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Abstract. Lecturing in a classroom environment is challenging - instructors are 
tasked with maintaining students’ attention for extended periods of time while 
they are speaking. Previous work investigating the influence of speech on 
attention, however, has not yet been extended to instructor speech in live 
classroom lectures. In the current study, we automatically extracted acoustic 
features from live lectures to determine their association with rates of classroom 
mind-wandering (i.e., lack of student attention). Results indicated that five 
speech features reliably predicted classroom mind-wandering rates (Harmonics-
to-Noise Ratio, Formant 1 Mean, Formant 2 Mean, Formant 3 Mean, and Jitter 
Standard Deviation). These speaker correlates of mind-wandering may be a 
foundation for developing a system to provide feedback in real-time for lecturers 
online and in the classroom. Such a system may prove to be highly beneficial in 
developing real-time tools to retain student attention, as well as informing other 
applications outside of the classroom. 
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1 Introduction 

In the classroom, lecturers are often faced with the challenging task of combatting 
frequent bouts of student inattention and disengagement. Such inattention often arises 
in the form of mind-wandering, defined here as thoughts unrelated to the task at hand 
(e.g., a classroom lecture [31-32]). When a student mind-wanders, they risk missing 
out on critical pieces of information and thus can develop an impoverished 
understanding of the learning material. It is therefore important to find ways to reduce 
the occurrence of mind-wandering and potentially mitigate its negative impact.  

One way to minimize the potential negative influence of mind-wandering is by 
detecting and responding to it in real-time [20]. However, approaches to date have 
mostly focused on student-centered models of mind-wandering – where ongoing data 
specific to each learner (e.g., eye-gaze) are necessary to make predictions about 
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whether or not they are currently mind-wandering. These attempts have been successful 
in laboratory contexts, but they are not currently scalable to entire classrooms. 

Here we adopt an environment-centered model instead, by focusing on subtle 
naturalistic fluctuations in the learning environment (i.e., the instructor’s speech). We 
test, for the first time, whether instructor speech patterns are related to classroom mind-
wandering – potentially setting the foundation for the development environment-
centered models of mind-wandering that can mitigate mind-wandering through scalable 
automated instructor feedback. 

Environment-centered models seem based on the lessons we have already learned 
from laboratory cognitive psychology studies about when and why mind-wandering 
occurs. For example, mind-wandering tends to increase over the course of a task 
[33], and decrease when the task becomes more difficult (but see [13, 29]). Notably, 
even features like typeface seem to influence how often learners report mind-
wandering: participants reported mind-wandering more often when reading a text in 
grey Comic Sans versus black Arial [11]. Although these studies demonstrate the 
potential malleability of mind-wandering, it is unclear if subtle environmental features 
(e.g., instructor behaviors, content changes, speech) may influence mind-wandering in 
live classrooms.  

Here we directly examine how variations in the way information is transmitted 
through speech relates to students’ attention in classroom contexts. This study builds 
on the environment-centered approach adopted by Bosch et al. [3], which examined 
how fluctuations in instructor movements were found to successfully predict classroom 
mind-wandering rates. Our specific focus on the instructor’s speech fills an important 
gap in the literature, as very little research to date has been dedicated to quantifying and 
understanding how acoustical speech patterns influence student attention (e.g., rates of 
mind-wandering).  

 
1.1 Background Literature 

Acoustical features of speech have previously been linked to listener attention and 
information retention, albeit outside of the educational realm [4, 24]. For example, both 
the structure of speech (e.g., pitch contour and trajectory of source location) as well as 
prosodic quality (e.g., pitch and loudness) appear to reliably predict audience 
inattention [5, 10]. The emotional tone conveyed through acoustical features also seems 
to be an important aspect of speech; for example, there are clearly dissociable 
processing patterns in the brain when people hear angry versus neutral prosody [26]. 
These studies, though not conducted in the context of a lecture, highlight the potential 
for acoustic-prosodic features to impact information processing – making it likely that 
mind-wandering may also be influenced. 

Only a few studies have attempted to link acoustic features to mind-wandering 
specifically. Drummond & Litman [6] asked students to read a paragraph about biology 
aloud and then perform a learning task (either self-explanation or paraphrasing). 
Periodically, they were probed to report how frequently they experienced off-task 
thoughts on a scale from 1 (all the time) to 7 (not at all) during the task. Students’ 
responses were split into two categories, where 1–3 on the scale was “high” in zoning 
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out, and 5–7 was “low” in zoning out. They trained a supervised machine learning 
model on the students’ acoustic-prosodic features to classify low and high zone out, 
and achieved an accuracy of 64% in discriminating between the two. This study 
provides some evidence that individuals’ tendencies to mind-wander are related to 
acoustic-prosodic cues (e.g., percent of silence, pitch, energy) of their own speech. It 
remains unclear, however, how such acoustic-prosodic features extracted from a 
speaker influence mind-wandering for listeners. Establishing associations between 
these speaker features and listener attention may have direct applications for an 
environment-centered feedback system in a classroom. 

