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Abstract 

Background: Transdermal biosensors offer a noninvasive, low-cost technology for the 

assessment of alcohol consumption with broad potential applications in addiction science. Older-

generation transdermal devices feature bulky designs and sparse sampling intervals, limiting 

potential applications for transdermal technology. Recently a new-generation of transdermal 

device has become available, featuring smartphone connectivity, compact designs, and rapid 

sampling. Here we present initial laboratory research examining the validity of a new-generation 

transdermal sensor prototype. Methods: Participants were young drinkers administered alcohol 

(target BAC=.08%) or no-alcohol in the laboratory. Participants wore transdermal sensors while 

providing repeated breathalyzer (BrAC) readings. We assessed the association between BrAC 

(measured BrAC for a specific time point) and eBrAC (BrAC estimated based only on 

transdermal readings collected in the immediately preceding time interval). Extra-Trees machine 

learning algorithms, incorporating transdermal time series features as predictors, were used to 

create eBrAC. Results: Failure rates for the new-generation prototype sensor were high (16%-

34%). Among participants with useable new-generation sensor data, models demonstrated strong 

capabilities for separating drinking from non-drinking episodes, and significant (moderate) 

ability to differentiate BrAC levels within intoxicated participants. Differences between eBrAC 

and BrAC were 60% higher for models based on data from old-generation vs new-generation 

devices. Model comparisons indicated that both time series analysis and machine learning 

contributed significantly to final model accuracy. Conclusions: Results provide favorable 

preliminary evidence for the accuracy of real-time BAC estimates from a new-generation sensor. 

Future research featuring variable alcohol doses and real-world contexts will be required to 

further validate these devices. 
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1.  Introduction  

The development of a wearable biosensor for assessing alcohol consumption has long 

been of interest to addiction scientists (Barnett, 2015; Leffingwell et al., 2013; Swift, 2003). A 

variety of factors might impact an individual’s ability to accurately report on their alcohol 

consumption including variation in drink size/strength (i.e., variable "pours"; Barnett et al., 2009; 

Kerr et al., 2005) and neurocognitive effects of alcohol that might impact memory for 

consumption (Weissenborn and Duka, 2003; White, 2003). As awareness/monitoring can 

contribute substantially to the maintenance of health behaviors (Miller et al., 1994; Wharton et 

al., 2014), the development of a wearable alcohol sensor for use by broad populations of drinkers 

could have key implications for both prevention and intervention.  

Researchers have explored a variety of wearable technologies for assessing alcohol use, 

including microneedle arrays and enzymatic sensors, with several of these technologies showing 

promise in early studies (Vinu Mohan et al., 2017; see Wang et al., 2019). Currently, however, 

transdermal sensors are the technology with the largest basis of empirical support for assessing 

alcohol use (Fairbairn and Kang, in press). Transdermal devices assess drinking by measuring 

the quantity of alcohol contained in sweat and insensible perspiration, a quantity known as 

Transdermal Alcohol Concentration (TAC). Research indicates that the relationship between 

TAC and blood alcohol concentration (BAC) is a complicated one, being influenced by a variety 

of both contextual- and individual-level factors (Fairbairn and Kang, in press; Luczak and 

Ramchandani, 2019) and involving some degree of lag time (Fairbairn and Kang, 2019; Marques 

and McKnight, 2009). Nonetheless, transdermal technology offers advantages in that it is 

relatively low-cost, non-invasive, and low-maintenance (Fairbairn and Kang, in press).   
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To date, the most widely researched transdermal device is the Secure Continuous Remote 

Alcohol Monitor (SCRAM™), an older-generation transdermal sensor (e.g., Sakai et al., 2006). 

SCRAM devices rely on a pump to actively generate airflow across the transdermal sensor, a 

feature that increases SCRAM’s size and limits the automated sampling interval to a relatively 

sparse 30 minutes (see Wang et al., 2019). Weighing approximately 6 oz and the size of a large 

deck of cards (Figure 1), the ankle-worn SCRAM device is relatively bulky and can lead to 

embarrassment for some users (Barnett et al., 2011). Thus, although well suited to their primary 

application as abstinence monitors among criminal-justice involved populations, the usefulness 

of these ankle monitors for other applications is limited (e.g., as health behavior trackers among 

large populations of consumers). Further, the relationship between TAC and blood alcohol 

concentration (BAC) can vary depending on where on the body TAC is assessed (e.g., wrist vs. 

ankle; Swift, 1993), and the ankle positioning of SCRAM may lead to diminished temporal 

sensitivity to changes in BAC (Fairbairn and Kang, 2019). Although some studies have assessed 

alternative transdermal devices (e.g., Phillips et al., 1995; Roizen et al., 1990; Swift, 2000; Swift 

et al., 1992), the majority of prior transdermal validation studies have been conducted 

specifically using SCRAM. Thus our current knowledge of the complexity of the TAC–BAC 

conversion problem is based predominantly on data produced by this device (see Fairbairn and 

Kang, in press; Leffingwell et al., 2013).  

