or core affective dimensions of 

valence and arousal (28%). Very few studies focused on detecting additional affect 

dimensions, such as dominance or certainty [Fontaine, Scherer, Roesch and Ellsworth 

2007] or nonbasic affective states like confusion and curiosity [D'Mello and Calvo 2013]. 

 Feature-level (39%) and decision-level (35%) fusion were much more common than hybrid 

(6%) and model-level fusion (20%) 

 A vast majority of studies employed instance-level validation (62%), where different 

instances from the same person were in both training and test sets, essentially limiting 

generalizability to new individuals. 

Accuracy of MMAD systems 

How accurate are MMAD systems compared to their unimodal affect detection (UMAD) 

counterparts? D'Mello and Kory [2015] addressed this question by computing the percent 

improvement in classification accuracy of each MMAD system compared to the best UMAD 

system (called MM1 effects). They also investigated factors that moderated MM1 effects. Their 

key findings indicated that: 

 On average, MMAD yielded a 10% improvement in affect detection accuracy over the best 

UMAD counterpart.  
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 There were negative or negligible (<= 1%) MM1 effects for 14.4% of the studies, about 

50% yielded small 1-5% or medium-sized (5-10%) effects, while the remaining 35% 

yielded impressively large effects (> 10%). 

 The median MM1 effect of 7% might be a more accurate estimate given the spread of the 

distribution. 

 There was a very robust correlation (Pearson’s r = .87) between best UMAD and MMAD 

accuracies, suggesting a high degree of redundancy; see Vinciarelli and Esposito [2017]. 

 The mean MM1 effect for detectors trained on naturalistic data (4.6%) was three times 

lower compared to detectors trained on acted data (12.7%) and about half compared to 

detectors trained on experimentally induced affective states (8.2%). 

 Model-based fusion methods resulted in a roughly twice the mean MM1 effect (15.3%) 

compared to feature-level (7.7%) and decision-level (6.7%) fusion. However, this result 

should be taken with a modicum of caution because it involves between- study comparisons 

where additional factors could have varied. 

Importantly, the authors were able to predict MMAD accuracy from best UMAD accuracy 

using data type (1 for acted data; 0 for induced or naturalistic data) and fusion method (1 for 

model-level fusion; 0 for feature- or decision- level fusion). The regression model shown (using 

standardized coefficients) below explained an impressive 83.3% of the variance based on 10-

fold study-level cross-validation. 

MMAD accuracy = .900 × Best UMAD accuracy + .273 × Data Type Acted  [1 or 0] +  
.312 × Model Level Fusion [1 or 0] -.253 

 

MMAD Systems from the 2015 Audio-Video Emotion Recognition Challenge (AV+EC 2015) 

The Audio-Video Emotion Recognition Challenge (AVEC) series is an annual affect detection 

competition that was first organized as part of the 2011 Affective Computing and Intelligent 

Interaction (ACII) conference series [Schuller et al. 2011]. The earlier challenges emphasized 

audio-visual detection of time-continuous annotations of affective dimensions [Schuller et al. 2012] 

based on data from the SEMAINE corpus [McKeown et al. 2012], which was designed to collect 

naturalistic data of humans interacting with artificial agents. The most recent challenge (at the time 

of writing) was the Audio-Visual+ Emotion recognition Challenge and workshop (AV+EC 2015), 

where the goal was to model time-continuous annotations of valence and arousal  from audio, video, 

and physiology (electrocardiogram and electrodermal activity) signals collected as part of the 

RECOLA data set [Ringeval, Sonderegger, Sauer and Lalanne 2013] (see walk-through 3 above).  

Table 3 presents the seven MMAD systems featured in the AV+EC 2015 challenge. Two systems 

adopted a UMAD approach and are not included here. We note the popularity of model-based 

fusion techniques, especially those using LSTMs and their variants, although feature- and decision- 

level fusion methods still feature quite prominently. The best result was obtained by He et al. [2015], 

who adopted a deep (i.e., multilayer) BLSTM for modality fusion. They achieved a concordance 

correlation (rc - see walk-through 3) of .747 for arousal and .609 for valence, both reflecting 

substantial improvements over the challenge baselines (rc = .444 for arousal and .382 for valence). 
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Table 3. MMAD systems featured in the AV+EC 2015 challenge 

Reference   Fusion Method  

[Cardinal et al. 2015]  Feature, Decision (random forest, linear regression)  

[Milchevski et al. 2015]  Feature, Decision (linear regression)  

[Huang et al. 2015]  Feature, Decision (linear regression), Hybrid  

[Chen and Jin 2015]  Model (BLSTM)  

[Chao et al. 2015]  Model (LSTM)  

[He, Jiang, Yang, Pei, Wu and Sahli 

2015] 

 

Model (Deep BLSTM) 

 

[Kächele et al. 2015]  Feature, Decision (averaging), Model (multilayer perceptron)  

X.1 Discussion 

At the time of this writing, affective computing is nearing its 20 year birthdate [Picard 1997] (see 

Picard [2010] for a brief history of the field). In D'Mello and Kory [2015], we summarized the state 

of the field of affect detection in 2003 as:  

“the use of basic signal processing and machine learning techniques, independently 

applied to still frames (but occasionally to sequences) of facial or vocal data, to 

detect exaggerated context-free expressions of a few basic affective states that are 

acted by a small number of individuals with no emphasis on generalizability.”  

