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Abstract 

We investigate the use of commercial off-the-shelf (COTS) eye-trackers to automatically detect 

mind wandering - a phenomenon involving a shift in attention from task-related to task-unrelated 

thoughts – during computerized learning. Study 1 (N = 135 high-school students) tested the 

feasibility of COTS eye tracking while students learn biology with an intelligent tutoring system 

(ITS) called GuruTutor in their classroom. We could successfully track eye gaze in 75% (both eyes 

tracked) and 95% (one eye tracked) of the cases for 85% of the sessions where gaze was successfully 

recorded. In Study 2, we used this data to build automated student-independent detectors of mind 

wandering, obtaining accuracies (mind wandering F1 = 0.59) substantially better than chance (F1 = 

0.24). Study 3 investigated context-generalizability of mind wandering detectors, finding that 

models trained on data collected in a controlled laboratory more successfully generalized to the 

classroom than the reverse. Study 4 investigated gaze- and video- based mind wandering detection, 

finding that gaze-based detection was superior and multimodal detection yielded an improvement in 

limited circumstances. We tested live mind wandering detection on a new sample of 39 students in 

Study 5 and found that detection accuracy (mind wandering F1 = 0.40) was considerably above 

chance (F1 = 0.24), albeit lower than offline detection accuracy from Study 1 (F1 = 0.59), a finding 

attributable to handling of missing data. We discuss our next steps towards developing gaze-based 

attention-aware learning technologies to increase engagement and learning by combating mind 

wandering in classroom contexts. 

1. Introduction 

The number of students utilizing computer-based learning has soared in the past few years. For 

instance, more than a quarter of students in higher education in the United States are enrolled in at 

least one online course (Allen & Seaman, 2016). Computer-based learning is hailed as resistant to 

time, location, and situation barriers (Bates, 2005) and is a cost-effective alternative to traditional 

learning environments (Twigg, 2003). Yet, the impoverished student-instructor interaction in 

computer-based learning leaves much to be desired. While a human tutor can dynamically adapt 

instruction to better engage students (Ainley & Luntley, 2007), this is largely beyond the scope of 

current educational technologies. For example, a tutor who notices that a student appears disengaged 

may attempt to reengage the student by asking him or her a question. This level of adaptivity is only 

possible if the tutor can monitor the student’s level of attentional focus. Current educational 

technologies are largely unable to assess a student’s attentional state and therefore cannot provide 

such dynamic attention-aware instruction.  

It is imperative that we address this deficiency, as it is widely acknowledged that attention is 

crucial for effective learning (Berliner, 1990; Olney, Risko, D’Mello, & Graesser, 2015; Shernoff, 

Csikszentmihalyi, Schneider, & Shernoff, 2003; Smallwood, Fishman, & Schooler, 2007; Szpunar, 

Khan, & Schacter, 2013). Students who are unable to sustain attentional focus are more likely to 

engage in self-distracting and other unproductive behaviors (Forbes-Riley & Litman, 2011), which 

leads to superficial understanding as opposed to deep comprehension. Accordingly, our goal is to 
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develop attention-aware learning technologies that can sense and respond to students’ attentional 

states as a means to improve attentional focus, engagement, and learning (D’Mello, 2016).  

As an initial step in this direction, we focus on one kind of attentional lapse called mind 

wandering.  Mind wandering is defined as an attentional shift from task-related processing towards 

internal task-unrelated thoughts (Smallwood & Schooler, 2006) (more detail in section 2.1). Mind 

wandering is quite frequent during learning, occurring 20%-40% of the time (D’Mello, 2018; Olney 

et al., 2015; Risko, Anderson, Sarwal, Engelhardt, & Kingstone, 2012; Risko, Buchanan, 

Medimorec, & Kingstone, 2013; Szpunar, Khan, et al., 2013; Szpunar, Moulton, & Schacter, 2013). 

Although the trait-level tendency to mind wander is positively associated with creative problem 

solving and prospective planning (Mooneyham & Schooler, 2013), a meta-analysis of 88 

independent samples indicated a negative correlation between state mind wandering and 

performance across a variety of tasks (Randall, Oswald, & Beier, 2014). Further, the magnitude of 

the negative correlation  increases for more complex tasks, such as learning. To this point, a recent 

meta-analysis (D’Mello, 2018) of 25 studies that tracked mind wandering across a range of digital 

learning environments indicated that mind wandering is negatively correlated with learning 

outcomes (r = -.24). This is unsurprising because when learners mind wandering, they miss out on 

key concepts (Robertson, Manly, Andrade, Baddeley, & Yiend, 1997; Smallwood, McSpadden, & 

Schooler, 2008), have increased difficulty encoding information into memory (Seibert & Ellis, 

1991), and fail to comprehend learning content (Feng, D’Mello, & Graesser, 2013; Jonathan W. 

Schooler, Reichle, & Halpern, 2004). Thus, there may be benefits to attention-aware technologies 

that address mind wandering in real-time. 

In order to address mind wandering in real-time we must first be able to detect when a student is 

mind wandering. However, whereas mind wandering is related to other forms of disengagement, 

such as boredom, behavioral disengagement, and off-task behaviors, it is inherently distinct because 

it primarily involves internal thoughts. This raises two challenges for detecting it. First, while other 

disengaged behaviors often involve detectable behavioral markers (e.g., yawns signaling boredom), 

mind wandering is an internal state (Smallwood & Schooler, 2006) with fewer overt signals that we 

know of. Second, mind wandering can occur outside of conscious awareness (Smallwood & 

Schooler, 2015), making it difficult to precisely measure in the first place. 