 Recently, a new-generation of transdermal alcohol sensor has become available to 

researchers (NIAAA, 2015; Wang et al., 2019). These devices feature smartphone connectivity 

and sleek designs intended to appeal to large voluntary populations of drinkers (Wang et al., 

2019). One such device is BACtrack Skyn™, a small wrist-worn sensor similar in appearance to 

a Fitbit (see Figure 1). Skyn is similar to SCRAM in that it assesses drinking via transdermal 
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means. Unlike SCRAM, however, Skyn relies on passive rather than active airflow, a feature that 

decreases its size and permits more rapid TAC sampling, with Skyn prototypes permitting TAC 

measurement as rapidly as every 20 seconds (Wang et al., 2019). Preliminary research examining 

raw TAC values produced by Skyn indicated sensitivity to changes in alcohol consumption 

(Fairbairn and Kang, 2019). To date, however, limited human subjects research has been 

conducted with Skyn or any other new-generation sensor, so little is known of the validity of 

data produced by these devices.  

 The current study represents what is, to our knowledge, the first examination of the 

validity of real-time estimates of alcohol consumption from a new-generation transdermal 

sensor. This represents the largest study to examine the validity of transdermal data using 

objective BAC assessments (see Fairbairn and Kang, 2019 for review) thus, for the first time, 

permitting the application of more “data-hungry” analytic approaches to transdermal sensor 

output (i.e., machine learning; Geurts et al., 2006). Since a variety of factors are theorized to 

influence the relationship between TAC and BAC, we opted to conduct this first validation effort 

under controlled laboratory dosing conditions (target peak BAC .08%, or no-alcohol; see Sirlanci 

et al., 2018, 2019). We used breathalyzer readings to validate TAC measures, a noninvasive 

measure with a strong and well-characterized relationship with BAC (Bendtsen et al., 1999; 

Jones and Andersson, 1996). A primary aim of this study was to examine the extent to which 

BAC estimated via Skyn might be used to distinguish instances of alcohol consumption from 

sober instances. In light of the potential utility of a comfortable, compact wristband for 

distinguishing non-abstinent moments (e.g., just-in-time adaptive interventions; Nahum-Shani et 

al., 2017), this aim was viewed as important not only as a first step in sensor validation but also 

as an important end in its own right.  Additional aims of this study included examining the extent 
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to which models were able to identify differential BAC levels among participants consuming 

alcohol, as well as a comparison of BAC estimates produced by Skyn vs. SCRAM.  

2.  Method 

2.1.  Participants 

The study recruited young healthy social drinkers (ages 21-30). The study population was 

chosen in line with guidelines for the administration of alcohol in humans (National Advisory 

Council on Alcohol Abuse and Alcoholism, 1989), and for the purposes of the parent study 

examining etiological factors in alcohol use disorder (e.g., see Fairbairn et al., 2015, 2018). A 

total of 110 individuals underwent experimental procedures. The final sample consisted of the 73 

individuals for whom we were able to obtain Skyn readings (see section 3.2). Of these 

individuals, 49 were randomly assigned to the alcohol condition and 24 to the no-alcohol 

condition. Participants were 55% female. Sixty-four percent of participants were White, 23% 

Asian, 6% African-American, and 7% multiracial.  

2.2.  Procedure 

 Upon arriving at the laboratory, all participants signed informed consent. Participants 

were breathalyzed (Intoximeters Alco-Sensor IV) to verify a 0.00 breath alcohol concentration 

(BrAC). Next, Skyn devices were positioned on the inside of participants’ wrists. SCRAM 

devices were positioned on participants’ ankles. After a baseline period (1-2 hours), beverages 

were administered in 3 equal parts over 36 minutes. Participants assigned to receive alcohol 

received a dose intended to bring them up to the legal driving limit (target peak BAC=.08%), 

with the exact dose adjusted for participants’ approximate body water (see Curtin and Fairchild, 

2003 for formulas). Participants in the no-alcohol condition were administered a non-alcoholic 

beverage.  
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 Following beverage administration, participants in the alcohol condition provided 

breathalyzer readings at approximately 30-minute intervals until they left the lab. Participants in 

the no-alcohol condition were breathalyzed upon arriving in the lab and then again immediately 

post-drink. No-alcohol participants were allowed to leave after study tasks were completed (5-6 

hour sessions). Alcohol participants were required to remain until BrACs dropped below .025% 

and also SCRAM output registered at least one descending value (6-9 hour sessions).2  

2.3.  Data Analysis Plan 

Analyses were conducted to predict BrAC values (serving as “ground truth”) from data 

derived from Skyn. Our approach leveraged the relatively high-frequency TAC readings 

produced by Skyn (~1 minute interval, although in units that do not correspond to BAC). In 

particular, we estimated BrAC for a precise time point using TAC time series features (e.g., 

mean, trends, periodicity) extracted from Skyn during the immediately preceding 30-minute time 

interval. Time series features were then entered into machine learning algorithms to produce 

BrAC estimates in “real time.” Note that all of the models presented here were constructed such 

that they could be run rapidly (within 1-2 seconds) using the computing power of the average 

smartphone. Details of data pre-processing are provided in supplemental materials.3 Figure 2 

provides a visual depiction of the complete data analysis plan. 

