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ABSTRACT 
Attention is critical to learning. Hence, advanced learning 
technologies should benefit from mechanisms to monitor and 
respond to learners’ attentional states. We study the feasibility of 
integrating commercial off-the-shelf (COTS) eye trackers to 
monitor attention during interactions with a learning technology 
called GuruTutor. We tested our implementation on 135 students 
in a noisy computer-enabled high school classroom and were 
able to collect a median 95% valid eye gaze data in 85% of the 
sessions where gaze data was successfully recorded. Machine 
learning methods were employed to develop automated detectors 
of mind wandering (MW) – a phenomenon involving a shift in 
attention from task-related to task-unrelated thoughts that is 
negatively correlated with performance. Our student-
independent, gaze-based models could detect MW with an 
accuracy (F1 of MW = 0.59) significantly greater than chance 
(F1 of MW = 0.24). Predicted rates of mind wandering were 
negatively related to posttest performance, providing evidence 
for the predictive validity of the detector. We discuss next steps 
towards developing gaze-based, attention-aware, learning 
technologies that can be deployed in noisy, real-world 
environments. 
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1 INTRODUCTION1 
Imagine you are tutoring a student in cell biology only to realize 
that the student has completely “zoned out.” Although the plan is 
for the two of you to collaboratively explain osmosis, the 
student’s attention has drifted to unrelated thoughts of lunch, the 

                                                                 
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full citation on the first page. Copyrights for components of this work owned by 
others than ACM must be honored. Abstracting with credit is permitted. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from Permissions@acm.org. 
UMAP '17, July 09-12, 2017, Bratislava, Slovakia © 2017 Association for Computing 
Machinery.ACM ISBN 978-1-4503-4635-1/17/07…$15.00  
http://dx.doi.org/10.1145/3079628.3079669 

football game, or an upcoming vacation. You might try to 
momentarily reorient his or her attention by asking a probing 
question. However, if attentional focus continues to wane, you 
realize that you must adapt your instruction to better engage the 
student. You might re-engage attention by switching topics or 
even suggesting a break, thereby giving the student an 
opportunity to recharge. This form of dynamic adaptivity was 
only possible because you had the ability to continually monitor 
your student’s levels of attentional focus, to detect when their 
attention, and to adapt your instruction to address attentional 
lapses as they occurred. 

The attention-awareness capabilities exhibited in the example 
are beyond the radar of current educational technologies that are 
largely unaware of users’ attentional states. It is important that 
we address this gap because it is widely acknowledged that 
attention is crucial for effective learning. Cognitive processes 
such as prior knowledge activation, inference generation and 
comprehension all demand attentional resources [23, 31, 54]. 
Students who are unable to sustain attentional focus are more 
likely to engage in self-distracting and other unproductive 
behaviors [19], which leads to superficial understanding as 
opposed to deep comprehension.  

Accordingly, our goal is to develop learning technologies that 
model a user’s attentional state and can respond accordingly as a 
means to improve attentional focus and learning outcomes [16]. 
As an initial step in this direction, we focus on mind wandering 
(MW), the attentional shift from task-related processing towards 
internal task-unrelated thoughts [57]. In the context of learning, 
both lab and field studies have consistently reported MW rates in 
the 20%-50% range [39, 48, 49, 61, 62]. Although individual 
differences in trait-level MW have been shown to be positively 
correlated with creative problem solving and prospective 
planning [37], a recent meta-analysis of 88 independent samples 
indicated a negative correlation between MW and performance 
across a variety of tasks [44]. MW negatively impacts a learner’s 
ability to attend to external events [50, 56], to encode 
information into memory [53], and to comprehend learning 
materials [18, 52, 56]. Hence, MW is generally found to be 
detrimental to learning outcomes. 

MW is related to other forms of disengagement, such as 
boredom, behavioral disengagement, and off-task behaviors [2, 3, 
32, 36, 65], it is inherently distinct because it involves internal 
thoughts rather than overt expressive behaviors. This raises two 
challenges. First, while other disengaged behaviors often involve 
detectable behavioral markers (e.g., yawns signaling boredom), 
MW is an internal state that can be difficult to distinguish from 
being on-task [57]. Secondly, because MW can occur outside of 
conscious awareness the onset and duration of MW remains an 
open question [58].  
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Despite these challenges, there has been some progress 
toward automatic detection of MW (discussed further in Related 
Works section). Eye tracking is an attractive technique for 
detecting attentional states like MW due to decades of scientific 
evidence in support of an eye-mind link that suggests a tight 
coupling between attentional states and eye movements [13, 27, 
46]. Until recently, the cost of research-grade eye trackers has 
limited the applicability of eye tracking in real-world 
environments at scale. However the recent introduction of 
consumer off-the-shelf (COTS) eye trackers (retailing for $100 to 
$150) has ushered forth an exciting era by affording the 
application of decades of lab-based research on eye gaze, 
attention, and learning to real-world classrooms, thereby 
affording new discoveries about how students learn, and 
designing innovations to sustain attention during learning. 

