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ABSTRACT
Machine learning is a powerful method for predicting the
outcomes of interactions with educational software, such as
the grade a student is likely to receive. However, a predicted
outcome alone provides little insight regarding how a stu-
dent’s experience should be personalized based on that out-
come. In this paper, we explore a generalizable approach for
resolving this issue by personalizing learning using explana-
tions of predictions generated via machine learning explain-
ability methods. We tested the approach in a self-guided,
self-paced online learning system for college-level introduc-
tory statistics topics that provided personalized interven-
tions for encouraging self-regulated learning behaviors. The
system used explanations generated by SHAP (SHapley Ad-
ditive exPlanations) to recommend specific actions for stu-
dents to take based on features that most negatively in-
fluenced predicted learning outcomes; an “expert system”
comparison condition provided recommendations based on
predefined rules. A randomized controlled trial of 73 par-
ticipants (37 expert-system condition, 36 explanation condi-
tion) revealed similar learning and topic-choosing behavior
between conditions, suggesting that XAI-informed interven-
tions facilitated student statistics learning to a similar de-
gree as expert-system interventions.
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1. INTRODUCTION
Personalization promotes learning by providing meaningful,
timely, and relevant support that is tailored and paced to
an individual’s needs and preferences [4, 32]. Thus, many
intelligent tutoring systems (ITSs) have integrated person-

alization aspects that can automatically suggest which ma-
terials to study [9], reorient attentional states [15], and con-
struct personalized feedback [20]. Such interventions are of-
ten driven by predictions using past learners’ data to build
machine learning models, whose underlying mechanisms can
be difficult to interpret. Yet, understanding the reasons be-
hind a prediction is essential for educational software that
needs to respond not only to what is likely (i.e., predicted)
to happen, but also why it is likely.

Explainable artificial intelligence (XAI) methods [8, 17] have
been developed to circumvent the opaque nature of complex
machine learning models, which may thus enable a new gen-
eration of educational software with increased user trust and
perceived usefulness [12, 13]. In this paper, we create per-
sonalized interventions driven by explanations, rather than
by predictions, for the purpose of adapting students’ behav-
iors in a computer-based learning environment. We focus
on encouraging self-regulated learning (SRL) behaviors in
particular [33]. SRL is especially important in online and
computer-based learning contexts, where teachers are often
less available (versus classroom learning contexts) to guide
the learning process. However, many students need assis-
tance with these SRL decisions [37, 45, 36], and thus stand
to benefit from computer-based learning environments that
fill the gaps in SRL skills by suggesting appropriate activities
to students.

We present work from a randomized controlled trial for which
we developed an online, computer-based education platform
for college-level introductory statistics topics. We explored
how machine learning model predictions, coupled with ex-
planations, can personalize interventions to support SRL re-
viewing behaviors. Our study provides a rigorous compari-
son of an XAI-driven intervention against an active expert-
system intervention consisting of predefined rules based on
the amount of time spent studying each topic and the ex-
pected order of topics in the curriculum.

The XAI-driven interface adaptations in this work raise sev-
eral research questions (RQs) related to the effect interven-
tions have on learning and the effects adaptations have on
behaviors. These RQs have implications for computer-based
education (and for broader understanding of how simple



XAI-driven interventions affect student behaviors).

RQ1: What are the effects on learning and self-regulated
learning behaviors when students receive XAI-informed in-
terventions vs. expert-system interventions?

Hypothesis: We expected that the participants in the XAI-
informed intervention group will learn more than those re-
ceiving expert-system interventions due to XAI-informed in-
tervention group studying topics directly related to improv-
ing their predicted learning outcome. Furthermore, we ex-
pected that XAI-informed interventions would lead to more
frequent reviewing SRL behaviors. Although both the XAI-
informed and expert-system condition interventions in our
study were created with the goal of supporting SRL review-
ing behaviors (re-taking quizzes and re-reading texts), we ex-
pected that XAI-informed interventions would better high-
light topic areas that needed the most studying based on
learning outcome predictions.

RQ2: Do XAI-informed interventions lead to different topic
choosing behaviors compared to the expert-system interven-
tion?

Hypothesis: XAI-informed interventions may impart topic
choosing strategies based on predicted knowledge gaps, which
we expected would lead to lower proportions of students fol-
lowing the default intended order of topics. Furthermore,
we expected that students would follow interventions in the
expert-system condition more frequently because these in-
terventions often recommended a top-to-bottom reading or-
der of topics that may align with students’ natural inclina-
tions.