In the current study we sought to bridge the gap in our understanding of possible 
associations between features of speech and classroom attention. Our goals were (1) to 
provide a proof-of-concept method for automatically analyzing classroom speech 
features from low-cost audio recordings, and (2) to elucidate the relationship between 
acoustical speech features and mind-wandering in the classroom. 

To tackle the first goal, we automatically extracted speech features from classroom 
lecture recordings using an open source software package called open Speech and 
Music Interpretation by Large-Space Extraction (openSMILE) [9]. We selected a 
popular feature set provided by openSMILE – the Geneva Minimalistic Acoustic 
Parameter Set [8]. We then identified and extracted a set of theoretically-relevant 
acoustic features from nine live classroom lecture recordings. 

Next, as a step toward identifying key features to use in an environment-centered 
model of mind-wandering, we assessed the relation of these features to mind 
wandering. We focused on mind-wandering because it is consistently reported to be 
negatively associated with performance and comprehension in complex learning 
environments [19, 23, 31], including university lectures [34-36]. We aligned speech 
features in time with students’ self-reported mind-wandering rates in order to probe this 
relationship. Below we describe our method for processing the audio recordings, how 
we arrived at a set of theoretically-relevant acoustic-prosodic variables, and how we 
tested for associations with mind wandering behavior. 

2 Method 

To address our two research goals, we collected data from multiple sources. As an 
overview, audio was extracted from low-cost video recordings of lectures, and students’ 
attention was polled using a computer application during these same lectures. The two 
data channels were temporally aligned at 500-second intervals for analyses. Each stage 
is outlined in greater detail below. 

 
2.1 Classroom audio and self-reported mind wandering 

We extracted audio from recordings of nine different lectures at the University of 
Waterloo. These lectures were delivered by three different instructors (three lectures 
each) who were teaching undergraduate psychology courses. The lectures were 
delivered during normal classroom meeting times and with no manipulations or 
interference related to our experiments. The lectures took place in two similar 
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classrooms, each with sloped, stadium-style seating and a stage with a podium for the 
teacher. The audio recording began at the same time as the lecture and lasted for the 
entirety of the class. For more details on data collection, please refer to Wammes et al.  
and Bosch et al. [3, 36]. 

Mind-wandering self-reports were collected from the students who participated in 
the study during the lecture (N = 76). Students who agreed to participate in the 
experiment downloaded an application onto their laptop that administered pseudo-
randomly scheduled thought probes throughout the lecture. Specifically, the occurrence 
of each thought probe notification was individually randomized, with the constraint that 
probes appeared no more than five times throughout the lecture with a range of 15 and 
25 minutes between probes. When a thought probe was scheduled, a small window 
appeared in the bottom right corner of their computer screen. This prompted 
participants to introspect about their mental state just prior to the probe, and report their 
current degree of mind-wandering on a continuous scale ranging from Completely 
mind-wandering to Completely on task (reverse scored to correspond numbers between 
0 and 1, where higher values refer to more mind-wandering). They were informed that 
mind-wandering was defined as “thinking about unrelated concerns,” and on task was 
defined as “thinking about the lecture.”  

2.2 Audio Processing and Feature Extraction 

In order to avoid interference from speech unrelated to lecture delivery, we used 
Audacity software to trim each audio clip to only include the instructor’s speech. 
Trimmed audio was then processed using openSMILE [10]. openSMILE is a flexible, 
open-source software package and audio toolkit capable of extracting a variety of 
different sound-based features, tailored for applications ranging from music to speech. 
The software extrapolates features based upon one’s chosen configuration package and 
returns information about the occurrences of the selected features [10]. In this 
experiment, the configuration package was an implementation of the GeMAPS, a set 
of acoustic parameters based upon recent acoustical speech research [8]. GeMAPS was 
selected as the configuration for openSMILE due to its minimalistic approach to affect-
oriented audio feature extraction. These parameters are Pitch, Jitter, Formant 1, 2, and 
3 frequencies (F1, F2, and F3, respectively), F1 bandwidth, Shimmer, Loudness, 
Harmonics-to-noise-ratio (HNR), Alpha ratio, Spectral slope of 0-500 Hz and 500-1500 
Hz, F1, F2, and F3 relative energy, Harmonic difference H1-H2, and Harmonic 
difference H1-A3 [8].  