1.1 Novelty 
There are three novel aspects to this work. First, it is currently 
unknown whether COTS eye trackers can be implemented with 
sufficient fidelity in noisy classroom settings so as to afford 
collection of actionable gaze data. We address this challenge by 
tracking gaze while high-school students learn biology, as part of 
their biology class, with GuruTutor (or Guru) [40, 41], an 
intelligent tutoring system (ITS) with conversational dialogues 
(see Figure 1). We show, for the first time, that it is feasible to use 
COTS eye trackers to collect valid data from entire classes of 
students in the real-world context of an uncontrolled classroom 
environment. 

Second, we demonstrate that the gaze data collected is of 
sufficient fidelity to detect a critical form of attentional lapses, 
specifically MW. Previous work has shown that MW can be 
detected using eye tracking in Guru [28] (discussed further in 
Related Work section), but this was done using data collected in 
a very controlled lab environment. We investigate how detectors 
developed using similar supervised machine learning methods 
perform on data collected in a more noisy and complex 
environment.  

Third, the previous study on gaze-based MW detection with 
Guru [28] used global gaze features. These features encode 
general eye movements (e.g., number of gaze fixations) and are 
independent of what is displayed on the screen. In the context of 
Guru, eye gaze on specific areas of interest might be of 
importance for MW detection due to the dynamically changing 
visual display (see Figure 1). Accordingly, we investigate whether 
there are added advantages to utilizing a new set of locality 
features that are sensitive to gaze on specific locations on the 
screen. 

1.2 Related Work 
The idea of attention-aware user interfaces was proposed almost 
a decade ago [51], including for education contexts [45]. Prior to 
this, [22] discussed the use of eye tracking to increase the 
bandwidth of information available to an ITS in an aptly titled 
paper “Broader Bandwidth in Student Modeling: What if ITS 
Were “Eye” TS?” Similarly, [1] followed up on some of these 
ideas by demonstrating how particular beneficial instructional 
strategies could only be launched via a real-time analysis of eye 

gaze. Most of the recent work on leveraging eye gaze to increase 
the bandwidth of learner models has been pioneered by Conati 
and colleagues [8, 11, 12, 29, 30, 38] . 

Conati et al. [11] provide an excellent review of much of the 
existing work in this area. We can group the research into three 
categories: (1) offline-analyses of eye gaze to understand 
attentional processes, (2) modeling of attentional states, and (3) 
closed-loop systems that respond to attention in real-time. 
Offline-analysis of eye movements has enjoyed considerable 
attention in cognitive psychology, and educational psychology 
for several decades (e.g. [24, 26, 33, 38, 43]). However, online 
models of learner attention are just beginning to emerge (e.g. [5–
8, 12, 17, 30]). Closed-loop attention-aware systems are few and 
far between (for a more or less exhaustive list see [15, 22, 55, 64]). 

MW detection is related to attentional state modeling as both 
entail identifying the focus of a user’s attention. However, MW is 
inherently different from other forms of attention (i.e., fatigue, 
distractibility, object-of focus) because the eyes might be fixated 
on the appropriate external stimulus, but very little is being 
processed. To date, MW has rarely been considered as an aspect 
of a user’s state that warrants detection and corrective action 
(but see recent work by [14, 42]). As such, automated approaches 
to detect MW in near real-time are in their infancy [17, 20].  

Eye movements offer a promising methodology for 
automatically detecting MW due to well-known relationships 
between visual attention and the locus of eye gaze. For example, 
MW has been associated with longer fixation durations [47] as 
well as more blinking during reading [59]. Researchers have 
recently leveraged these relationships to build gaze-based MW 
detectors during reading [4, 6]. In these studies, MW was 
measured via pseudo-random thought probes that were 
interspersed during the reading process. Supervised classification 
models were successful in discriminating between “yes” and “no” 
responses to the probes using eye gaze features and were 
validated in a manner that generalized to new students.  

Gaze-based MW detection has also been applied to more 
complex visual stimuli, such as film viewing [34]. In this study, 
participants viewed a 32.5-minute film and reported when they 
caught themselves MW. Supervised learning models were built 
using both global and locality gaze features (defined above). 
Locality features were superior in terms of predicting MW, 
ostensibly due to their sensitivity to the dynamic content being 
displayed on the screen. 

Of particular relevance is a previous lab study on detecting 
MW during learning with Guru, the same ITS we explore here 
[28]. Students’ eye gaze was tracked with a Tobii EyeX (another 
COTS eye tracker) as they completed a 30-40 minute learning 
session with Guru. Students reported MW by responding to 
pseudo-random thought probes throughout the session. A variety 
of supervised classification models were trained to detect MW 
from global gaze features alone, achieving person-independent 
accuracies that were substantially greater than chance. 