Despite these challenges, there has been some progress toward automatic detection of mind 

wandering (see Section 2.3). Eye tracking is an attractive method for this purpose due to decades of 

evidence in support of a tight coupling between attention and eye movements—the so-called “eye-

mind” link (Deubel & Schneider, 1996; Hoffman & Subramaniam, 1995; Just & Carpenter, 1976; 

Rayner, 1998) (see Section 2.2). Eye tracking has been used as a research tool for over a century 

(Buswell, 1936, 1937; Dodge, 1900; Huey, 1898, 1908; Javel, 1878; Yarbus, 1967) as well as for 

several real-world applications, such as military training in flight simulations (Weibel, Fouse, 

Emmenegger, Kimmich, & Hutchins, 2012), target identification (Hild, Kühnle, & Beyerer, 2016), 

and to help surgeons critically analyze their surgical skills (Ahmidi et al., 2010). Although, these 

applications were designed for use outside the laboratory, they typically use research-grade eye 

trackers that cost thousands of dollars, thereby limiting widespread scalability. Some work has also 

employed cellphone cameras to track eye movements in smartphone applications (Krafka et al., 

2016), though many technical hurdles (e.g. tracking the gaze of users wearing glasses) need to be 

overcome before it is suitable for real-world use. 

Fortunately, the recent availability of consumer off-the-shelf (COTS) eye trackers (retailing for 

hundreds of dollars) has ushered forth an exciting era by enabling scalable “in the wild” gaze-based 

research and applications (e.g., Maurer, Krischkowsky, & Tscheligi, 2017; Navarro & Sundstedt, 

2017; Zhang, Chong, Müller, Bulling, & Gellersen, 2015). In the domain of learning, it presents new 

opportunities to explore attention during learning and to design learning technologies that improve 

engagement and learning by monitoring students’ attentional states. Accordingly, we develop mind 

wandering detectors from eye-gaze data collected in the real-world context of a computer-enabled 

classroom, taking us one step closer to scalable attention-aware systems in the wild.  

1.1 Current Study & Novelty 

Based on the literature review (see section 2), there has been an uptake of research on automated 

mind wandering detection. However, all of the studies have focused on mind wandering detection 

in a laboratory environment. Laboratory environments have the advantage of relatively consistent 

lighting (important for some sensors) and freedom from distractions from other students (as students 

are usually individually tested), cell phones, ambient sounds, and numerous other factors. In 

contrast, we build upon these laboratory investigations to develop mind wandering detectors from 

eye-gaze data collected in the real-world context of a computer-enabled classroom.  

It should be emphasized that mind wandering, like any other psychological construct, must be 
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operationalized in order to be investigated. In this work we use self-reports through thought probes 

(i.e., asking a person if they are currently mind wandering) as our measure of mind wandering 

because it is inherently a conscious phenomenon (Smallwood & Schooler, 2015) and self-reports 

are the most effective method to access conscious content (Ericsson & Simon, 1980). Although this 

methodology has been previously validated (Franklin, Broadway, Mrazek, Smallwood, & Schooler, 

2013; Randall et al., 2014; Reichle, Reineberg, & Schooler, 2010) it relies on students being aware 

of their mind wandering and responding honestly (discussed further in limitations in section 8.3). 

Thus, our mind wandering detector is constrained with respect to our use of self-reports to 

operationalize mind wandering. 

We make five contributions1. First, it is currently unknown whether COTS eye trackers can be 

implemented with sufficient fidelity in noisy classroom settings. We address this challenge by 

tracking eye gaze while high school students learn biology as part of their regular classes with 

GuruTutor (Olney et al., 2012), a dialogue-based intelligent tutoring system (discussed in Section 

3.1). We show that it is feasible to use COTS eye trackers to collect valid data in a classroom 

environment.  

Second, we demonstrate that the aforementioned eye gaze data collected in the classroom is of 

sufficient quality to automatically detect mind wandering in a student-independent fashion. We also 

experiment with different types of feature sets, including global (general) eye movements, locality 

(content sensitive) eye movements, and contextual features from GuruTutor. We find equitable 

performance between global and locality features. Because global features require less precise eye 

gaze, this affords more tolerance to eye tracking errors. 

Generalization of detection is of particular interest here. With the exception of Stewart et al. 

(Stewart, Bosch, & D’Mello, 2017), much of the work in automated MW detection has focused on 

particular environment or context (Bixler & D’Mello, 2016; Blanchard, Bixler, Joyce, & D’Mello, 

2014; Stewart, Bosch, Chen, Donnelly, & D’Mello, 2017). Taking a machine learnt model trained 

in one situation and applying it to another situation, be that a different context, feature space, or 

different classification, is a complex problem across in machine learning (Pan & Yang, 2010). 

Accordingly, in our third study, we investigate the differences between data collected in the 

laboratory versus data collected ‘in the wild.’ Using cross-training methods (i.e., building models on 

lab data and testing on classroom data), we show that lab-based mind wandering detectors are 

transferable to the classroom environment, but not vice versa – a finding with interesting 

implications.  

Fourth, given the success of facial features for detecting mind wandering (Stewart, Bosch, Chen, 

et al., 2017), we compared face- and gaze- based mind wandering detection, finding a strong 

advantage for gaze. We also build multimodal models trained using gaze data and facial feature data 

to investigate how fusion methods can be used to improve mind wandering detection, especially in 

cases where one of the streams is missing, a common occurrence in a classroom environment.  

Finally, we implement our gaze based mind wandering detector in GuruTutor and show that the 

detector trained on previously collected data can then be used in real-time on a new sample of 

classroom students. This is an important step because it demonstrates that the detector can be 

deployed in the real-world. 

To our knowledge, this is the first study to investigate COTS eye tracking for mind wandering 

detection in the wild, the generalizability of gaze-based models across laboratory and classroom 

contexts, a multimodal gaze+video combination to detect mind wandering under real-world 

constraints, and  real-time “online” mind wandering detection. Taken together, the models we 

develop will play a critical role in the first fully-automated attention-aware intelligent tutoring 

system for use in classrooms. 