Various relevant summary statistics of these basic parameters are also output by 
openSMILE. These include coefficient of variation (standard deviation normalized by 
the mean; SD) and mean for each parameter. For Loudness and Pitch, the following 
features were additionally included: 20th percentile, 50th percentile, 80th percentile, the 
range of 20th to 80th percentile, as well as the mean and SD of the slope rising signal 
and slope falling signal. Lastly, the mean of Spectral slopes (from 0-500 Hz and 500-
1500Hz), the Alpha Ratio, and the Hammarberg Index were included for each 
recording, resulting in 56 total features for analysis.  
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Following extraction of audio recordings from lectures and feature extraction, we 
identified a subset of these GeMAPS features (described in more detail below) for our 
analysis.  

2.3 Selecting Acoustic Features 

We identified a set of theoretically-relevant acoustical characteristics based on previous 
literature. Specifically, we searched for features that have well-established relationships 
with psychologically-relevant constructs (see Table 1 for a full description of features 
and corresponding sources). Due to the lack of classroom-based investigations, the 
majority of literature review focused on studies examining how features of speech relate 
to attention and emotion, broadly conceived, in laboratory contexts. For example, 
emotion is considered to be a fundamental aspect of speech, as the delivery of emotional 
information is tied to inflection of the voice [21]. The following features were identified 
with the corresponding sources, as described in Table 1.  

2.3.1 Formants 

Formants are descriptions of the high regions of spectral energy that occur in discrete 
regions of frequency. F1, 2 and 3 are necessary for synthesis of vowels in speech; 
additionally, the presence of F3 is required for interpretable speech [37]. F1 Bandwidth 
Mean also describes the degree to which speech is nasally and thus is included here (see 
Table 1).  

2.3.2 Voiced Segment Length, Loudness, Jitter and Shimmer 

Loudness of Speech is vital in a lecture due to its important role in conveying 
information to all members of the audience as well as its relation to confident and 
precise speech [15, 18]. 

Voiced Segment Length is defined as the length of discrete units in a stream of 
speech, which is measured by recording the average periods of uninterrupted speech. 
Similar to loudness of speech, voiced segment length is a correlate of confidence and 
precision in speech [15, 18]. 

Shimmer Mean is described as the occurrences of fluctuations in loudness of speech. 
Somewhat analogous, Jitter Standard Deviation is defined as the fluctuations in pitch. 
Both shimmer and jitter have been found to be correlates of trembling and nervous 
speech [30]. 

2.3.3 Harmonics-to-Noise Ratio and Hammarberg Index 

Harmonics-to-Noise Ratio (HNR) is the ratio of harmonic energy: the difference 
between fundamental formant (F0), first formant (F1), and second formant (F2). 
Previous research has found HNR to be a correlate of rough, uneven, and bumpy 
speech. 
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Table 1. Full list of selected acoustical speech features, description of selected features, 
rationale for selection and citations of relevant literature 

Formant 0 (F0) Mean. This feature characterizes the fundamental frequency of voice, 
which is critical in driving inflection and linked to prosody [18, 22, 27] 
 

Formant 1 (F1) Mean. The first harmonic formant is a determinant of prosodic quality, 
which drives speech reception [18, 26-27]. 
 

Formant 2 (F2) Mean. The second harmonic formant uniquely defines sounds of 
speech and is an acoustic correlate of resonance and clearness of speech [18, 25-27] 
 

Formant 3 (F3) Mean. The third harmonic formant is present in vowel sounds and is 
fundamental to reception of clear speech [1, 18, 26-27] 
 

F1 Bandwidth Mean. This is the region of frequency in which amplitudes differ by 
less than 3 decibels from the center frequency. It is a determinant of nasally/honky 
qualities of speech [17-18]. 
 

Loudness Mean. The average maximum volume of speech indicates more careful and 
precise speech and is correlated to confident speech as well as compliance [15, 18]. 
 

Loudness Standard Deviation. See above (Loudness Mean). 
 

Jitter Standard Deviation. The standard deviation of pitch fluctuations is associated 
with trembling/tremorous voices, relating it to nervous voice [30]. 
 

Shimmer Mean. The average fluctuations of speech loudness are also associated with 
trembling/tremorous voices, relating it to nervous voice [30]. 
 

Voiced Segment Mean Length. The average length of discrete units in a stream of 
speech is a correlate of confident and compliant speech, indicative of precise and 
careful speech [15, 18]. 
 