All current work on gaze-based MW detection, such as the 
reading studies [4, 6], the film study [34] and ITS study [28] have 
been limited to using training data collected in the laboratory. 
Laboratory environments have the advantage of relatively 
consistent lighting and freedom from distractions from other 
students, cell phones, ambient sounds, and numerous other 



factors. In contrast, we consider the possibility of building MW 
detectors from eye-gaze data collected in the noisy real-world 
context of a computer-enabled classroom. In contrast to the lab, 
students in our study were subject to all the usual distractions of 
a high school classroom, which makes the data far noisier.  

2 IMPLEMENTATION 
Our implementation involves integrating eye tracking into an 
ITS  called GuruTutor. 
 

 

Figure 1. Screenshot of Guru in the CGB phase 

2.1 Guru Tutor 
GuruTutor (Guru) is an ITS designed to teach biology topics 
through collaborative conversations in natural language. It was 
modeled after interactions with expert human tutors and has 
been shown to be effective at promoting learning and retention 
at levels similar to human tutors [40]. 

Guru engages the student through natural language 
conversations, using an animated tutor agent that references a 
multimedia workspace (see Figure 1). The tutor communicates 
via synthesized speech and gestures, while students 
communicate by typing responses, which are analyzed using 
natural language processing techniques. Guru maintains a 
student model [60] throughout the session, which it uses to tailor 
instruction to individual students.  

Guru teaches introductory biology topics (e.g., osmosis; 
protein function) in line with state curriculum standards in short 
sessions, typically lasting 15 to 40 minutes. Each topic involves 
interrelated concepts and facts. Guru begins with a basic 
introduction to motivate the topic, which is then followed by a 
five-phase session that develops students’ understanding of the 
topic. The five phases are described below. Common-Ground-
Building (CGB) Instruction. Biology lessons often involve 
specialized terminology that needs to be understood before it is 
possible to move on to deeper knowledge building activities. 
Therefore, Guru begins with a collaborative lecture phase that 
covers basic information and terminology relevant to the topic. 
Intermittent Summaries (Summary). Following CGB, 
students construct their own natural language summaries of the 
material covered in CGB. These summaries are automatically 
analyzed to determine which concepts require further tutoring in 
the remainder of the session. Concept Maps. For the target 
concepts, students complete skeleton concept maps, node-link 
structures that are automatically generated from text (see Figure 
2). Scaffolded Dialogue. Next, students complete a scaffolded 
natural language dialogue in which Guru uses a Prompt → 

Feedback → Verification Question → Feedback → Elaboration 
cycle to cover target concepts. If a student shows difficulty 
mastering particular concepts, a second Concept Maps phase is 
initiated followed by an additional Scaffolded Dialogue phase. 
Cloze Task. The session concludes with a cloze task requiring 
students to complete an ideal summary of the topic by filling in 
missing information by retrieving it from memory 

.  

 

Figure 2. Example Concept Map 

2.2 Integrating Eye Tracking in Guru 
Our first task was to integrate eye tracking into Guru. In line 
with the goals of the project, we chose a COTS eye-tracker called 
the EyeTribe that retails for $99. The eye tracker was affixed to a 
laptop computer just below the screen. 

Our goal was to facilitate eye tracker setup and calibration by 
the students themselves. This was accomplished via on-screen 
instructions that included a mixture of images, interactive tools, 
and text directions. The instructions first guided students on 
positioning using live feedback, followed by information on the 
calibration process itself. This is followed by a nine-point 
calibration process, where nine points appear on the screen in 
turn and students fixate on each until it disappears.  

2.3 Iterative Testing & Refinement 
We completed several testing and refinement cycles to improve 
the implementation to be as user friendly and autonomous as 
possible. Laboratory participants were compensated with 
research credit, while classroom participants were compensated 
with a $10 gift card. Students provided written assent while their 
parents provided written consent prior to participating in the 
study, which was approved by the University’s Institutional 
Review Board and the principal of the school. 

Lab Testing 
The software was initially tested in the lab on individual 
students. Undergraduate students who had not used the software 
before were asked to follow the calibration instructions and 
complete a session on one biology topic with Guru. The setup 
process was observed and pain-points were noted. The students 
were then interviewed about their experience with the system. 
Insights gleaned from this testing were used to improve the 
clarity of the on-screen instructions and increase the level of 
feedback that users receive during the eye tracker calibration 
process. 

Individual Testing in School – 9 Participants 
Initial testing of the implementation was done in after-school 
sessions with high-school student volunteers. Students 



completed the eye tracking setup along with one Guru session. 
Each student was observed by a researcher, who noted incidents 
and recorded student questions. After the session, students were 
interviewed about the software, including how easy it was to use, 
how well they understood what they needed to do, and whether 
they understood why they were doing each step. This informed 
our development of the software and streamlined the on-screen 
instructions, providing additional help as needed. 