2. Background and Related Work 

2.1 What is Mind Wandering? 

At its core, mind wandering is an attentional shift away from the processing of external, task-related 

information to the processing of internal, task-irrelevant thoughts or ideas (Giambra, 1995; McVay 

& Kane, 2009, 2012; McVay, Kane, & Kwapil, 2009; J W Schooler et al., 2011; Smallwood, Beach, 

Schooler, & Handy, 2008; Smallwood et al., 2007; Smallwood, McSpadden, et al., 2008; Smallwood 

& Schooler, 2006). These shifts in the locus of attention usually occur without intention or even 

awareness (Giambra, 1995; J W Schooler et al., 2011). There are multiple hypotheses regarding the 

cognitive mechanisms underlying mind wandering (Smallwood & Schooler, 2015). According to 

                                                             
1 Study 1 and 2 have been previously published in (Hutt, Mills, et al., 2017) 
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the executive-resource hypothesis (Smallwood & Schooler, 2006), when a task does not sufficiently 

consume all of one’s attentional resources, unused resources are automatically allocated to task-

unrelated thoughts and mind wandering occurs. In contrast, the control-failure hypothesis posits that 

mind wandering occurs when executive control fails to suppress task-unrelated thoughts (McVay & 

Kane, 2010, 2012). Despite these differences, the common argument is that both task-related and 

task-unrelated thoughts compete for attention, a limited resource, and mind wandering occurs when 

attentional resources are diverted to task-unrelated thoughts.  

Furthermore, different types of mind wandering can also be identified based on the content of 

task-unrelated thoughts (Faber & D’Mello, in press.; Stawarczyk, Majerus, Maj, Van der Linden, & 

D’Argembeau, 2011). For example, thoughts related to feelings pertaining to a task (e.g., “This is 

so boring.”) are different from completely unrelated thoughts (e.g., “I wonder what they will serve 

for lunch today.”). Recent research also suggests that aspects of the learning materials themselves 

(e.g., encountering the word water in a chemistry course) can trigger mind wandering due to the 

associative nature of memory (e.g., water triggers a memory of a summer at the beach) (Faber & 

D’Mello, in press). 

2.2 Why eye gaze reflect mind wandering? 

It is generally assumed that attention is focused on where the eyes are fixated (e.g., Hoffman & 

Subramaniam, 1995; Yonetani et al., 2012). Eye gaze is considered a real-time index of the 

information-processing priorities of the visual system because physiological and cognitive 

limitations on vision, attention, and memory require the eyes to shift from location to location to 

construct a comprehensive representation of the external world. Furthermore, visual information is 

only acquired during fixations, periods when the eye remains relatively stable, whereas visual input 

is suppressed during saccades—ballistic movements of the eyes between fixation points (e.g., 

Campbell & Wurtz, 1978; Matin, 1974; Zuber & Stark, 1966). Therefore, ongoing task goals are 

often best served when central fixation is allocated to the most important visual information within 

the environment, and, thus eye movements should reflect where visual attention is allocated. 

Although eye movements are used as signatures of attention, a growing body of research has 

observed changes in eye movements when people are not attending to visual tasks, such as during 

mind wandering. For instance, self-reports of mind wandering during reading are associated with 

fewer and longer fixations, greater variability in fixation patterns, and more frequent eye blinks 

(Faber, Bixler, & D’Mello, 2017; Reichle et al., 2010; Smilek, Carriere, & Cheyne, 2010; Uzzaman 

& Joordens, 2011). Mind wandering during visual scene processing has been associated with 

associated with fewer and longer fixations, greater fixation dispersion, and more frequent eye blinks 

(Krasich et al., 2018) Thus, there appears to be a shift in the sampling strategy of the visual system 

during mind wandering in that fewer regions are sampled and incoming information is restricted via 

blinks (Gawne & Martin, 2000). This is consistent with accounts showing reduced cortical 

processing of external information during mind wandering (Baird, Smallwood, Lutz, & Schooler, 

2014; Barron, Riby, Greer, & Smallwood, 2011; Kam et al., 2011; Smallwood, Beach, et al., 2008). 

Collectively, this research demonstrates that as mind wandering becomes prioritized and task-related 

processing is deprioritized (Csifcsák & Mittner, 2017), certain aspects of gaze behavior change. In 

essence, mind wandering is a form of “looking without seeing” because the eyes might fixate on the 

appropriate external stimulus, but very little is processed (Baird et al., 2014). This is the key insight 

that motivates gaze-based mind wandering detection as reviewed below. 

2.3. Previous work on mind wandering detection 

Automated approaches to detect mind wandering are growing over the last decade. Here, we 

distinguish between non-gaze and gaze-based mind wandering detection.  

 

Non-gaze mind wandering detection. There has been sporadic work in modalities, such as 

reading time and textual features (Franklin, Smallwood, & Schooler, 2011; Mills & D’Mello, 2015), 

prosody (Drummond & Litman, 2010), facial features (Stewart, Bosch, Chen, et al., 2017), and 

peripheral (Blanchard et al., 2014; Pham & Wang, 2015) and central physiology (Mittner et al., 

2014). In particular, researchers have built MW detectors based on interaction information readily 

available in log files collected during the reading (e.g., reading time, complexity of the text). For 

example, (Mills & D’Mello, 2015), attempted to classify whether students were MW while reading 

a  screen of text using reading behaviors and features of the text, such as text difficulty. Similarly, 

(Franklin et al., 2011) also attempted to predict MW during reading using textual features, such as 

word familiarity, difficulty, and reading time. However, rather than using supervised machine 
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learning, they used a set of researcher-defined thresholds to ascertain if participants were 

“mindlessly reading” based on difficulty and reading time.  