2.3.1.  Time Series Feature Extraction 

We extracted features from 30 minutes of TAC data leading up to each BrAC reading, 

thus forming a set of 1,092 instances (input/output pairs) for a machine learning model. The 30-

 
2 Given the relatively substantial dose of alcohol administered in the current study, and the time required for alcohol 

metabolism, it was not feasible to keep participants in the lab to 0.00% BrAC. However, using the current 

procedures, we were able to capture the majority of the descending BAC limb for all participants. 
3 Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by 

entering doi:  
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minute window was selected as equivalent to the interval separating BrAC readings for 

participants assigned to the alcohol condition in the current study. To create instances for the no-

alcohol condition, we inserted synthetic (artificial) 0.00% BrAC readings (see supplemental 

materials).4 In cases where less than 30 minutes had elapsed since the prior instance, 30-minute 

intervals were allowed to overlap. The model was constrained such that no predictions were 

made until at least 30 minutes of TAC data had accrued. We used TSFRESH (Christ et al., 

2018), a Python software package, to extract time series features from TAC data (see Table 1). 

Importantly, to produce a model that might be applied for real-time BrAC estimation (not just 

retrospective prediction), we only included TAC time series preceding (not following) BrAC 

readings.  

2.3.2. Machine Learning Methods 

The machine learning model type employed was Extra-Trees (Geurts et al., 2006), which 

is a tree-based ensemble regression algorithm similar to random forests (Breiman, 2001). Extra-

Trees is particularly useful for cases when there may be non-linear relationships between 

features and output variables, many features, and too few instances to leverage deep neural 

network methods for big data. No other variables were entered into machine learning models, so 

that models estimated BAC based on TAC data (TSFRESH features) alone.  

We employed 4-fold, participant-independent cross-validation to ensure that predictions 

were not over-fit to specific data points or participants. To do so, we randomly divided 

participants into four groups, trained a model using data from three of those groups (the training 

set), tested it on the fourth group (the testing set), and repeated the process three more times so 

 
4 Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by 

entering doi: 
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that each participant was in the testing set once. We selected Extra-Trees hyperparameters based 

on training data only, via nested 4-fold cross-validation. 

2.3.3.  Model Evaluation  

We evaluated model results with mean absolute error (MAE; i.e., L1 distance) and, as an 

additional metric, root mean squared error (RMSE; i.e., L2 distance). MAE represents the average 

absolute difference between actual BrAC values and estimates of BrAC from transdermal data 

(eBrAC). We calculated MAE and RMSE per-participant and report the mean of these 

participant-level measures, calculating 95% confidence intervals for the means via bootstrapping 

with 10,000 iterations, thus accounting for the non-normal distributions of MAE and RMSE 

(Efron, 1987). In addition to MAE and RMSE, we also present the correlation (Pearson’s r) 

between BrAC and eBrAC across all observations, provided as a standardized effect size 

corresponding to those presented in prior transdermal publications (Davidson et al., 1997; Sakai 

et al., 2006). Correlations are supplemented with mixed models, which assess the association 

between eBrAC, entered as the predictor, and BrAC, entered as the outcome, while accounting 

for participant-level clustering via random effects estimation (Raudenbush and Bryk, 2002).  

3.  Results 

3.1. BrAC Descriptives  

An average of 10 BrAC readings were collected from alcohol participants after beverage 

administration. Average maximum BrAC was .084% (SD=.011), and average (post-baseline) 

minimum was .026% (SD=.014). Of post-baseline alcohol condition BrAC values, 14.0% were 

<.03%, 23.4% were between .03%-.05%, 30.3% were between .05%-.07%, 25.5% were between 

.07-.09, and 6.9% were ≥.09%.  

3.2. Device Failures  
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Skyn devices used in this research were early, hand-assembled prototypes. In total, this 

research produced 37 missing Skyn files—18 due solely to device malfunction, and 19 that 

involved a combination of device and user issues. Of the 18 failures attributable solely to the 

devices themselves, 9 files were completely blank for unknown reasons, 3 consisted of an 

entirely flat line with no oscillation, and 6 were blank or severely truncated due to battery failure. 

An additional 19 Skyn files were lost as our team learned to work with these delicate prototypes. 