2. RELATED WORK
Here, we highlight work on self-regulated learning in online
and computer-based education environments and interface
adaptations informed by XAI.

2.1 Supporting Self-Regulated Learning
Self-regulated learning (SRL) refers to the metacognitive,
motivational, and emotional processes behind acquiring in-
formation or skills [48, 33]. SRL has been identified as an
important skill for succeeding in postsecondary education
[27, 31]. Developing SRL skills is difficult, however; stu-
dents struggle to differentiate effectiveness between learning
strategies [50], and may not be aware of how to develop SRL
skills [5]. There are three general groups of strategies iden-
tified in major SRL models: preparation, performance, and
regulation [33, 10, 38, 44, 50, 38, 44] (though there is some
variation, including SRL strategies that occur after/between
learning sessions [49]). It is regulation behaviors (e.g., re-
visiting materials or re-taking quizzes to prepare for a final
test) our study interventions target, since reviewing behav-
iors can be supported by recommending review of specific
learning material during test preparation.

Within the past two decades, a substantial amount of work
has been carried out encouraging SRL in online learning
environments, such as MOOCs [25, 23], where SRL skills
may be especially important since learners are required to
learn autonomously [2, 42]. Researchers have developed
computer-based education environments to support SRL skills,

such as MetaTutor [3], Betty’s Brain [24], and Cognitive
Tutor [40], which aid SRL skills via adaptive pedagogical
agents or by automatically personalizing the presentation of
information. These systems, along with other research in on-
line contexts [14, 34], demonstrate the feasibility of utilizing
data recorded in log files to examine SRL behaviors through
modeling SRL behaviors and predicting student outcomes.

2.2 Adaptations using XAI
In this paper, we focus on a particular XAI method called
SHAP (SHapley Additive exPlanations) [26]. SHAP is well-
suited to driving interface adaptations because it provides,
for every prediction, an indication of how much each feature
(i.e., predictor variable) influenced the decision made by a
machine learning model. SHAP values capture direction-
ality (e.g., the value of feature X1 for this prediction con-
tributed positively vs. negatively to the prediction) as well
as magnitude, via a game-theoretic approach [22]. Hence, an
interface can adapt to the needs of users based on feature
values and the effects those values have on predictions (i.e.,
the SHAP values), provided that the features themselves are
interpretable [6].

Within XAI research, there has been less focus on XAI sys-
tems that leverage machine learning explainability for adap-
tation for education purposes. Conati et al. used XAI for
integrating explanation functionality for adaptive hints in
an Adaptive CSP (ACSP) [12], and found that explana-
tions increase students’ trust, perceived usefulness, and in-
tention to use the hints again. In another study by Mu [30],
researchers used XAI to develop suitable interventions for
wheel-spinning students with simulated data and hypothet-
ical interventions predicted for a previous study [30]. The
work in our paper significantly extends this previous work
[30] by examining one possible application of XAI-driven in-
terventions (i.e., supporting SRL behaviors) via a random-
ized controlled trial. We also explore how XAI approaches
such as SHAP can help education researchers discover sen-
sible interventions for any learning behavior (e.g., suggest
different things to different students in a plausible way)—in
our case, SRL reviewing behaviors.

3. METHODS
Next, we discuss our online learning system and SRL inter-
ventions, the machine learning model for predicting student
learning outcome and interpretation via SHAP (SHapley
Additive exPlanations) values, and the experiment setup.

3.1 Self-guided Online Learning System
We developed a self-guided, self-paced online learning sys-
tem which displays both learning content and interventions
as students navigated through the interface, agnostic of con-
tent type (images, text, videos, etc.). The system also col-
lected logs including some general interaction behaviors such
as web page visits, time spent on each page, and more spe-
cific study-related data such as automatically assessed quiz
scores, pretest scores, and posttest scores.