Small Group Testing in School – 7 Participants 
As a step towards testing with entire classes of students, we 
tested the implementation with a group of seven student 
volunteers after school. Students were given instructions as a 
group and then interviewed individually once they had 
completed the session. This allowed us to identify issues with 
scaling of the software that might arise when working with full 
classes of students. As a result, we further improved the 
instructions and addressed other technological challenges.  

Classroom Pilot – 35 Participants 
The final stage of the iterative development process was a 
classroom pilot using the specific classroom used for main data 
collection. We piloted with two class periods during students’ 
regular biology classes. A key observation at this stage was the 
range of times it took students to complete a Guru session, which 
had not been as apparent in previous iterations. Students finished 
the session up to twenty minutes apart, which poses challenges 
as these students could be sources of distraction for others. 

With respect to usability, the overall conclusion was that the 
students could independently complete the setup and calibration 
process via the on-screen instructions. In other words, they could 
use the Guru implementation with minimal guidance from the 
researchers and the resultant eye gaze was deemed sufficiently 
valid for larger-scale data collection. One final development was 
a seating position check and potential recalibration of the eye 
tracker halfway through the session, in case head position had 
changed considerably.  

2.4 Main Data Collection in Classroom 
Students were 9th and 10th graders enrolled in a Biology 1 class. 
We collected data from 135 students (41% male) over the course 
of two school days in students’ regular biology classroom. 
Students were compensated with a $10 gift card for their 
participation in the study. 

Students had biology class on alternating days, so the two 
days of data collection included different students. Each class 
period consisted of an introduction to the software, 30 minutes of 
completing a biology session using Guru, a short break, and 
another 30-minute Guru session on a different biology topic. The 
following topics were included in the study: Protein Function, 
Carbohydrate Function, Osmosis, Interphase, Facilitated 
Diffusion and Biochemical Catalysts, with students randomly 
assigned a topic (except that they could not get the same topic 
for both sessions). The classroom layout remained unchanged 
from the setup used for standard teaching, with the addition of 
two laptops per desk. The laptops were provided by the high 
school. Each laptop had an eye tracker affixed below the screen. 
Class sizes ranged from 14 to 30 students based on regular 

enrollment. Two researchers were present during data collection 
to answer procedural questions from students and address any 
hardware or software issues they encountered.  

2.5 Eye Tracking Validity 
The majority of students were able to use the software, including 
eye tracker calibration, without any intervention from the 
experimenters. However, running the software for a full day 
presented new challenges. Over the course of the two days, there 
was the potential to collect 270 sessions as each of the 135 
students completed two sessions. The software was completely 
successful (students able to run through a Guru session and we 
collected gaze data with no issues) for 85% of the sessions. The 
following is a breakdown of the causes for the 15% missing 
sessions: (1) Hardware failure: some of the computers had 
incorrect drivers for the USB 3.0 ports, preventing the 
functionality of the eye tracker. (2) Background processes: 
several computers attempted to automatically update during the 
session, causing an increased load on the processor which caused 
the software to occasionally crash. (3) Calibration failure: 
students who failed calibration three times continued without 
eye tracking.  

The eye tracker records a validity for each sample based on 
number of eyes tracked and the quality of the tracking. We 
considered a valid sample to include at least one eye tracked. 
Figure 3 shows a histogram of percent of valid gaze points per 
session. Of the 85% of sessions where eye tracking was collected, 
we observed a median validity rate of 95% per session (mean was 
89%). We consider this promising given the difficulties presented 
by the relatively unconstrained classroom environment, where 
students were free to fidget, look around the room, and even 
occasionally laid their heads on the table as they interacted with 
Guru. If we enforce a stricter validity threshold of both eyes 

tracked, mean validity drops to 71%, median to 75%, still 

promising scores. 

 

Figure 3. Histogram showing gaze validity rate per session 
where eye tracking was recorded 

Figure 4 shows an example heatmap from the CGB phase for 
one participant, illustrating gaze concentration. We note the 
largest concentration of gaze on the tutor’s face and upper body, 
followed by the multimedia panel, and the response box (on the 
bottom). Visualizing several such heatmaps served as a good 
initial check for the quality of eye gaze. Our overall conclusion 
was that we were able to track eye gaze with a reasonable 



accuracy when small groups of students used a COTS eye 
trackers in a noisy real-world environment.  

 

 

Figure 4. Heatmap overlay showing participants eye gaze 
in CCB phase. Red indicates high concentration of 

fixations, purple low concentration of fixations 

3 MIND WANDERING DETECTION  
Our next step was to leverage the eye gaze data to build 
automated mind wandering (MW) detectors. We adopted a 
supervised learning approach, which required labeled data, 
collected using thought probes. 