All participants for whom we had useable Skyn data were included in our final sample of 

participants.  

Of the final sample of 73 participants for whom we had Skyn files, 66 of these 

individuals also had useable SCRAM files. Six SCRAM files were missing due to procedural 

issues associated with SCRAM assignment, and one due to device malfunction. 

3.3. Model Evaluation  

Across all participants and both alcohol and no-alcohol conditions, the average difference 

between actual BrAC and eBrAC (i.e., MAE) was .010 [0.008, 0.012]. Model accuracy tended to 

be higher in the no-alcohol vs. the alcohol condition (see Table 2) —effects that are likely 

partially attributable to the bounded nature of BrAC and resulting floor effects at lower BrACs. 

When subdivided according to different BrAC levels, the distance between BrAC and eBrAC 

was smaller at lower BrAC values, and increased as BrAC increased—for BrACs .00%-.03%, 

MAE=.009, 95% CI [0.007, 0.011]; for BrACs .03%-.06%, MAE=.011, 95% CI [0.010, 0.012]; 

for BrACs over .06%, MAE=.015, 95% CI [0.012, 0.017].  

The model demonstrated strong capabilities for distinguishing episodes of drinking from 

non-drinking. Among participants assigned to the no-alcohol condition, rates of false positives 

were low, with only 1.8% of eBrAC values falling above .02%. Thus, in more than 98% of cases, 
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sober individuals were correctly identified as having consumed less than the equivalent of one 

alcoholic beverage (see Watson et al., 1981). The model also demonstrated strong ability to 

correctly detect episodes of alcohol consumption, with 98.5% of post-baseline alcohol condition 

eBrAC values falling above .02%.  

MAE did not differ significantly as a function of participant gender, age, race, or drinking 

patterns. Minor discrepancies emerged across different Skyn prototype devices (see Table 3 for 

full results). Graphs for “best”, “worst”, and “average” prediction cases appear in Figure 3. 

3.4.  Model Comparison  

Next, we evaluated the incremental utility of the specific model employed (referred to 

here as the “full model”) beyond more parsimonious models. As noted previously, the full model 

involved two key elements: the extraction of time series features from TAC data and the 

implementation of machine learning algorithms that included these as predictors. But to what 

extent do these elements drive the accuracy of the models—i.e., does the model need to be so 

complex, or would a simpler model suffice? To address this question, we constructed two 

additional models: 1) A linear regression model including a single TAC value (TAC-reading 

taken immediately preceding BrAC reading) as a predictor—providing a basic point of 

comparison involving neither machine learning nor time series analysis; 2) The same Extra-Trees 

machine learning model used above, but this time including only the immediately preceding 

TAC value as a predictor—allowing us to assess the incremental utility of our time series 

feature-extraction beyond machine learning alone. All models were trained and tested using the 

same 4-fold participant-level cross-validation procedures. Complete model results are presented 

in Table 2. The basic linear regression approach produced a MAE (i.e., error) that was more than 

double that of the full model. The model employing machine learning methods—but no time 
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series feature extraction—produced a MAE that was 27% lower (better) than the basic linear 

regression model but still 60% higher than our full model. Confidence intervals for MAE were 

overlapping for none of these models. In sum, the model integrating both time series feature 

extraction and machine learning methodology outperformed other methods by a substantial 

margin. Shapley feature importance values (Lundberg and Lee, 2017) for the “full” model are 

presented in supplemental materials.5 

3.5.  Predicting Differential BrAC Levels  

Based on analyses presented to this point, it is unclear the extent to which the model’s 

accuracy is explained solely by its ability to differentiate intoxicated from non-intoxicated 

participants. To explore this further, we ran analyses examining only those readings that were 

collected post-baseline within the alcohol condition. Despite the limited BrAC range in this 

subsample (Average min=.026%; Average max=.084%; see section 3.1), we nonetheless found a 

significant correlation between eBrAC and BrAC that was moderate in magnitude, r=.495, 95% 

CI [0.424, 0.559]. Next, to evaluate the model’s ability to accurately predict MAE among 

intoxicated participants, we randomly shuffled post-baseline eBrAC values within participants in 

the alcohol condition. Specifically, for observations taken on alcohol sessions post-baseline, we 

compared the MAE for our final model in which eBrAC values were correctly matched with 

BrAC values with a model in which these eBrAC values were randomly shuffled within 

participants, permitting us to examine the extent to which the MAE for our final model 

outperformed what might be expected based on random chance. Again, despite the restricted 

BrAC range in this study subsample and thus the relatively low ceiling for MAE values, the MAE 

for the randomly shuffled model, MAE=0.021, 95% CI [0.020, 0.023], was substantially higher 

 
5 Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by 

entering doi:  
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than the non-randomly shuffled model, MAE=0.015, 95% CI [0.013, 0.016]. Confidence 

intervals for these values did not overlap. Taken together, these results suggest that, despite a 

restricted BrAC range post-baseline among alcohol participants in the current study, the accuracy 

of our final model was not driven solely by the model’s ability to differentiate drinking episodes 

from non-drinking episodes.  