Facial features have also been used for mind wandering detection. Stewart et al. (Stewart, Bosch, 

Chen, et al., 2017) recorded videos of participants’ faces as they watched a narrative film, from 

which they extracted facial action unit (AU) and body motion features. A combination of these 

feature sets proved moderately successful at predicting MW. MW detectors trained on facial features 

(AU and body motion features have also been shown to generalize between contexts (Stewart, 

Bosch, & D’Mello, 2017). This study used two datasets, one in which participants watched a 

narrative film, and another in which a separate set of participants read a scientific text. Models were 

trained on each domain and were first each shown to be successful in their own domain. In addition, 

the  model trained on the narrative film model performed above chance when applied to the scientific 

text reading data, and vice versa after adjusting the prediction threshold.  

 

Gaze-based mind wandering detection. Researchers have recently leveraged aforementioned 

relationships between gaze and attention to build gaze-based mind wandering detectors during 

reading (Bixler & D’Mello, 2014, 2016). In these studies, mind wandering was measured via 

pseudo-random thought probes triggered during computerized reading, which required participants 

to report whether they were mind wandering or attentive to their task in the moments prior to the 

probe (called probe-caught mind wandering). Supervised classification models were successful in 

discriminating between “yes” and “no” responses to the thought probes using global eye gaze 

features (e.g., number of gaze fixations; fixation duration) and were validated in a manner that 

generalized to new students. Importantly, gaze-based mind wandering estimates correlated with 

learning outcomes, thereby providing evidence for the predictive validity of the detector (Bixler & 

D’Mello, 2016). 

A recent study (Faber et al., 2017) used similar methods to build gaze-based mind wandering 

detectors during reading. However, participants reported when they caught themselves mind 

wandering (called self-caught mind wandering) rather than responding to a thought probe. The 

researchers used a combination of supervised classification models trained on global eye gaze 

features and probabilistic prediction to address missing data  to successfully detect mind wandering. 

Relatedly, Loboda (2014) showed that eye gaze was predictive of self-caught and probe-caught mind 

wandering in reading. He also showed that predictive features varied between the two methods, 

suggesting that the different context (e.g. whether the person has meta-awareness of the mind 

wandering or not) impacts the nature of eye movements.  

Compared to the scale, variability, and density of visual information within many computerized 

learning environments, reading involves a relatively sparse visual context and prescribes specific 

scan patterns. Beyond reading, (Mills, Bixler, Wang, & D’Mello, 2016) applied gaze-based mind 

wandering detection to narrative film viewing. In this study, participants viewed a 32.5-minute film 

and reported when they caught themselves mind wandering. Supervised learning models were built 

using both global and content-sensitive local gaze features, with the latter being more accurate, 

presumably due to their sensitivity to the dynamic content being displayed on the screen. 

All of the above studies have used research-grade eye trackers and were done in the lab. Hence, 

of particular relevance to this work is a lab study that detected mind wandering with COTS eye 

trackers during learning (Hutt, Mills, White, Donnelly, & D’Mello, 2016). This study tracked 

students’ eye gaze with a Tobii EyeX as students completed a 30-40 minute learning session with 

GuruTutor (Olney et al., 2012)the same intelligent tutoring system (ITS) we use in the current 

research. . Students reported mind wandering by responding to pseudo-random thought probes 

throughout the session. A variety of supervised classification models were trained to detect mind 

wandering from global gaze features alone, achieving person-independent accuracies that were 

substantially greater than chance. This work served as a proof of concept that COTS eye trackers 

can be sufficient for mind wandering detection in a lab context. Here, we extend this work by 

investigating mind wandering detection in a classroom environment. 

We note that this is not the first time eyetracking has been utilized outside of the laboratory. For 

example, eyetracking has been used to improve interaction for military training in flight simulations 

(Weibel et al., 2012) and for target identification (Hild et al., 2016). In another setting, eyetracking 

software has helped surgeons to critically analyze their surgical skills (Ahmidi et al., 2010). 

Although, these applications were designed for use outside the laboratory, they typically use 

research-grade eye trackers that cost thousands of dollars, thereby limiting widespread scalability. 

Non-research grade equipment has shown some potential  as well. One example includes using eye-

gaze to interact with public displays (e.g., changing the page) (Zhang et al., 2015), though the range 

of interactions was limited and the system was susceptible to head movements over a certain 

threshold. Video game designers have also embraced using eye gaze to augment more traditional 

interaction techniques (Maurer et al., 2017; Navarro & Sundstedt, 2017). Recent developments have 
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also employed cellphone cameras to track eye movements in smartphone applications (Krafka et al., 

2016). However, this work is still in an early phase and many technical hurdles (e.g. tracking the 

gaze of users wearing glasses) need to be overcome before it is suitable for real-world use. 

Nevertheless, these and other recent works suggest the promise of using cost-efficient eye tracking 

as a mode of interaction in user-centered technologies with an eye towards wider scalability. 

3 Study 1: Feasibility of COTS Eye tracking in Classrooms 

3.1  Motivation 

Eye tracking has been shown to be an effective modality for mind wandering detection using both 

research grade eye tracking (Bixler & D’Mello, 2016) as well as COTS eye tracking (Hutt et al., 

2016) in controlled lab environments, often with an experimenter to guide participants with seating 

position, calibration, etc. For real-world use, students should be able to calibrate the eye trackers 

themselves after receiving basic instruction and the resultant gaze data should be of sufficient fidelity 

for user modeling. Study 1 explores the feasibility of collecting valid eye tracking data in a high 

school classroom using COTS eye trackers integrated with an ITS called GuruTutor. We also 

instructed students to respond to thought-probes of mind wandering, which were interspersed during 

the learning sessions as discussed in detail in Section 4.2.1. 