Harmonics-to-Noise Ratio. This is the ratio of harmonic energy difference between 
the fundamental formant (F0), first harmonic (F1) and second harmonic (F2). This is a 
correlate of rough, uneven, and bumpy speech [7].  
 

Hammarberg Index Mean. The difference in spectral energy between peaks in the 0.2 
kHz and 2.5 kHz band [16] is a correlate of low percentile sadness and perceived 
attractiveness of the speaker [15, 18]. 
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2.4 Predicting Student Mind-wandering with Acoustic Features 

Speech features were processed and extrapolated from the audio recordings in 500 s 
epochs of time, whereas students’ mind-wandering reports were sampled continuously 
throughout the lecture. To facilitate comparison between these two data channels, 
speech features were paired with mind-wandering reports within the same 500 sec 
window. To accomplish this, mind wandering reports were aggregated across 
participants within each time window from which acoustic features were derived. This 
resulted in 72 time windows per class, which we used in the analyses below. The 
average rating of mind-wandering (on a continuous scale between 0-1, where higher 
values mean more mind-wandering) was .499 (SD = .287). 

Relationships between speech features and mind-wandering rates were assessed 
using linear mixed-effects models. We used the lme4 package in R [2]. All models 
included a random effect of class to control for within-class variability in baseline 
mind-wandering. All models regressed mind-wandering on each acoustic feature of 
interest. We used restricted maximum likelihood estimation (REML) with unstructured 
covariance to avoid biasing the error variance. Tests of model significance were 
computed using a type II Wald chi-square test with a two-tailed a of .05 from the car 
package to take a conservative approach based on only estimates from the model [14].  

3 Results 

Descriptive statistics for each theoretically-relevant feature can be found in Table 2. 
Below we describe how each of these features related to classroom rates of mind-
wandering. Effect sizes (i.e., standardized regression coefficients) can be found in 
Table 3. We checked for normality of the residuals (i.e. an assumption for linear 
regressions), and the residuals displayed a normal distribution. 

3.1 Formants 

Formant 0 Mean (ß = .047, p = .494) and Formant 1 Bandwidth Mean (ß = .102, p = 
.156) were not reliably related to mind-wandering. In contrast, Formant 1 Mean (ß =-
.236, p = .006), Formant 2 Mean (ß = -.188, p = .025) and Formant 3 Mean (ß = -.239, 
p = .007) were all significantly negatively related to classroom of mind-wandering.  

3.2 Loudness, Voiced Segment Length, Jitter and Shimmer 

Mind-wandering was not significantly related to Loudness Mean (ß = -.094, p = .128) 
or Loudness Standard Deviation (ß = .024, p = .801). The same non-significant patterns 
were observed between mind-wandering and Voiced Segment Length Mean (ß = .056, 
p = .482) and Shimmer Mean (ß = -.051, p = .367). However, Jitter Standard Deviation 
was significantly positively related to mind-wandering (ß = .097, p = .008). 
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Table 2. Mean and standard deviation of speech features and mind wandering reports. 

Features M SD 
Formant 0 Mean 28.3 2.04 
Formant 1 Mean 638 55.8 
Formant 2 Mean 1683 56.0 
Formant 3 Mean 2750 59.0 
Formant 1 Bandwidth Mean 1190 34.0 
Loudness Mean  .571 .105 
Loudness Standard Deviation .452 .080 
Jitter Standard Deviation 1.56 .117 
Shimmer Mean 1.40 .027 
Voiced Segment Length Mean .168 .049 
Harmonics-to-Noise Ratio 2.01 1.74 
Hammarberg Index Mean .359 .892 
# of Mind Wandering in Epoch 11.8 12.6 

3.3 Harmonics-to-Noise Ratio and Hammarberg Index 

Harmonics-to-noise Ratio was significantly positively related to mind-wandering (ß = 
.175, p = .009), whereas Hammarberg Index Mean was not (ß = .071, p = .224). 

3.4 Summary of Results 

We show that subtle fluctuations in speech characteristics influence classroom mind-
wandering. Findings indicate that higher speech interpretability (higher values of 
Formant 1, Formant 2, and Formant 3 Mean), stability of pitch inflection (lower Jitter 
Standard Deviation, and the smoothness and evenness of speech (lower Harmonics-to-
noise Ratio) were associated with lower rates of self-reported mind-wandering. This 
same pattern of results was unchanged when analyses were repeated with the number 
of mind-wandering reports as a control variable.   
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Table 3. Linear mixed effects models of relevant acoustical speech features. Standardized 
regression coefficients and p-values listed for each model with significant values (p < .05) 

bolded. 
Features ß p 

Formant 0 Mean .047 .494 
Formant 1 Mean -.236 .006 
Formant 2 Mean -.188 .025 
Formant 3 Mean -.239 .007 
Formant 1 Bandwidth Mean .102 .156 
   