3.6.  Session Phase Learning Analyses  

For the purposes of analysis, each 30-minute interval was treated as a discrete analytic 

unit (instance), independent of any information that might contextualize it within the broader arc 

of the session for a given participant. Nonetheless, although the shape of BrAC curves did vary 

somewhat across alcohol participants, this variation was not large (see descriptive statistics). 

Thus, given that BrAC curves among alcohol participants in our study were relatively consistent 

in their shape, one possibility is that our machine learning model was simply learning to 

recognize specific patterns of TAC values characteristic of session epochs produced by our 

specific dosing paradigm and outputting predictions on the basis of these epochs. Some amount 

of such epoch learning is likely unavoidable and, in fact, a more sophisticated version of such 

learning might have direct practical applications for predicting BAC values in the real-world, 

given a volume of data sufficient for characterizing most types of drinking patterns. Nonetheless, 

several data points led us to believe that such epoch learning was unlikely to be a primary factor 

driving effects in the current study: 1) We constructed a machine learning model including time 

series TAC features as input and % Drinking Episode Elapsed as output—in other words, we 

constructed the same final model used above for predicting BrAC, but used the model to predict 

session epoch (% Drinking Episode Elapsed) instead. Results indicated that session epoch is 

difficult to predict directly from TAC input (MAE=24% of the session). 2) Visual inspection of 
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graphs indicated that eBrAC values produced by our models appear to respond to distinctive 

characteristics of raw TAC data vs. simply predicting the characteristic shape of lab-based 

drinking episodes (e.g., see Figure 3, alcohol condition “Maximum MAE”). Taken together, these 

results suggest that session epoch alone is an unlikely explanation for the success of models in 

predicting BrAC.   

3.7.  SCRAM Analyses  

Finally, we constructed machine learning models using data from the SCRAM ankle 

bracelet to predict BrAC. Ninety percent of participants in this study had useable SCRAM files 

(N=66; see section 3.2). Note that the SCRAM device, which relies on a pump to generate 

airflow across the sensor, cannot be programmed to produce automated readings at a rate faster 

than 30 minutes due to issues of battery life (Rosales, 2020). Thus, in light of this fixed sampling 

interval, only the machine learning and not the time series portion of our model was applied. 

Specifically, we applied Extra-Trees machine learning to readings taken from SCRAM devices, 

incorporating as inputs the closest SCRAM reading preceding a BrAC reading. Results indicated 

strong accuracy for SCRAM in the no-alcohol condition (Table 2), unsurprising given the 

precision-level of raw SCRAM output. However, across all conditions, the error for the SCRAM 

model was over 60% higher vs. the error for Skyn (see Table 2).  

4.  Discussion 

The present laboratory study employed high-frequency TAC readings from a new-

generation transdermal alcohol sensor, leveraging a combination of time series analysis and 

machine learning to produce real-time BAC estimates. We have previously published research 

examining a subset of individuals from this same dataset (N=30; Fairbairn and Kang, 2019). 

While this prior research examined correlations between BAC and raw TAC values, the current 
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study uses machine learning to transform these values into estimates of BAC, thus for the first 

time permitting the examination of the accuracy of transdermal BAC estimates from a new-

generation sensor. Among participants with useable data, the model demonstrated strong 

capabilities for distinguishing episodes of drinking from non-drinking, and also indicated 

significant (moderate) ability to differentiate BrAC levels specifically among intoxicated 

participants. Correlations between BrAC and eBrAC were high, and the average absolute 

difference between BrAC and eBrAC was .010. Estimates were particularly precise at lower 

BrAC levels, with the precision of these estimates tending to decrease as BrAC increased. 

Results indicated that both time series feature-extraction and machine learning contributed to 

model accuracy, with the “full” model incorporating both of these elements outperforming more 

parsimonious models. Finally, analyses indicated that models built with data from the new-

generation Skyn sensor outperformed similar models built with data from the older-generation 

SCRAM. 