We focused on introductory statistics because it is an im-
portant yet difficult-to-learn subject for many college de-
grees [46, 39, 41]. We developed a small curriculum of 12
introductory statistics topics in consultation with university



statistics instructors and educational websites (e.g., course
pages). Each topic consisted of a reading (text tutorials and
accompanying figures) and a corresponding 3-question, mul-
tiple choice mini quiz. These materials could be accessed
from the main interface of the topics menu page (Fig. 2).
The curriculum also included two variations of a 12-question
multiple choice question test (a pretest and a posttest), with
each question of the tests corresponding directly to one of
the 12 topics. Both tests asked about the same core con-
cepts and differed only with slight variations in questions,
such as the specific values used. We designed the final cur-
riculum to take a total of 90 minutes to complete, including
the pretest, 12 readings, 12 quizzes, and the posttest.

3.2 Expert-system Intervention
We designed an expert-system version of the self-regulated
learning intervention for the system (Fig. 1, top image) with
a simple yet precise message of a topic suggestion based on
reading time. However, we decided that the expert-system
intervention should first suggest an unseen topic over topics
with little study time, since learning outcomes improve when
students at least touch on all material in time-limited sce-
narios [28]. We anticipated that the statistics topics on the
system required careful reading in order to fully learn and
perform well, as the study’s statistics topics have been cited
to be prone to misconception [43], and difficult to teach [11].
Thus, we expected that time spent on readings was closely
connected to posttest scores. If a student knew that they
had spent a lower amount of time reading one of the topics
relative to others, they may self-reflect and be more likely to
prioritize reviewing that topic over others they have already
studied more thoroughly.

We implemented the expert-system intervention in the on-
line learning system by displaying the intervention message
when the student reached the 30 minute mark in the self-
guided study session (Fig. 2), then again at 40 minutes, and
finally, at 50 minutes. We chose these time points to pro-
vide sufficient data collection before the first intervention to
enable an accurate prediction of student outcome, and re-
peated the intervention at 10-minute intervals to give the
students additional suggestions. At the 60 minute mark,
students were automatically taken to the posttest. Since
the study session was self-guided, it was left up to the dis-
cretion of the student to read, review, or skip topics, and
spend as little or as much time—up to 60 minutes—as they
wished to complete the study session.

3.3 Piloting and Training Data Collection

Figure 1: Examples of the expert-system (top) vs. XAI-
informed (bottom) intervention messages.

Figure 2: A portion of the topics menu from a self-paced
learning session.

We recruited student participants via student mailing lists
and digital bulletin boards, seeking students with minimal
college statistics experience (0 or 1 college-level statistics
courses) in order to avoid ceiling effects from participants
with extensive preexisting knowledge of the material. The
study session was fully online. The study included a demo-
graphics survey, a pretest, a self-guided learning session (12
readings and 12 quizzes), and a final posttest. Participants
were compensated $15 USD. Based on participant feedback
from semi-structured interviews (compensated an additional
$5), we made various minor changes, such as clarifying the
topics menu page instructions, adjusting names to reduce
cultural specificity, noting topics from the topics menu were
related to the pretest and posttest questions, and including
a proceed to posttest confirmation page.

After making the final changes to our system, we recruited a
total of 58 participants for the first round of data collection.
The goal of the first round of data collection was to collect
training data for the machine learning model to predict the
posttest score, which is described in the next section.

3.4 XAI-informed Intervention
Table 1: Example subset of SHAP values from a posttest
score prediction for one student, indicating that the student’s
current time spent on topic 8 (i.e., 0 seconds) has the most
negative impact on their predicted posttest outcome.

Feature name Feature value SHAP value

Pretest score 50% 2.454

Quiz 1 score 67% 0.206

Quiz 2 score 100% 0.221

... ... ...

Topic 6 reading time 658 seconds 3.734

Topic 7 reading time 0 seconds -3.860

Topic 8 reading time 0 seconds -6.187

With the training data collected with 58 participants, we
trained a random forest regressor using pretest score, quiz



score (12 topics), and reading time (12 topics) features to
predict posttest score. We trained the final model on all
data with 100 trees and a maximum tree depth of 4 (the
only hyperparameter tuned). We used the tree explainer
(shap.TreeExplainer) in the Python shap library [26] to
interpret model behavior of the posttest score predictions in
terms of SHAP values. The feature with the most negative
SHAP value represented the feature which contributed most
to lowering a student’s posttest score.

For the XAI-informed intervention message (Figure 1, right
image) used for the XAI-informed condition, the topic (quiz
or reading) with the most negative SHAP value was selected
to be recommended to the student. The intervention text
also communicated to the student that the recommendation
was based on a system prediction of the student’s posttest
score to help the student better understand the reason for
suggesting the particular topic.