3.1 Thought Probes 
Mind wandering was measured during learning with Guru using 
auditory thought probes, which is a standard approach in the 
literature [56]. MW was first defined to the participants. 
Instructions and MW reporting procedure were extensively 
tested and refined in the preliminary studies described above. 
Participants were required to demonstrate understanding of how 
to respond to the thought probes (via multiple choice questions 
and feedback) before proceeding.  

Participants were probed at pseudo-random intervals with 
probes occurring every 90-120 seconds, based on previously 
observed MW rates in Guru [35]. The probes automatically 
paused the tutoring session. If the tutor was speaking at the time 
the probe was to be triggered, the probe was delayed until the 
tutor finished speaking. The probe consisted of an auditory beep 
along with an opaque overlay on screen, instructing the 
participant to press the “N” key if they were not mind 
wandering, “I” if they were intentionally (deliberately) mind 
wandering, or “U” if they were unintentionally (spontaneously) 
mind wandering. In this study, we do not differentiate between 
intentional and unintentional mind wandering, so both “I” and 
“U” responses were considered MW. Participants encountered an 
average of 12 probes over the course of each session with a mean 
MW rate of 28% (SD = 24%, Min = 0%, Max = 100%). 

It is important to emphasize a few points about the method 
used to track MW. First, this method relies on self-reports 
because MW is an inherently conscious phenomenon, which 
requires self-awareness for reporting [58]. Second, self-reports of 
MW have been objectively linked to patterns in pupillometry 
[21], eye-gaze [47], and task performance [44], providing validity 
for this approach. However, at this time, there are no reliable 
neurophysiological or behavioral markers that can accurately 
substitute for the self-report methodology [58]. Indeed, this is the 

very reason we set out to build objective gaze-based MW 
detectors. The limits of thought probes are considered further in 
the Discussion section. Our use of thought-probes to measure 
MW is consistent with the state of the art in the psychological 
and neuroscience literatures [58].  

3.2 Feature Engineering 
We calculated features from 30-second windows (window size 
was based on previous work [4, 28]) preceding each auditory 
probe. We investigated two types of gaze features: global gaze 
(from previous work [28]) as well as a new set of locality 
features. Global gaze features focus on general gaze patterns and 
are independent of the content on the screen, whereas locality 
features encode where gaze is fixated. We also considered a set 
of context features to encode information from the session. 

Global Gaze Features. Eye movements were measured by 
fixations (i.e., points in which gaze was maintained on the same 
location) and saccades (i.e., the movement of the eyes between 
fixations). We calculated fixations and saccades from the raw eye 
gaze data using the Open Gaze and Mouse Analyzer (OGAMA) 
[63]. We considered six general measures across the 30-second 
window (bolded in Table 1), from which we computed the 
number, mean, median, minimum, maximum, standard deviation, 
range, kurtosis, and skew of the distributions, yielding 54 
features. We also included three other features (see Table 1), 
yielding a total of 57 global gaze features.  

Table 1. Eye-gaze features. Bolded cell indicates that nine 
descriptives (e.g., mean) were used as features (see Text) 

Feature Description 

Fixation Duration  Elapsed time in ms of fixation 

Saccade Duration  Elapsed time in ms of saccade 

Saccade Length Distance of saccade in pixels 

Saccade Angle Absolute Angle in degrees between the x-axis 
and the saccade 

Saccade Angle Relative Angle of the saccade relative to 
previous gaze point. 

Saccade Velocity Saccade Length / Saccade Duration 

Fixation Dispersion Root mean square of the distances of 
each fixation to the average fixation 
position 

Horizontal Saccade 
Proportion 

Proportion of saccades with relative 
angles <= 30 degrees above or below 
the horizontal axis 

Fixation Saccade Ratio Ratio of fixation duration to saccade 
duration 

 
Locality Gaze Features. In contrast to the global features, 

the locality features were based on locality of gaze. Specifically, a 
10 × 8 grid was overlaid on the screen. Each cell represented a 
feature and was assigned a weight proportional to the number of 
gaze fixations on that corresponding location (see Figure 5). In 
addition to these 80 locality features, we included an additional 
“out of bounds” feature that encoded the proportion of fixations 
that were off the screen bounds.  



Context Features. The gaze features were complemented by 
eight features that provide a snapshot of the student-tutor 
interaction. One feature was the assigned biology topic. A second 
encoded participants’ pretest scores. The next three features 
represented participants’ progress within Guru, such as the 
current phase of the session (e.g., cloze, concept map), the amount 
of elapsed time into the session, and the amount of elapsed time 
into the current phase. The last three features focused on 
participants’ performance within Guru, measured as the 
proportion of positive, neutral, and negative feedback received.  