Strengths and limitations of this research should be noted. Scientists have long been 

interested in algorithms that might permit the translation of TAC output from transdermal 

sensors into estimates of alcohol consumption (Dougherty et al., 2012; Luczak and Rosen, 2014; 

Sirlanci et al., 2019; Swift and Swette, 1992). The current research is the first to test the validity 

of BrAC estimates from a new-generation transdermal sensor. This study is also the first, to our 

knowledge, to test the validity of transdermal BrAC estimates produced in “real-time”—created 

for a precise time point based only on TAC readings collected in the immediately preceding time 

interval. Regarding limitations, the current study employed fixed alcohol dosing procedures, 

resulting in relatively uniform BAC curves in the alcohol condition, and was further conducted 

in a controlled laboratory context. Research examining variable alcohol doses and real-world 
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drinking contexts is required to validate TAC-BAC conversion algorithms. Further, although 

procedures employed in this study did capture the majority of BAC and TAC curves, participants 

nonetheless left the laboratory before their TACs reached zero. Finally, although the current 

study does provide evidence that the new-generation Skyn device produces more accurate BAC 

estimates than the older-generation SCRAM, data produced by this study are incapable of 

providing a firm answer surrounding the reason for this differential accuracy. Of note, however, 

the accuracy of the SCRAM model is similar to that of the Skyn model omitting the time series 

component, indicating Skyn’s higher sampling rate as a potential factor driving final model 

accuracy.  

Regarding the Skyn devices themselves, although these data indicate promise, device 

development will be required before they are suitable for most applications. This research 

employed early hand-assembled Skyn prototypes, and failure rates ranged from 16% (device 

issues alone) to 34% (device/user issues). Data used in analyses were ideal in that they excluded 

those with device error. Further, the specific Skyn prototype we examined produced output only 

in terms of raw electrical current detected at the transdermal sensor, thus necessitating data 

standardization prior to analysis (see also Fairbairn and Kang, 2019; issue addressed with new 

Skyn prototypes). Finally, Skyn devices have limited water resistance, a feature that is 

suboptimal for real-world test conditions. More robust prototypes would be important in 

facilitating large-scale field testing. Thus, at the current time, SCRAM remains the most reliable 

transdermal alcohol sensor. 

The task of predicting BAC from transdermal sensor data across contexts certainly 

represents a challenge, and the success of such an undertaking is currently unclear. Importantly, 

however, several additional tools are available to researchers that might aid in this endeavor. 
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First, in the current project, we used a combination of time series feature extraction and tree-

based machine learning analyses. The approaches employed here are well-suited to the current 

dataset, which involved relatively few instances. With larger datasets, additional modeling 

frameworks become available. For example, individual data points from all preceding 30 minutes 

might be directly entered into models, bypassing time series feature extraction entirely and 

allowing for additional model complexity/flexibility. Beyond tree-based approaches, deep neural 

network methods have shown great promise for learning even more complex associations 

between low-level variables, given very large datasets (LeCun et al., 2015). Furthermore, new-

generation transdermal devices incorporate sensors beyond those assessing TAC (e.g., skin 

temperature, accelerometer). Within the context of larger datasets, data from these additional 

sensors might be used to refine the precision of estimates across diverse environments.  

In sum, transdermal sensors offer a passive, noninvasive method for assessing alcohol use 

likely to be attractive to broad populations of drinkers. Results of the current study provide 

evidence for the validity of data produced by a new-generation of transdermal sensor, and further 

indicate that real-time transdermal estimation of BAC is possible under specific conditions. 

Future research employing varying doses and contexts is needed to further clarify the place of 

transdermal sensors in our arsenal of techniques for assessing, preventing, and treating problem 

drinking. 
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Figure Legend 

Figure 1. AMS SCRAM ankle bracelet (left) and BACtrack Skyn wrist monitor (right) displayed 

side-by side. The approximate weights of the devices are 6oz (SCRAM) and 1oz (Skyn 

prototype). 

Figure 2. A visual representation of the data analysis plan employed in the current project. Data 

analysis involved the extraction of multiple time series features (e.g., mean, trends, periodicity) 

from the 30 minutes of raw TAC data that preceded each breathalyzer (BrAC) reading. These 

time series features were then entered as predictors into Extra-Trees machine learning algorithms 

to create estimates of BrAC from transdermal data (eBrAC). The top panel provides a broad 

visual depiction of the entire analysis process, the bottom left panel provides examples of a 

subset of time series features extracted (see Table 1 for additional features), and the bottom right 

panel provides a flow chart of machine learning modeling procedures. 

Figure 3. Graphs for participants with the “best” (minimum MAE), “worst” (maximum MAE), 

and average (Median MAE) prediction accuracy from both alcohol and no-alcohol (control) 

conditions in the current study. Precise average MAEs for alcohol condition graphs shown above 

are as follows: best case MAE=0.006; worst case MAE=0.028; median case MAE= 0.013. Precise 

average MAEs for the no-alcohol (control) condition graphs are as follows: best case 

MAE=0.000; worst case MAE=0.011; median case MAE=0.001. Baseline standardization 

procedures were applied to all Skyn data, as described in the Data Analysis Plan. For the 

purposes of graphs displayed here, data from Skyn was transformed (divided by 20,000) such 

that it could be visualized on approximately the same scale as eBrAC and BrAC.  
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Table 1. A partial list of time series features extracted by the software package TSFRESH, consisting of the most important 

features in the main model. For a complete list of all features extracted by this package, together with more detailed feature 

explanations, see below link: 