We examined what happens when a student follows the XAI-
informed intervention recommendation of the feature with
the most negative SHAP value. Table 1 shows an excerpt
of results from a SHAP analysis of a student during a study
session. At the time of this particular prediction, Topic
8 reading time had the most negative SHAP value with -
6.187—substantially lower than the next feature, Topic 7
reading time at -3.860. This indicates that, based on the
model’s posttest prediction, topic 8 reading time is nega-
tively impacting the predicted posttest score of this student
by 6.187 points out of 100 possible points on the posttest,
and should be recommended to the student to study.

Figure 3 shows how the SHAP value of one example fea-
ture, Topic 6 reading time, changed with each additional 20
seconds of studying time for one student. The SHAP value
trended in the positive direction as reading time increased
until a point between around 140 seconds of total reading
time when the SHAP value plateaued at ≈ 4. The model ap-
pears to have learned that short studying times do not yield
learning, and that very long studying times (relative to the
brief topics used in this experiment) do not help past a cer-
tain point, thus yielding an approximately sigmoid-shaped
curve. In this example, what was previously negatively in-
fluencing the predicted posttest score is now predicted to
contribute around +4 points toward the final posttest score.
Using the intuition from this example, our XAI-informed in-
tervention recommends a topic to review to the student such
that each student receives a personalized recommendation of
the most helpful topic for improving their posttest score.

3.5 Expert-system vs. XAI-informed Interven-
tion Experiment

We carried out a randomized controlled trial to compare
the expert-system intervention and the XAI-informed inter-
vention. We recruited 73 participants with minimal college
statistics experience (0 or 1 college-level statistics courses)
via campus mailing lists and—with the aid of university re-
search support—targeted emails to undergraduate students
with no statistics course on their academic course record.
We also recruited students from research subject pools and
introductory psychology undergraduate courses.

We randomly assigned students to conditions, with 37 stu-
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Figure 3: Changes in student’s total time spent on reading
topic 6 and resulting SHAP values (in % change in grade)

dents and 36 students assigned to the expert-system and
XAI-informed conditions, respectively. The study session
structure was identical to the training data study sessions:
a video-call meeting followed by the student independently
working through the study consisting of a demographics sur-
vey, a pretest, a self-guided learning session (12 readings and
12 quizzes), and a final posttest. Students were told that the
estimated total completion time was around 90 minutes, and
were compensated $15 USD. However, for the experiment,
in the case that a participant wanted to skip out of the self-
guided learning session early and proceed to the posttest,
they would receive an intervention on the confirmation page
and be offered the opportunity to return to the learning ses-
sion. We included this final intervention to ensure that every
student saw at least one intervention message regardless of
whether they reached the 30 minute mark.

4. RESULTS
In this section, we report participant demographics, various
learning outcome comparisons, and finer-grained analyses of
participants’ topic ordering learning behaviors.

4.1 Demographics Information
Among the 73 participants from the randomized control
trial, 73% identified as female, 26% as male, and 1% as non-
binary. Students had a mean age of 19.58 (SD = 1.71) years
old, with a minimum age of 18 and a maximum of 27. Over
35 college majors were represented by our participant pop-
ulation. Finally, 55% identified as White, 27% Asian, 12%
Hispanic or Latina/o, 3% Black/African American, and 1%
Native American.

4.2 Learning Behaviors and Outcomes
Table 2 summarizes the differences in pretest and posttest
scores between the expert-system and XAI-informed groups.
The mean improvement from pretest to posttest score was
18.03 (out of 100) for the expert-system condition, and 10.88
for the XAI-informed conditions, suggesting—contrary to
RQ1 expectations—that students in the expert-system con-
dition may have learned more. However, the difference in
improvement between between the two conditions was not
significant, t(71) = 1.924, p = .058. We also calculated
the Bayes factor (BF ) using JASP [19]; BF represents how



likely the null or alternate hypothesis model is through a
Bayesian approach [18]. Established guidelines [18] suggest
that BF = 1–3 provides anecdotal evidence and BF = 3–10
provides substantial evidence. Through this metric, there
is anecdotal evidence that the expert-system intervention
group had greater grade improvement, BF = 2.24. Table 2
also shows that both groups’ mean scores were not likely
to have been influenced by ceiling effects from prior statis-
tics knowledge; furthermore, no student in either condition
achieved a perfect score (100) on the pretest.