 

 

3.2  Method 

3.2.1  Guru Tutor 

GuruTutor (Guru) is an ITS designed to teach biology topics through collaborative conversations in 

natural language. It was modeled after interactions with expert human tutors (Cade, Copeland, 

Person, & D'Mello, 2008; D'Mello, Lehman, & Person, 2010; D'Mello, Olney, & Person, 2010; 

Olney, Graesser, & Person, 2010) and has been shown to be as effective at promoting learning 

compared to small group tutoring with novice human tutors (Olney et al., 2012).  

Guru's primary interface (see Figure 1) consists of a multimedia panel, a 3D animated agent, and 

a text response box. The agent speaks (using speech synthesis), gestures, and points using 

animations. Throughout the dialogue, the tutor gestures to parts of images on the multimedia panel 

most relevant to the discussion, and images are slowly revealed as the dialogue advances. 

Guru maintains a student knowledge model of various concepts (Sottilare, Graesser, Hu, & 

Holden, 2013), which it uses to tailor instruction to individual students. Student typed input is 

mapped to a speech act category (e.g., Answer, Question, Affirmative, etc.) using regular expressions 

and a decision tree learned from a labeled tutoring corpus (Rasor, Olney, & D’Mello, 2011). Guru 

uses the speech act category and multiple models of dialogue context to decide what to do next. For 

example, an affirmative response in the context of a verification question (e.g. “Do you 

understand?”) is interpreted as a content-based answer, while an affirmative in the context of a 

statement like “Are you ready to begin?” is not. Guru uses a general model of dialogue (e.g., 

feedback, questions, and motivational dialogue) and specific models representing the mode of the 

tutoring session (Cade et al., 2008), including Lecture and Scaffolding (see below). The mode 

models contain specific logic for answer assessment, feedback delivery (positive, neutral, or 

negative), and student model maintenance. 
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Figure 1. Screenshot of Guru in the CGB phase 

 

 

Guru tutorials focus on introductory biology topics (e.g., osmosis; protein function) in line with 

state curriculum standards in short sessions, typically lasting between 15 to 40 minutes. Guru begins 

each tutorial session with a basic introduction to motivate the topic, which is then followed by the 

following five-phase session that develops students’ understanding of the topic:  

1. Common-Ground-Building (CGB) Instruction. Biology topics often involve 

specialized terminology that needs to be understood before it is advisable to move on to 

deeper knowledge building activities. Therefore, Guru begins with a collaborative 

lecture phase (D’Mello et al., 2010) which covers basic information and terminology 

relevant to the topic. The lectures are collaborative with a 3:1 (Tutor:Student) turn ratio 

in which the tutor asks concept-completion questions (e.g., “Enzymes are a type of 

what?”), verification questions (e.g., “Is connective tissue made up of proteins?”), or 

comprehension-gauging questions (e.g., “Is this making sense so far?”). 

2. Intermittent Summaries (Summary). Following CGB, students construct their own 

natural language summaries of the material covered in CGB. These summaries are 

automatically analyzed to develop the initial student model, which determines which 

concepts require further tutoring in the remainder of the session.  

3. Concept Maps. For the target concepts, students complete skeleton concept maps, 

node-link structures that are automatically generated from text (see Figure 2; (Person, 

Olney, D’Mello, & Lehman, 2012)). 

4. Scaffolded Dialogue. Students then complete a scaffolded dialogue in which Guru uses 

a Prompt → Feedback → Verification Question → Feedback → Elaboration cycle to 

cover target concepts in detail. An example of this would be the following: 

 

Tutor: What breaks the carbohydrate down? 

Student: Food 

Tutor: Not quite, does breaking the carbon bonds break the carbohydrate down? 

Student: Yes 

Tutor: Bingo! Breaking the carbon bonds within a carbohydrate breaks down the 

carbohydrate and releaces energy 

 

 The student model is continually updated during the concept mapping and scaffolded 

dialogue phases. If a student shows difficulty mastering particular concepts, a second 

Concept Maps phase is initiated followed by an additional Scaffolded Dialogue phase.  

5. Cloze Task. The session concludes with a cloze task requiring students to complete an 

ideal summary of the topic, filling in missing information in the summary by retrieving 

it from memory (see Figure 3).  
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Figure 2. Example Concept Map 

 

Figure 3. Example Cloze task, blue text denotes student answer 

3.2.2 Integrating Sensors in Guru 

Our first task was to integrate eye tracking into Guru. We chose a COTS eye-tracker called the 

EyeTribe that retailed for $99. The eye tracker connects to a computer via USB 3.0 and was affixed 

to a laptop as shown in in Figure 4. This eye tracker is no longer available for retail, but similar 

results have been obtained with an alternate COTS tracker (see Study 3). 

 

 

Figure 4. Example EyeTribe setup 

 

One important goal was to facilitate eye tracker setup and calibration by the students themselves. 

This was accomplished via on-screen instructions that included a mixture of images, interactive 

tools, and text directions. The instructions first guided students to position themselves within the 

range of the tracker, followed by information on the calibration process itself. In particular, students 

were shown a window with two cartoon eyes that represent their eye gaze (see Figure 5). A red 

background signified an incorrect position, whereas a green background denoted an acceptable 

EyeTribe 
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position. This was followed by a nine-point calibration process, where points appeared on the screen 

sequentially and students fixated on each until it disappeared.  

 

 

Figure 5. Head position positive feedback (left) and negative feedback (right). 

In addition to eye tracking, we also collected facial feature data. Due to privacy concerns we 

could not record videos of students. Instead facial features were extracted live using OpenFace 

(Baltrusaitis, Robinson, & Morency, 2016). Facial feature extraction placed no additional 

requirement on the student beyond the correct positioning of the camera which was done using 

guided feedback provided at the beginning of the session.  

3.2.3 Iterative Testing & Refinement 

We completed several testing and refinement cycles to ensure that the entire implementation was as 

user friendly and autonomous as possible. Laboratory participants were compensated with research 

credit, while classroom participants were compensated with a $10 gift card.  