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html 

Feature Name Feature Description 

agg_linear_trend(x, f_agg, chunk_len, attr) Aggregate timeseries x into chunks of length chunk_len using 

function f_agg, fit a line to the result, and return attr (the slope, 

p-value, or other attribute of the fitted linear model) 

change_quantiles(x, ql, qh, isabs, f_agg) Aggregate consecutive (absolute) differences in x using f_agg 

for values that fall between quantiles ql and qh 

fft_coefficient(x, coeff, attr) Attributes of a specific coefficient from the Fourier transform 

of x (frequencies represented in x) 

linear_trend(x, attr) Fit a line to x and return an attribute of the fitted linear model 

maximum(x) Maximum value in x 

mean_abs_change(x) Mean of absolute differences between consecutive values in x 

percentage_of_reoccurring_datapoints_to_all_datapoints(x) Proportion of unique data points in x that occur more than once 

percentage_of_reoccurring_values_to_all_values(x) Proportion of values in x that occur more than once 

quantile(x, q) Value of x at quantile q 

ratio_value_number_to_time_series_length(x) Proportion of data points in x that are unique 

standard_deviation(x) Standard deviation of x 

sum_of_reoccurring_data_points(x) Sum of non-unique data points in x 

sum_of_reoccurring_values(x) Sum of non-unique values in x (non-unique data points with 

duplicates removed) 

 

  

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Table 2. Comparison of models for translating transdermal data into estimates of BrAC for Skyn (Models 1-3) and SCRAM (Model 4) 

  

 Model SM.  

(SCRAM Model) 

Machine Learning 

applied to SCRAM 

readings 

 

Model 1.  

(Comparison Model) 

Linear Regression 

without Time Series 

Features  

Model 2. 

(Comparison Model) 

Machine Learning 

without Time Series 

Features 

Model 3.  

(Full Model) Machine 

Learning with Time 

Series Features 

 

     

MAE [95% CI] .018 [.016, .020] .022 [.020, .024] .016 [.014, .018] .010 [.008, .012] 

RMSE [95% CI] .018 [.016, .020] .025 [.022, .028] .018 [.016, .021] .013 [.011, .015] 

r [95% CI] .021 [.019, .024] .637 [.601, .671] .776 [.751, .799] .907 [.896, .917] 

     

All Conditions     

  % within .01 of BrAC 62.1% 12.7% 61.5% 70.8% 

  % within .02 of BrAC 76.2% 73.6% 74.9% 86.4% 

  % within .03 of BrAC 87.2% 83.6% 87.3% 94.5% 

     

Alcohol Condition     

  % within .01 of BrAC 32.1% 24.4% 30.7% 44.1% 

  % within .02 of BrAC 57.3% 48.9% 57.0% 73.3% 

  % within .03 of BrAC 77.1% 65.6% 80.0% 89.6% 

     

No-Alcohol Condition     

  % within .01 of BrAC 99.8% 2.1% 89.7% 95.1% 

  % within .02 of BrAC 99.8% 96.1% 91.2% 98.2% 

  % within .03 of BrAC 99.8% 100.0% 93.9% 98.9% 
MAE, RMSE, and r values are presented for data aggregated across all conditions (i.e., alcohol and no-alcohol). 95% confidence 

intervals are presented within brackets for MAE, RMSE, and r values above. 

 

Model SM employed Extra-Trees machine learning to SCRAM readings, incorporating the closest SCRAM reading preceding a BrAC 

reading as a predictor (due to the sparse sampling interval of SCRAM, calculating TAC time series features was not an option). Model 1 

employed linear regression including a single Skyn TAC value (TAC-reading taken immediately preceding BrAC reading) as a 

predictor. Model 2 employed Extra-Trees machine learning incorporating only the immediately preceding Skyn TAC value as a 

predictor. Model 3—the “full” (final) Skyn model—incorporated Extra-Trees machine learning with Skyn TAC time series features as 
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 predictors. All models were trained and tested using 4-fold participant-level cross-validation. N=67 SCRAM model, N=73 Skyn 

models. 