Table 2: Comparison of pretest and posttest scores between
expert-system and XAI-informed conditions

Group Count Mean score Std. dev.

Expert-system (pretest) 37 47.1% 16.10

XAI-informed (pretest) 36 50.2% 19.87

Expert-system (posttest) 37 65.1% 16.30

XAI-informed (posttest) 36 61.1% 20.70

4.3 Model Evaluation and XAI-informed Pre-
dictions

We performed 5-fold cross-validation with the model train-
ing data to estimate model accuracy and obtained a mean
R2 value of .262 (SD = .067), a mean RMSE of 15.17 (on a
0–100 posttest grade scale, SD = 2.20), and a mean Pear-
son’s r of .576. Mean R2 value was somewhat variable across
cross-validation folds; however, the trained model worked
relatively well overall when considering the small size of our
training data.

We analyzed the predictions made by our model and the
activity logs of the XAI-informed intervention group par-
ticipants. We found that the top three most often recom-
mended topics were Probability Introduction, Introduction
to Regression, and Calculating Probability. These represent
the most frequently recommended topics that had the most
negative SHAP values at the time of displaying the interven-
tion, across the 30 minute, 40 minute, 50 minute mark, and
on the posttest confirmation page. Two of the three most-
recommended topics were related to probability. Probability
is widely recognized as a difficult topic to learn for students
due to misconceptions about the subject [7, 16, 21, 43], and
our findings here support this assertion.

4.4 Self-Regulated Learning Behaviors
In order to evaluate the effects of the interventions on self-
regulated learning behaviors, we defined two metrics which
are shown in Table 3: attempts at quizzes already taken
and rereading texts that had already been read. The dif-
ferences in the number of quiz retakes were not significant,
t(71) = -1.618, p = .110, but there was anecdotal evidence
that the XAI-intervention group did more quiz retakes, BF
= 1.354. Similarly, the number of text reviews was not
significantly different, t(71) = -1.186, p = .240, but there
was anecdotal evidence of the XAI-intervention group hav-
ing higher number of text reviews, BF = 2.263. The mean
number of interventions seen prior to the posttest was 3.16
for the XAI-informed intervention group, and 2.75 for the

expert-system intervention group. However, there were sev-
eral participants who only saw a single intervention: 10 from
the XAI-informed intervention group and 3 from the expert-
system intervention group.

The results in Table 3 suggest minimal reviewing behaviors
in both conditions, though that may be expected given that
learning session included enough content that students could
spend most or all of their time on new topics.

Table 3: Comparison of metrics for SRL reviewing behaviors.

Group Quiz retakes Texts reread

Expert-system 1.054 11.514

XAI 1.583 15.444

4.5 Learning Order Analysis
We carried out an analysis to examine orders in which stu-
dents in each condition studied the 12 topics. We analyzed
the degree to which students deviated from the baseline
learning topic order by calculating the proportion of topic
component (reading or quiz) selection actions that did not
follow the direction of the default learning order presented
on the topics menu page (Fig. 2). For example, if the student
studied the first three topics in order and then studied the
sixth topic, the learning order deviation value for readings
would be .333. These learning order deviation values were
calculated for the learning periods before and after students
saw the first intervention. This analysis was done for par-
ticipants who studied any amount of material after the first
intervention n(XAI) = 26, n(expert-system) = 34.

The results in Table 4 show that students in both conditions
deviated from the typical top-to-bottom topic significantly
more frequently after intervention: XAI-informed, t(25) =
4.262, p < .001; expert-system, t(33) = 3.240, p = .003.
These differences before and after the intervention were ex-
pected, per RQ1, especially for the XAI-informed interven-
tion condition since it is more likely to recommend topics
out of order according to students’ individual needs.

Table 4: Proportion of actions in which students deviated
from a typical top-to-bottom topic order during their selec-
tions of what topic to pursue next.

Topic order deviation

Expert-system XAI

Before 1st intervention .552 .539

After 1st intervention .709 .727

Difference before/after .157 .188

5. DISCUSSION
Here, we discuss the main findings and implications and also
discuss generalization of our approach, limitations of our
study, and possible future work.