 

Figure 5. Example grid used for locality features, the count 
of fixations in each cell becomes a feature 

3.3 Classification Models and Validation 
We focused on Bayesian Networks because they yielded the best 
performance compared to several other standard classifiers on 
this task in our previous work [28]. We used the default 
implementation from the Weka data mining package [25].  

In total, there were 2,720 probes during the Guru sessions. Of 
those, 386 were discarded due to insufficient eye gaze data (< 1 
fixation) in the respective window to compute any of the global 
features, ostensibly due to students looking away from the 
screen, chatting with a neighbor, or closing their eyes. The 
remaining 2,334 instances were used across all feature sets to 
ensure a fair comparison. Features that could not be computed 
(e.g. distribution features when there is only one fixation) were 
treated by the models as missing data and values were imputed 
based on the training set. 

We validated the models with a leave-several-participants-out 
cross-validation scheme. For each fold, instances from a random 
66% of the participants were assigned to a training set and the 
instances of the remaining 33% participants were assigned to a 
test set. This process ensures that no instances of any individual 
participant could appear in both the training and test sets within 
a fold. This process was repeated for 15 folds and the results 
were accumulated before computing accuracy metrics.  

Students reported MW in 23% of the 2,334 instances, giving a 
substantial data skew. Class imbalance poses a challenge as 
supervised learning methods tend to bias predications towards 
the majority class label. To compensate for this concern, we used 
the SMOTE algorithm [9] to create synthetic instances of the 
minority class by interpolating feature values between an 
instance and its randomly chosen nearest neighbors until the 
classes were equated. SMOTE was only applied on the training 

sets; the original class distributions were maintained in the 
testing sets in order to ensure validity of the results.  

3.4 Results 
The classification results are shown in Table 2. Because our 
intention is to detect instances of MW, we focus on the precision, 
recall, and F1 score of the MW class as our key metric. This is a 
strict evaluation criterion as the base rate of MW is only 23% in 
our data. For comparison, a chance-level baseline was created by 
randomly assigning the MW label to 23% of the instances and 
computing accuracy accordingly. 

Table 2. MW detection results for school data 

Feature 
Set 

 F1 MW Precision 
MW 

Recall 
MW 

Global 0.59 0.55 0.65 
Locality 0.59 0.51 0.70 
Context (Cntxt) 0.49 0.58 0.43 
    

Global + Locality 0.46 0.51 0.41 
Global + Context 0.53 0.51 0.53 
Locality + Context 0.49 0.59 0.42 
    

Global + Locality + Cntxt 0.44 0.53 0.38 
    

Chance 0.24 0.22 0.26 
 
The results indicated that: (1) all models substantially 

outperformed the chance-baseline; (2) both global and locality 
models had similar F1 MW scores, but slightly different precision 
and recall scores; (3) the combined global + locality model had 
(surprisingly) lower performance than either feature set alone; 
and (4) adding context to the individual models did not result in 
any improvement; if anything it reduced classification accuracy. 

Proportionalized confusion matrices for the gaze-based 
models are shown in Table 3. We note that the errors for global 
and locality models were skewed towards false positives (vs. 
misses), which would explain the higher recall with respect to 
the Global + Locality model, we saw a higher proportion of 
misses, which would explain its lower recall score. 

Locality features relate to spatial location of gaze, however, 
each phase of Guru had different screen content (e.g., Figure 1 vs. 
Figure 2). To examine if this caused bias against locality features, 
we compared global vs. locality models for the Common Ground 
Building phase - the only phase with enough data to build phase-
specific models. The number of available instances was reduced 
to 1,259 (from 2,334) and MW rate increased to 30%. 
Classification results are shown in Table 4, where we note no 
substantial differences compared to the phase-independent 
models shown in Table 2, assuaging concerns of bias. 

To further explore the validity of our detector we investigated 
whether predicted MW was related to posttest performance in 
the same way reported MW was. Participant-level reported MW 
rate was negatively correlated with posttest score (rho = -.189 p = 
.058) while predicted MW was also negatively correlated with 
posttest for detectors built with both the Global (rho = -.112, p = 
.269) and Locality (rho = -.177, p = .076) feature sets.  



Table 3. Confusion matrices for gaze-based models 

Actual Predicted 
Global MW Not MW 
MW 0.65 (hit) 0.35 (miss) 

Not MW 0.52 (false pos.) 0.48 (correct rej.) 
   

Locality MW Not MW 

MW 0.70 (hit) 0.30 (miss) 

Not MW 0.56 (false pos.) 0.44 (correct rej.) 
   

Global + Locality MW Not MW 

MW 0.41 (hit) 0.59 (miss) 

Not MW 0.31 (false pos.) 0.69 (correct rej.) 