It is clear as much progress has been made over the next 10 years as noted by our summary of the 

field as of 2013. The italicized items highlight key changes from 2003 to 2013. Most notable is the 

shift in emphasis from facial or vocal signals to facial and vocal signals, suggesting that we are 

finally in the age of MMAD, despite sustained progress in UMAD. 

“the use of basic and advanced signal processing and machine learning techniques, 

independently and jointly applied to sequences of primarily facial and vocal data, 

to detect exaggerated and naturalistic context-free and context-sensitive 

expressions of a modest number of basic affective states and simple dimensions 

that are acted or experienced by a modest number of individuals with some 

emphasis on generalizability.” 

What would be a prospective summary of the field a decade from now - say in 2027? We anticipate 

progress in data collection methods (sensors used, modalities considered, data collection contexts, 

size of data sets), the computational methods (signal processing, machine learning, fusion 

techniques), and the affective phenomenon itself (affective states modeled, affect representations, 

how “ground truth” is established).  

But what about the metrics of success? The metrics we utilize embody what we (as a community) 

value in affect detection systems. It is fair to say that detection (or prediction) accuracy on unseen 
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data is the key metric of success in the field (e.g., the AV+EC challenge selects winners based on 

prediction accuracy on a held-out test set). Does accuracy, then, embody our values?  

If so, then one must ask “accurate for what purpose and in what context?” Is a highly accurate 

system trained on a handful of participants in a lab setting of more value than a less accurate one 

trained on noisy data, but from thousands of individuals in the wild? Similarly, is a highly accurate 

system that cannot function in the presence of missing data of more value than its less accurate 

counterpart that is robust to data loss? If accuracy is not the only metric that embodies our values, 

then what might be some alternative metrics?  

The answer might lie into the very nature of affect itself. Recall that affect is a construct, not a 

physical entity. It cannot be precisely defined or directly measured, but only approximated. This 

level of imprecision might be discomforting to some who might rightly ask: “how can we measure 

what we cannot even define?” This question has plagued researchers in the psychological sciences 

for several decades, who have proposed a host of metrics, each based on different criterion of 

success. These include different forms of reliability, convergent validity (closely related to 

accuracy), discriminant validity, ecological validity (related to generalizability), predictive validity, 

criterion validity, and so on [Rosenthal and Rosnow 1984].  

Herein lies the rub. Many of these criteria are in a state of tension. A system (or measure) that 

achieves impressive gains along one criterion likely does so at the expense of another. Want a 

highly accurate (but not very generalizable) system? Just lock a few participants in the lab and ask 

them to act out a couple of emotions. Want a generalizable (but not very accurate) system? Try to 

capture affective expressions as people go about their daily routines in the world. By considering a 

range of metrics, we are forced to identify the inherent weaknesses in our systems and confront out 

assumptions about the nature of affect and “affective ground truth.” Thus, in addition to anticipated 

advances in theoretical sophistication, data sources, and computational techniques, we advocate for 

an equitable advance in the science of validation over the next decade of multisensor-multimodal 

affect detection research. Only then will we have a chance of developing affect detection systems 

that will break through the confines of the lab and live up to their fullest potential in the real world. 
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Supplementary Digital Materials 

Table 4. Chapter Focus Questions 

1. What do we mean when we say that affect is a multicomponential conceptual phenomenon?  

2. Why is the affective experience-expression link weak and how is this related to loosely coupled 

uncoordinated affective responses? 

 

3. Popular TV shows like “Lie to Me” assume that humans can be trained to be highly accurate 

emotion and deception detectors. Do you agree or disagree? Why? 

 

4. Assume you want to develop a detector of surprise. What are three unique ways by which you 

could obtain affective ground truth to train your detector? 

 

5. Assume you have three modalities: video, audio, and electrodermal activity. How would you 

combine them to achieve “hybrid fusion”? 

 

6. Sketch four different model-level fusion designs that combine facial expressions, heart rate, eye 

movements, keystrokes, and user personality traits. 

 

7. How would you estimate bimodal classification accuracy from corresponding unimodal 

classification accuracies without even building the multimodal model? 

 

8. How would you go about building a multisensor-multimodal detector of interest while people 

read news articles on www.cnn.com? What about curiosity? 

 

9. How would you build a robust multimodal-multisensor detector of confusion. Robust implies 

that the detector should operates even when some of the modalities do not provide any data. 

 

10. The concluding section lists several metrics of success in addition to detection accuracy? Which 

of these metrics do you think the affect detection community should prioritize in the near- (next 

5 years) and long- (next 15 years) term? 

 

 