5.1 Learning and SRL Behaviors (RQ1)
We hypothesized that the students in the XAI-informed con-
dition would have greater learning gains when compared



to those receiving the expert-system intervention because
XAI interventions would give suggestions to review the most
critical topics for improving posttest score rather than the
expert-condition suggestions based on time. However, the
findings did not support our hypothesis. Learning gain was
not significantly different between the two conditions. The
overall average pretest score being 48.6% and average posttest
score 63.1%, and thus students may have benefited from
studying almost any topic. In such cases, an intervention to
encourage specific SRL behaviors would not be needed until
the student has spent much longer studying.

Additionally, our machine learning model was trained from
a relatively small amount of training data of 58 students,
which may have contributed noise to the predictions, and
consequently, less effective XAI-informed interventions which
recommended unhelpful topics for improving the posttest
score. However, both the expert-system and XAI-informed
groups had significant, notable improvements in pretest to
posttest scores, showing that our curriculum (and perhaps
both interventions) was effective for teaching the statistics
topics.

We hypothesized that the XAI-informed interventions would
have lead to more frequent SRL reviewing behaviors due to
bringing to light more directed learning strategies motivated
by improving one’s posttest score, and therefore, have lead
to more regular and frequent self-reflection to identify ap-
parent gaps in learning. The findings were inconclusive for
answering our hypothesis since there were few instances of
SRL reviewing behaviors (Table 3). While there were no
statistical differences between the mean quiz and text re-
viewing behaviors, Bayes factor values show that there was
anecdotal evidence of the XAI-informed group having both
slightly higher mean rates of retaking quizzes and rereading
texts. This suggests that there may indeed be intervention
effects that could emerge more clearly in large datasets and
longer learning sessions.

5.2 Topic Choosing Behaviors (RQ2)
We expected that participants receiving the expert-system
interventions would have been more receptive to following
the interventions’ suggestions compared to those receiving
the XAI-informed interventions. The expert-system inter-
ventions recommended topics based on the lowest reading
time spent, or to suggest the next unstudied topic in the ex-
pected order. This would have aligned with some students’
natural inclinations of studying through the topics in the de-
fault order as presented on the topics menu page (Figure 2).
Furthermore, we expected the XAI-informed intervention
group to strategize their topic choosing behavior without
the influence of a necessarily top-to-bottom order sugges-
tion, and choose more autonomously, based on strategies of
identifying gaps in knowledge (discussed in section 5.1).

The results show that there were increased effects on topic
choosing deviation behaviors in the two conditions. XAI-
informed and expert-system conditions both had increased
proportions of topic selection behaviors deviating from the
top-to-bottom order after the first intervention. The results
suggest the possibility that both interventions facilitated
self-directed learning behaviors of students to make topic
choosing behaviors most beneficial for their learning.

When understanding the results of RQ1 on learning perfor-
mance and topic suggestions together, the findings from our
paper may suggest that the XAI-informed interventions fa-
cilitated students’ statistics learning to a similar degree to
a method which prioritized unseen topics over mastery of a
smaller amount of material. Additionally, average pretest
scores were quite low for both conditions (Table 2), which
likely made any amount of scaffolding helpful.

5.3 Generalization to Other Domains
In our study, we used the possible reasons from quizzes
and readings for the posttest score predictions to person-
alize interventions to scaffold SRL behaviors through en-
couraging the review of specific topics. However, the same
XAI approach could be applied to cases where the goal is
to help a student improve almost any predicted outcome.
For example, one could predict student dropout from online
learning based on relevant student factors (constructs re-
lated to study skills, learning material interaction patterns,
stress, motivation, etc.) [35], combined with complex or
uninterpretable factors, and implement XAI-informed alerts
via interfaces or targeted emails for the student throughout
the course period to take actions reducing the likelihood of
dropout based on the most impactful of the interpretable
factors. Other applications could follow a similar approach,
such as helping students resolve confusion during attempting
algebra assignments [1], preventing learner disengagement
from reading texts [29], or improving student performance
in interactive online question pools [47].

5.4 Future Work and Conclusion
Future work could expand on this research by increasing the
number of participants in both the training data and exper-
iment as we were limited by our relatively small pilot and
experiment sample sizes. It may also be possible to reduce
idling behavior instances by using pre-screening surveys to
gauge their motivation for learning the material, or better
controlling the experiment through an in-person lab setting
where participants may be observed. It would also be in-
formative to explore our approach to other types of study
material, such as more advanced statistics topics or math-
ematics, and explore ways to support other SRL behaviors
such as planning or goal-setting.