Lab Testing. The software was initially tested in the lab on individual students. Undergraduate 

students who had not used the software before were asked to follow the calibration instructions and 

complete a tutorial session on one biology topic with Guru. Researchers observed the setup process 

to identify pain-points (e.g., unclear seating position instruction). The students were then 

interviewed about their experience with the system. Insights gleaned from this testing were used to 

improve the clarity of the on-screen instructions and increase the level of feedback that students 

received during the eye tracker calibration process. 

Individual Testing in School – 9 Students. Initial testing of the implementation was conducted in 

after-school sessions with high-school student volunteers. Students completed the eye tracking setup 

and one Guru learning session. Each student was observed by a researcher, who noted critical 

incidents and recorded student questions. After the session, students were interviewed about the 

software, including how easy it was to use, how well they understood what they needed to do, and 

whether they understood why they were doing during each step. This informed our development of 

the software and streamlined the on-screen instructions, adding expanded instruction as needed. 

Small Group Testing in School – 7 Students. As a step towards testing with entire classes of 

students, we tested the implementation with a small group (seven) of student volunteers after school. 

Students were given instructions as a group and then interviewed individually once they had 

completed the session. This allowed us to identify issues that might arise when working with full 

classes of students. As a result, we further improved the instructions and addressed other 

technological challenges.  

Classroom Pilot – 35 Students. Finally, we conducted a classroom pilot using the same classroom 

as the main data collection (illustrated in Figure 6). We piloted with two class periods during 

students’ regular biology classes. A key observation was the range of completion times with students 

finishing up to 20 minutes apart. This poses challenges as students who finished early could be 

sources of distraction for others. As a result, we enforced a time limit on the Guru session, auto 

advancing students to the posttest after 25 minutes.  
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Figure 6. Example classroom layout 

 

We concluded that the usability of the system was considerably improved after these four rounds 

of testing and iterative refinement. Students were able to independently complete the setup, 

calibration process, and tutoring session via the on-screen instructions. In other words, they could 

use Guru with minimal guidance from the researchers and the resultant eye gaze was deemed 

sufficiently valid for larger-scale data collection. Figure 7 shows the final software workflow which 

includes the potential for a seating position check and recalibrating the eye tracker halfway through 

the session in case head position had changed considerably. In addition to this workflow we 

implemented a timout fuction that would automatically advance students to the post test after 25 

minutes of working with Guru. This was done to ensure that all students could experience two topics 

per session.  

3.2.4  Main Data Collection in Classroom 

We collected data from 135 (41% male) freshmen and sophomore high-school students enrolled in 

a Biology 1 course over two sequential school days in students’ regular biology classroom (see 

Figure 6). Students provided written assent while their parents provided written consent prior to 

participating in the study, which was approved by the University’s Institutional Review Board and 

the principal of the high school. 

Each class period consisted of an introduction to the software, 30 minutes of a biology session 

using Guru, a short break, then another 30-minute Guru session on a different biology topic. We 

used the following topics: Protein Function, Carbohydrate Function, Osmosis, Interphase, 

Facilitated Diffusion and Biochemical Catalysts, with students randomly assigned to a topic except 

that they could not receive the same topic for both sessions.  

Each session began with a multiple-choice pretest and concluded with a multiple-choice posttest 

on the tutorial topic. As in the classroom pilot study, students were automatically advanced to the 

posttest at the 25-minute mark in the session. An example multiple choice item from the protein 

function topic is shown below (Figure 8). 
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Figure 7. Final software flow diagram 

 
What are two factors that can cause a protein to become deformed? 

 

a) exposure to chemicals AND heat 

b) exposure to carbohydrates AND other proteins 

c) exposure to hormones AND antibodies 

d) exposure to water AND oxygen 

 

Figure 8. Example multiple choice question from protein function, correct answer shown in bold. 

 

Class sizes ranged from 14 to 30 students based on regular enrollment. The classroom layout was 

the same as the setup used for regular instruction with the addition of two school-provided laptops 

per desk. Each laptop had an eye tracker affixed below the screen (see Figure 6 and Figure 9). A 

third laptop was present on each desk (not shown in Figure 6) in order to record facial features for a 

secondary study (discussed further in Section 6).  

Students received instructions onscreen throughout the study. Specifically at the time of 

calibration, students were simply reminded to sit comfortably and instructed to follow the dot 

onscreen with their eyes. Two researchers were present during data collection to answer procedural 

questions and address any technical issues students encountered. In the event of calibration failure, 

the researchers would provide guidance on tracker positioning. The students’ teacher remained at 

the back of the classroom and did not interact with the students throughout the study. 

3.3  Results 

The majority of students were able to use the software, including eye tracker calibration, without 

any intervention from the experimenters. There was a potential to collect 270 sessions as each of the 

135 students completed two sessions. We obtained gaze data for 85% of these sessions with the 

following breakdown of the causes for the 15% missing sessions: (1) hardware failure—some of the 

computers had incorrect drivers for the USB 3.0 ports, causing problems with the eye tracker; (2) 

background processes—several computers attempted to automatically update during the session, 

causing an increased load on the processor, which in turn caused the software to occasionally crash; 

(3) calibration failure—students who failed to successfully calibrate after three attempts continued 

without eye tracking. Due to the unforseen nature of these errors, they were not appropraitely logged 
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by the software. Hence, exact proportions for each of these three failures are not availble, requiring 

us to instead rely on anecdotal reports and notes of the experimenter.  

 

Figure 9. Classroom layout for data collection 

 

We considered a valid sample to include at least one eye tracked with “high” quality as 

determined by the EyeTribe API. Figure 10 shows a histogram of percent of valid gaze points per 

session. We observed a median session-level validity rate of 95% for the sessions with gaze data. 