Table 4. Models built for CGB phase 

Feature Set  F1 of 
MW 

Precision 
of MW 

Recall of 
MW 

Global 0.59 0.55 0.64 
Local 0.61 0.58 0.65 
Global + Local 0.44 0.54 0.37 

Feature Analysis 
We compared the global gaze features across instances of MW 
versus not MW to characterize the differences in gaze during 
MW. Cohen’s d, an effect size measure, was used to assess the 
direction and magnitude of the differences between the two 
classes [10]. For each class (MW and Not MW) the average for 
each feature across instances was computed. Cohen’s d was 
computed by calculating the difference of each feature across 
MW and Not MW divided by the pooled standard deviation. 
Positive d values for a feature indicate higher values for instances 
of MW compared to instances of Not MW. Twenty (out of 57) of 
the effect sizes observed are consistent with small effects, using 
the convention that .2, .5, and .8 for small, medium, and large 
effects respectfully [10] the remaining effect sizes were less than 
.2 suggesting that no one feature dominated, but that a 
combination was needed for MW detection. 

To establish which features contributed most to MW 
detection, the ten largest effect sizes were ranked in terms of 
their absolute Cohen’s d. Fewer fixations (d = -.41) and saccades 
(d = -.40) (which are by definition highly correlated) were found 
for MW, and fixations were more dispersed (d = .23). Differences 
in median and mean saccade velocity (d = -.33, d = -.32 
respectively), range of saccade angles (d = -.26), mean saccade 
duration (d = .24), maximum saccade angle (d = -.24), maximum 
and median saccade duration (d = .23, d = .22 respectively) 
suggest that saccades were slower, longer and covered a smaller 
range of angles during MW. These findings are consistent with 
previous work on eye gaze surrounding MW in reading, which 
also found number of fixations to be predictive [4], highlighting 
consistent differences in eye gaze features across learning tasks. 
These effects suggest that during MW, students focus on fewer 
points on the screen for a longer time. In addition, the effects for 
saccade duration and fixation dispersion suggest that these 
points are likely to be more spread around the screen rather than 
focusing in on information or visual stimulus such as diagrams. 

4. GENERAL DISCUSSION 
It is widely acknowledged that attention is necessary for learning 
[39]. An attention-aware learning technology [16, 42] that can 
monitor and react to a student’s attentional state could assuage 
the cost of attentional failures (like MW), thereby improving 
learning. However, until now, the high cost of eye trackers 
(which are the most robust method to track visual attention) has 
relegated these technologies to the confines of the lab. We 
addressed this issue in the current paper by studying the 
feasibility of using COTS eye trackers in a real world classroom 
environment.  

4.1 Main Findings 
We have shown that, although the classroom provides a noisier 
environment than the lab, it is still feasible to collect valid eye 
tracking data with COTS eye trackers. Further, to maintain 
ecological validity, students were relatively unconstrained and 
independent in our study. We did give initial guidance with 
respect to seating position for calibration, however students were 
free to fidget, move, and behave as they would in a classroom. 
Despite this, we were able to achieve a median gaze validity of 
95%. This is for the students where the gaze was collected at all. 
We were unable to collect data for 15% of sessions, however, this 
was primarily for reasons beyond our control (e.g., hardware 
issues with school computers and auto update). 

Validity, however, does not imply usefulness. To address this, 
we built person-independent MW detectors based on the gaze 
data collected in the classroom. Our main finding was that our 
models were moderately accurate at detecting MW in a person-
independent fashion despite the numerous challenges involved, 
such as class imbalance, noisy gaze data, and unrestricted 
movements. Importantly, our MW F1 score of .59 was higher than 
the previous score of .49, achieved in a lab study with the same 
learning environment [28], although the comparison should be 
taken with a modicum of caution since the two studies differed 
along multiple factors (e.g., student population, type of eye 
tracker). Nevertheless, these results are encouraging as a detector 
with similar accuracy was used to successfully trigger 
interventions that improved learning gains in the context of 
reading [14]. We also extended the previous work that only 
investigated global gaze features, by exploring locality features 
as well as a combination of the two. This did not yield any 
performance improvements over the global features alone. One 
possibility is that the global features are sufficient for this task. 
However, it is more likely that the locality features considered 
here were too simplistic and benefits may be gained by refining 
them (see Future Work). In analysis of features we observed 
consistent differences with previous work in eye gaze and MW 
[4], most notably that when MW, students are more likely to 
have fewer, more spread out fixations than when not MW.  