In this study, we leveraged machine learning to predict fu-
ture student outcomes, explained the predictions via an XAI
method, and implemented personalized system interventions.
Specifically, we explored supporting SRL behaviors in an
online learning environment for learning college-level intro-
ductory statistics topics through personalized interventions.
Despite limited differences in learning gain, SRL reviewing
behaviors, and topic choosing behaviors, our findings sug-
gest that XAI-informed interventions facilitate learning to
a similar benefit as expert-system interventions. We expect
that the approach examined in this experiment could be gen-
eralized across other applications, and could serve as one
reference for designing system implementation informed by
XAI methods.
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S. Lindstädt. Finding traces of self-regulated learning
in activity streams. In Proceedings of the 8th
international conference on learning analytics and
knowledge, pages 191–200, 2018.

[11] G. W. Cobb and D. S. Moore. Mathematics, statistics,
and teaching. The American mathematical monthly,
104(9):801–823, 1997.

[12] C. Conati, O. Barral, V. Putnam, and L. Rieger.
Toward personalized xai: A case study in intelligent
tutoring systems. Artificial Intelligence, 298:103503,
2021.

[13] C. Conati, K. Porayska-Pomsta, and M. Mavrikis. Ai
in education needs interpretable machine learning:
Lessons from open learner modelling. arXiv preprint
arXiv:1807.00154, 2018.

[14] S. Crossley, M. Dascalu, D. S. McNamara, R. Baker,
and S. Trausan-Matu. Predicting success in massive
open online courses (moocs) using cohesion network

analysis. Philadelphia, PA: International Society of
the Learning Sciences., 2017.

[15] S. D’Mello, A. Olney, C. Williams, and P. Hays. Gaze
tutor: A gaze-reactive intelligent tutoring system.
International Journal of human-computer studies,
70(5):377–398, 2012.

[16] J. Garfield and A. Ahlgren. Difficulties in learning
basic concepts in probability and statistics:
Implications for research. Journal for research in
Mathematics Education, 19(1):44–63, 1988.

[17] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini,
F. Giannotti, and D. Pedreschi. A survey of methods
for explaining black box models. ACM computing
surveys (CSUR), 51(5):1–42, 2018.

[18] A. F. Jarosz and J. Wiley. What are the odds? a
practical guide to computing and reporting bayes
factors. The Journal of Problem Solving, 7(1):2, 2014.

[19] JASP Team. JASP (Version 0.16.1)[Computer
software], 2022.

[20] E. Kochmar, D. D. Vu, R. Belfer, V. Gupta, I. V.
Serban, and J. Pineau. Automated personalized
feedback improves learning gains in an intelligent
tutoring system. In International Conference on
Artificial Intelligence in Education, pages 140–146.
Springer, 2020.

[21] C. Konold. Issues in assessing conceptual
understanding in probability and statistics. Journal of
statistics education, 3(1), 1995.

[22] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger,
and S. Friedler. Problems with Shapley-value-based
explanations as feature importance measures. In
Proceedings of the 37th International Conference on
Machine Learning, pages 5491–5500. PMLR, Nov.
2020.

[23] D. Lee, S. L. Watson, and W. R. Watson. Systematic
literature review on self-regulated learning in massive
open online courses. Australasian Journal of
Educational Technology, 35(1), 2019.

[24] K. Leelawong and G. Biswas. Designing learning by
teaching agents: The betty’s brain system.
International Journal of Artificial Intelligence in
Education, 18(3):181–208, 2008.

[25] A. Littlejohn, N. Hood, C. Milligan, and P. Mustain.
Learning in moocs: Motivations and self-regulated
learning in moocs. The internet and higher education,
29:40–48, 2016.

[26] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave,
J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,
N. Bansal, and S.-I. Lee. From local explanations to
global understanding with explainable ai for trees.
Nature machine intelligence, 2(1):56–67, 2020.

[27] C. Mega, L. Ronconi, and R. De Beni. What makes a
good student? how emotions, self-regulated learning,
and motivation contribute to academic achievement.
Journal of educational psychology, 106(1):121, 2014.
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