The median session-level validity dropped to 75% if we enforced a more stringent criterion that both 

eyes were tracked.  

 

Figure 10. Histograms showing gaze validity rate per session where eye tracking was 

recorded 

We also visualized the data as a first pass quality check. Figure 11 shows an example heatmap of 

one student’s eye gaze during the CGB phase. As expected, we note the largest concentration of 

gaze on the tutor’s face and upper body, followed by the multimedia panel, and the response box (at 

the bottom). This is in line with how active each element is in that the tutor moves and changes the 
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most throughout the session.  

Having explored both tracker validity and visualizations for each participant, our overall 

conclusion was that we were able to track eye gaze with reasonable accuracy when entire classes of 

students used COTS eye trackers in a noisy real-world environment.  

 

Figure 11. Heatmap overlay showing a student’s eye gaze in CCB phase. Red indicates high 

concentration of fixations, purple low concentration of fixations 

3.4  Discussion 

Whereas the laboratory affords controlled data collection, the classroom presents a far nosier 

environment where students are free to turn and whisper to a neighbor or may become distracted by 

other students in the room. Further, although students were given initial guidance as to seating 

position for calibration, they were relatively unconstrained throughout the two tutorial sessions. 

Despite this, we were able to achieve a median gaze validity ranging from 75% (both eyes tracked) 

to 95% (one-eye tracked criterion) for the sessions where gaze was collected at all. Give the 

differences in validity rate we considered monocular data in subsequent analyses.  

 Although we were unable to collect data for 15% of sessions, these failures were primarily for 

reasons beyond our control (e.g., hardware issues with school computers and automatic system 

updates) that were not present in initial pilot studies. Overall, we considered these results to be 

adequate given the difficulties presented by the relatively unconstrained classroom environment.  

We should note that eye tracking is not perfect. The Eye Tribe is designed to be tolerant to minor 

movements and we did not restrict movement other than requiring students to remain seated. During 

the tutoring session students were free to fidget, look around the room, and even occasionally lay 

their heads on the desk. As students look away tracking is lost, and their eyes must be re-detected 

when their focus returns to the screen. The redetection is supported by the EyeTribe but this series 

of events adds to the noise and inaccuracy of the tracker.  Nevertheless, we considered the benefit 

of a ‘real world’ environment and a low cost eye tracker to outweigh tracking errors introduced into 

the dataset.  

4 Study 2: Mind Wandering Detection (Offline Model) 

4.1  Motivation 

Study 1 indicated that COTS eye trackers could provide valid data in a noisy real-world 

environment. Our next step was to build automated mind wandering detectors using the data 

collected in the classroom. 

4.2  Methods 

We adopted a supervised learning approach using eye gaze and interaction data from the main data 

collection described in Study 1 (section 3.2.4). Thought probes (described below) interspersed 

during the Guru sessions were used to measure mind wandering. 
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4.2.1 Thought Probes to Measure Mind Wandering 

We measured mind wandering during learning with Guru using visual & auditory thought probes, 

which is a standard approach in the literature (Smallwood, McSpadden, et al., 2008). Mind 

wandering was first defined to the students as follows: 

 

“While you’re learning from the tutor, we want to know when you zone out. Zoning out is 

when you realize that you are no longer paying attention to what you’re supposed to be 

doing. You probably experience it everyday! For example, instead of thinking about the 

biology, you may be thinking about something else altogether (maybe thinking about lunch 

or what you might be doing after school). 

 

In addition, we are also interested in what type of zone outs occur while you are learning 

from the biology tutor. 

 

Zone outs can occur either because you INTENTIONALLY decided to think about 

unrelated things or because your thoughts UNINTENTIONALLY drifted away despite your 

best intentions to stay focused.  

 

So when we ask you if you are zoning out, want you to distinguish between these two types 

of zone outs when you respond.” 

 

The instructions and the mind wandering reporting procedure were extensively tested and refined 

in the preliminary studies described above. Students were required to demonstrate understanding of 

how to respond to the thought probes (via multiple choice questions and feedback) before 

proceeding.  

Students were probed at pseudo-random intervals with probes occurring every 90-120 seconds, 

based on previously observed mind wandering rates in Guru (Mills, D’Mello, Bosch, & Olney, 

2015). The tutoring session paused when a probe was to be delivered (see Figure 12). If the tutor 

was speaking at the time the probe was to be triggered, the probe was delayed until the tutor finished 

speaking. 

The probe consisted of an auditory beep along with an translucent overlay on screen, instructing 

the student to press the “N” key if they were not mind wandering, “I” if they were intentionally 

(deliberately) mind wandering, or “U” if they were unintentionally (spontaneously) mind wandering 

(Seli, Risko, & Smilek, 2016). In this study, we do not differentiate between intentional and 

unintentional mind wandering, so both “I” and “U” responses were considered as mind wandering. 

Students encountered an average of 12 probes over the course of each session with a mean mind 

wandering rate of 28% (SD = 24%, min = 0%, max = 100%). 

Figure 12. Example probe during Guru session 

 

 

It is important to emphasize a few points about this probing method. First, it relies on self-reports 

because mind wandering is an inherently conscious phenomenon, which requires self-awareness for 

reporting (Franklin et al., 2013). Second, self-reports of mind wandering have been objectively 
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linked to patterns in pupillometry (Reichle et al., 2010), eye-gaze (Randall et al., 2014), and task 

performance (Smallwood & Schooler, 2015), providing validity for this approach (also see Section 

8.3). That said, it is possible that the probing method may have re-oriented the students attention, 

which is why we limited the number of probes a student could receive. It was made clear to all 

students that their responses from the probes would not be shared with their teacher and they were 

encouraged to always answer honestly. At this time, there are no reliable neurophysiological or 

behavioral markers that can accurately substitute for the self-report methodology (Smallwood & 

Schooler, 2015). The limits of thought probes are considered further in the Discussion section, but 

as it currently stands, our use of thought-probes is consistent with the state of the art in the 

psychological and neuroscience literatures (Smallwood & Schooler, 2015).  