4.2 Applications 
The key application of this work is to develop an attention-aware 
version of Guru that detects and combats MW in real-time. Such 
a system has a number of paths to pursue to re-engage students 
when MW is detected. One immediate effect of MW is that a 
student fails to attend to a unit of information or event because 



they are consumed by internal, off-task thoughts. To combat this, 
one approach may be to simply repeat the missed information 
(e.g., “John, let me repeat that…”) or to direct the user’s attention 
to an area of the screen that may help them (e.g., “John, you 
might want to look at the image showing the enzyme 
breakdown…”). A more involved approach might be to ask the 
student a content question (e.g., “John, what happens to an 
enzyme when it is subjected to heat?”) or ask the student to self-
explain a concept. Additional measures might be needed if MW 
persists despite interventions. One option is to simply change to 
a new activity. Guru might even suggest changing topics or 
offering a choice for what students would prefer to do next. If all 
else fails, Guru might even suggest that the student take a break. 

It is important to consider that the aforementioned 
interventions rely on MW detection, which is inherently 
imperfect. The detector may issue a false alarm, suggesting that a 
student is MW when they are not, or it could miss that a student 
is MW. In our view, MW detection does not need to be perfect as 
long as there is a modicum of accuracy. Imperfect detection can 
be addressed with a probabilistic approach, where the detector 
outputs a MW likelihood that is then used to determine whether 
an intervention is triggered (i.e., if the likelihood of MW is 70%, 
then there is a 70% chance of an intervention). The interventions 
should also be designed to “fail-soft” in that there are no harmful 
effects to learning if delivered incorrectly.  

Beyond MW detection and response, COTS eye tracking in 
the classroom opens doors to several potential applications. One 
involves monitoring attentional states beyond MW (e.g., focused 
attention, alternating attention) so as to ensure that limited 
attentional resources are being optimally deployed [16]. Another 
application is alternate interaction methods that use eye-gaze as 
input, keeping learning novel and interesting. A further 
application is large-scale user testing of new learning 
technologies in the classroom. Student eye-gaze could also be 
used as a feedback tool to teachers, who can revise 
instruction/materials based on what captures students’ attention.  

4.3 Limitations 
There were several limitations of this work. Our system was 
designed to include a low-cost eye tracker so that it may scale to 
classrooms. However, COTS eye trackers have a low sampling-
rate, limiting their accuracy compared to research-grade eye 
trackers. Further, factors beyond our control, such as incorrect 
USB drivers on a school-owned computer, meant that for some of 
the sessions, no eye tracking was collected at all. 

With regard to MW detection, we are limited by the features 
used in the supervised learning models. We used a small subset 
of gaze features and did not model any temporal gaze patterns. 
For example, if a participant had multiple fixations in one area, 
were these concentrated or distributed across time? In addition, 
we only considered a small number of contextual features. 

At this time, locality features are not related directly to 
content and do not use Areas of Interest (AOI’s). Guru’s display 
is not fixed and changes throughout the tutorial phases. To 
further investigate locality features would require separate AOIs 
and corresponding models per phase. Because students spend 
different amounts of time in each phase, there were not enough 
instances to build phase-specific models. 

A further limitation relates to the use of thought probes, 
which require users to be mindful of their MW and respond 
honestly. Although this method has been previously validated 
[21, 44, 47] there is no clear alternative to track a highly internal 
state like MW outside of potentially measuring brain activity in 
an fMRI scanner. One futuristic possibility is to combine self-
reports and wearable electroencephalography (EEG) as a means 
of collecting more accurate MW responses, but it is unclear if 
this can be done in the wild. 

4.4 Future Work 
The results discussed here invite several possibilities for 
improvement that we will address as future work. First, we will 
explore a more refined set of locality features for MW detection. 
Example locality features involve fixations on various parts of 
the display, such as the tutor agent, aspects of the multimedia 
panel, the response box, and so on. When images are present, we 
will analyze image-specific gaze fixations, such as proportion of 
fixations on images, number of components fixated on, and 
fixation durations on different components. Guru uses a slow-
reveal animation, where image components appear as they 
referenced in the session. This affords computing of animation-
based locality features that measure gaze latencies to different 
image components as they are revealed. 

We also plan to integrate our detectors into Guru to detect 
MW in real-time. Here, the MW probes will be triggered based 
on the detector’s real-time probabilistic assessment of MW 
instead of the pseudo-random probing. Alignment between 
students’ reports and the detector’s estimates will be used to 
evaluate the detector’s real-time MW accuracy when applied to 
new students. The detectors will be refined based on the outcome 
of these studies. The refined detector will then be used to deliver 
interventions (as noted above), leading to an attention-aware 
version of Guru. 

4.5 Conclusion 
The recent introduction of COTS eye trackers has ushered in an 
exciting time for gaze-based technologies that assist learning in 
the classroom. We have shown that valid and actionable eye-
gaze data can be collected in an unconstrained manner despite 
the noisy real-world classroom environment. Our findings 
suggest that it might finally be possible to apply decades of lab-
based research on eye gaze, attention, and learning to 
classrooms, thereby affording new discoveries about how 
students learn while designing new interfaces to sustain 
attention during learning. 
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