Loudness Mean  -.094 .128 
Loudness Standard Deviation .024 .801 
Jitter Standard Deviation .097 .008 
Shimmer Mean -.051 .367 
Voiced Segment Length Mean .056 .482 
   
Harmonics-to-Noise Ratio .175 .009 
Hammarberg Index Mean .071 .224 

4 Discussion 

To date, little research has been devoted to environment-centered models of mind-
wandering in classrooms. However, understanding how subtle variations in classroom 
lectures relate to student attention is important given that students frequently report 
mind-wandering while listening to lectures. We addressed this gap by assessing the 
relationship between acoustical speech features and mind-wandering in a classroom 
setting. We first detailed a method for automatically extracting a set of psychologically-
relevant acoustical speech features from low-cost video recordings in live classrooms. 
We then related these features to students’ self-reported mind-wandering across nine 
lectures. The data indicate that acoustical characteristics of the instructor’s speech 
matter: we observed significant relationships between mind-wandering and Formant 1, 
Formant 2, and Formant 3 Means as well as Jitter Standard Deviation and Harmonics-
to-noise Ratio. Of these features, Jitter Standard Deviation and Harmonics-to-noise 
Ratio were positively related to student mind-wandering, whereas Formants 1, 2, and 
3 Means were negatively related to mind-wandering.  

The negative relationships seen for Formant 1, Formant 2, and Formant 3 Means 
suggest that students paid more attention when speech was clearer. These three 
formants are associated with better speech clarity and negative correlates of raspy or 
hard-to-hear speech [18, 26-27]. From a cognitive standpoint, mind-wandering may be 
more likely to occur when speech is less clear because discerning the content of the 
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speech becomes more difficult; students may not have the cognitive resources available 
to match these increased task demands [13, 38]. 

The positive relationship observed for Jitter Standard Deviation provide some 
insight into the role of pitch changes in mind-wandering; that is, as the volatility of the 
instructor’s pitch increased, students reported higher rates of mind-wandering. Prior 
work revealed an association between jitter and trembling or nervous speech [30]. Thus, 
mind-wandering occurrences may increase when nervousness becomes detectable in an 
instructor speech. This relationship may be due to how students interpret of the prosody  
speech; additional sub textual emotional information that is actually irrelevant to the 
lecture may influence their attention. A similar positive relationship was found for 
Harmonics-to-Noise Ratio Mean: mind wandering increased along with increased 
magnitude of Harmonics-to-Noise Ratio (i.e., rough, uneven speech [15, 18]). In the 
context of our findings, this suggests that mind-wandering is more likely to occur when 
the instructor’s speech is more rough and uneven. Taken together, these finding 
highlight promising avenues for improving classroom lectures given that overall clarity 
of speech may be a simple way to increase student attention.   

Our findings serve as a potential basis for an environment-centered system to address 
mind-wandering that does not require any intrusive or high-cost student measurements. 
Current developments for such a system are in their infancy and rarely explore raw 
audio data. For example, Schneider, Borner, Van Rosmalen & Specht [28] developed a 
real-time feedback system which analyzes nonverbal and verbal behaviors and provides 
feedback to speakers. This system, while found to increase performance and confidence 
in speaking, focused on more basic features than the ones used here, such as arm-
crossing and volume. This system seeks to ensure that fluid speech is maintained and 
does not currently incorporate potential predictors of listener attention such as mind-
wandering. Our findings suggest that interventions may be effective by targeting 
acoustical characteristics of instructor speech to improve lecture delivery and reduce 
classroom mind-wandering.  

Our results, when combined with other environment-centered features like 
movement [3], may provide a crucial step toward the development of a multi-modal 
feedback system where acoustic properties are considered along with motion, content, 
and other sources of classroom data. Future research in this area may benefit by 
repeating the experiment while controlling for lecture content, as content of the 
presented information is likely to influence off-task though. Next steps include 
integrating and testing automatically extracted acoustic features into a real-time system. 
Such a system would require the intake of data in a specified time window, buffering 
the data in order to allow time for openSMILE computation, then feeding the buffered 
data to openSMILE for computation and prediction of student attention. Finally, the 
system will need to return a report that is easily accessible and interpretable by the 
instructor. While these steps are substantive, they are all attainable and the efficacy of 
using both video and auditory features has been established. As these tools develop, 
they provide a promising direction for online real-time intervention in educational 
settings. 
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