 

MAE=Average absolute distance between measured BrAC and eBrAC, calculated per-participant and then averaged across participants; 

RMSE=Root mean squared error, also calculated per-participant and averaged across participants. “r” refers to the Pearson correlation 

between eBrAC and BrAC. Mixed models accounted for participant-level clustering of BrAC values. “% within XX of 

BrAC”=percentage of eBrAC values that fall within XX of measured BrAC (or, put differently, % MAE values <XX)  



MACHINE LEARNING TRANSDERMAL BAC ESTIMATION  28 

 

 

Table 3. MAE as a function of participant and device characteristics. 

 b SE t p 

Gender -0.001 0.001 -0.72 0.473 

     

Age 0.000 0.000 0.91 0.366 

     

Days Drink/30 0.000 0.000 -1.49 0.142 

     

Race      

   African American 0.002 0.003 0.73 0.467 

   Asian 0.000 0.001 0.25 0.807 

   Multiracial -0.001 0.001 -1.14 0.260 

     

Skyn Device ID     

   0BB4 -0.003 0.001 -3.09 0.003 

   0DB5 -0.003 0.001 -2.10 0.040 

   18 -0.001 0.002 -0.86 0.394 

   7AB3 -0.004 0.002 -2.44 0.017 

   9 0.000 0.002 0.13 0.900 
The above represent coefficients derived from multilevel models predicting MAE 

(average absolute distance between measured BrAC and eBrAC) while accounting 

for clustering of observations within participants. All variables were entered into 

separate models. All models control for beverage condition assignment. Gender 

was coded such that Female=1 and Male=0. “Days Drink/30”=number of days 

reported drinking at baseline out of past 30; Race was coded as a set of dummy 

codes, with “White” as the reference group; Skyn Device ID was coded as a set of 

dummy codes, with device B6B3 as the reference. Of the Skyn devices used here, 

0BB4, 7AB3, B6B3, and 0DB5 represent older (2016) Skyn prototypes, whereas 

devices 18 and 9 represent newer (2018) prototypes. 
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Data Processing: The output provided by the Skyn prototype employed in this research 

represents the measurement of raw current detected at the sensor and involves no meaningful 

zero metric. Thus, to approximate a more standardized metric, we subtracted the average of the 

first five minutes of TAC readings of each session from the entire session as a simple baseline, 

and one which could be easily implemented in a practical application. [Note that the most recent 

Skyn prototype also provides measurements in terms of units of alcohol per volume of air, thus 

providing a standardized metric with a meaningful zero value.] Regarding breathalyzer readings, 

we obtained regular BrAC measurements from participants in the alcohol condition, but more 

sparse readings within the no-alcohol condition (see methods section). Participants in both no-

alcohol and alcohol conditions were monitored continuously throughout their experimental 

sessions, and they were further not allowed to keep any possessions with them during their study 

participation. It was thus possible to infer 0.00% BrAC at times when no alcoholic beverage had 

been administered by experimenters. Thus, to create instances for the no-alcohol condition, we 

inserted synthetic (artificial) 0.00% BrAC readings every 10 minutes, so that predictions for no-

alcohol participants could be made as well. For the experimental condition, we also added a 

single synthetic 0.00% baseline reading 1 minute before drinking began in each session. In total, 

these procedures created 571 instances for the no-alcohol condition and 521 for the alcohol 

condition.  
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Feature Importance Analysis: We calculated Shapley feature importance values for each 

instance in the testing set (Lundberg & Lee, 2017). Shapley values describe what a model has 

learned about the relationships between features and the response variable in terms of the effect 

each feature had on the prediction for each instance. For example, the value of a feature such as 

standard deviation of Skyn may have a positive effect on the predicted value in some cases, a 

negative effect in some, and may have no effect at all in others. Shapley values can be calculated 

for every instance by tracing the path taken in every decision tree learned by Extra-Trees and 

recording the influence of the feature on the final prediction. We calculated feature importance 

by finding the mean absolute Shapley value across all instances for each feature, thus quantifying 

its total (positive and negative) influence. 

We examined mean absolute Shapley values across all instances to discover what features 

the model found to be the most important in determining the final model predictions. Many 

features appeared at least once in the model during cross-validation (338), so we examined only 

the 25 most important (see Figure S1 and Table 1 for expanded descriptions). The three most 

important were related to the uniqueness of values in the timeseries, which is likely a good 

indicator of drinking vs. not drinking behavior (if most Skyn readings are identical, it indicates a 

flat line). Conversely, most of the important features captured change over time in various ways. 

For example, the four “fast Fourier transform” (FFT) features represent frequency characteristics 

of the Skyn signal (e.g., repeating patterns), the eight “change quantile” features measure 

variation restricted to specific quantiles of the data, and the two “linear trend” features capture 

linear change. Thus, the model appeared to distinguish drinking episodes from non-drinking 

activity by measuring flat-line Skyn readings, then estimated BrAC during drinking episodes 

from slope, variation, and frequency-related features. 
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Figure S1. Shapley feature importance (mean absolute effect on predicted value) for the top 25 most 

important features from the main model (TSFRESH features with Extra-Trees machine learning 

regression). Feature names are from TSFRESH to enable exact matching in TSFRESH documentation; 

more intuitive descriptions of features are provided in Table 1. In cases where variables may be highly 

collinear, Extra-Trees will select one variable (essentially at random) when creating each branch in each 

tree in the model. Thus, total feature importance may be distributed across correlated features.  
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