4.2.2 Feature Engineering 

We calculated features from 30-second windows (based on previous work (Hutt et al., 2016)) 

preceding each thought probe. Due to the lower validity binocular gaze recording (see section 3.3), 

we use monocular gaze throughout this study. We investigated two types of gaze features: global 

gaze (from previous work (Hutt et al., 2016)) as well as a new set of locality features. Global gaze 

features focus on general gaze patterns and are independent of the content on the screen, whereas 

locality features encode where gaze is fixated relative to specific scene content. We also encoded 

interaction data from the Guru session to obtain a set of context features (e.g., topic covered during 

the session).  

 

Global Gaze Features. Eye gaze is measured as fixations (i.e., points in which gaze is maintained 

on the same location) and saccades (i.e., the movement of the eyes between fixations). We first 

fixation filtered the raw eye gaze data using Open Gaze and Mouse Analyzer (OGAMA) 

(Vosskuhler, Nordmeier, Kuchinke, & Jacobs, 2008). We considered six general measures of eye 

gaze across the 30-second window (bolded in Table 1), from which we computed the number, mean, 

median, minimum, maximum, standard deviation, range, kurtosis, and skew of the distributions, 

yielding 54 features. We also included fixation dispersion, horizontal saccade proportion, and 

fixation saccade ratio (see Table 1), for a total of 57 global gaze features.  

 

Table 1. Eye-gaze features. Bolded cell indicates that nine descriptives (e.g., mean, range) 

were used as features (see text) 

 

Feature Description 

Fixation Duration  Elapsed time in ms of fixation 

Saccade Duration  Elapsed time in ms of saccade 

Saccade Length Distance of saccade in pixels 

Saccade Angle Absolute Angle in degrees between the x-axis and the saccade 

Saccade Angle Relative Angle of the saccade relative to previous gaze point. 

Saccade Velocity Saccade Length / Saccade Duration 

Fixation Dispersion Root mean square of the distances of each fixation to the 

average fixation position 

Horizontal Saccade Proportion Proportion of saccades with relative angles ≤ 30 degrees 

above or below the horizontal axis 

Fixation Saccade Ratio Ratio of fixation duration to saccade duration 

 

Locality Gaze Features. Whereas the global features emphasize how eye’s move, the locality 

features are based on where gaze is fixated on the screen. We computed these by overlaying a 10 × 

8 grid on the screen. Each grid cell represented a feature and was assigned a weight proportional to 

the number of fixations on that corresponding cell (see Figure 13). In addition to these 80 locality 

features, we included an “out of bounds” feature that encoded the proportion of fixations that were 

off the screen bounds. We chose this approach instead of an Area of Interest approach (AOI) in an 

attempt to improve generalizability across Guru topics because the media panel is updated per topic. 

Context Features. The gaze features were complemented by eight features that provide a 

snapshot of the current student-tutor interaction. One feature was the assigned biology topic. A 

second encoded students’ pretest scores. The next three features represented students’ progress 

within Guru, such as the current phase of the session (e.g., cloze, concept map), the amount of 

elapsed time into the session, and the amount of elapsed time into the current phase. The last three 
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features measured focused on students’ performance within Guru, measured as the proportion of 

positive, neutral, and negative feedback received.  

 

4.2.3 Supervised Classification and Validation 

We focused on Bayesian Networks for classification because they yielded the best performance 

compared to several other standard classifiers on this task in our previous work (Hutt et al., 2016). 

We used the default implementation from the Weka data mining package (Hall et al., 2009).  

In total, there were 2,720 thought probes during the Guru sessions. Of those, 386 were discarded 

due to insufficient eye gaze data (< 1 fixation in the 30s window) to compute several of the global 

features. The remaining 2,334 instances were used across all feature sets to ensure a fair comparison. 

Features that could not be computed (e.g., distribution features when there is only one fixation) were 

treated as missing values and were imputed based on mean values in the training set. 

We validated the models with a leave-several-students-out cross-validation scheme. For each 

fold, instances from a random 67% of the students were assigned to a training set and the instances 

of the remaining 33% students were assigned to a test set. This process ensures that no instances of 

any individual student could appear in both the training and test sets within a fold. This process was 

repeated for 15 iterations and the results were accumulated before computing accuracy metrics.  

Students reported mind wandering for 23% of the 2,334 instances, resulting in substantial data 

skew. Class imbalance poses a challenge because supervised learning methods tend to bias 

predications towards the majority class. To compensate for this concern, we used the SMOTE 

algorithm (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to create synthetic instances of the minority 

class by interpolating feature values between an instance and its randomly chosen nearest neighbors 

until the classes were equated. SMOTE was only used to oversample the minority class and was 

only applied on the training sets; the original class distributions were maintained in the test sets in 

order to ensure validity of the results.  

4.3 Results 

Because our intention is to detect instances of mind wandering, we focus on the precision, recall, 

and F1 score of the mind wandering class as our key metrics. For comparison, a chance-level baseline 

was created by randomly assigning the mind wandering label to 23% of the instances (the mind 

wandering base rate) and computing accuracy metrics accordingly. 

 

Main Results. The classification results shown in Table 2 indicated that: (1) all models substantially 

outperformed the chance-baseline; (2) both global and locality models had similar F1 mind 

wandering scores, but slightly different precision and recall scores; (3) the combined global + 

locality model had (surprisingly) lower performance than models using either feature set alone; and 

(4) adding context to the individual models did not result in improvements; if anything, it reduced 

classification accuracy in all cases. 

Proportionalized confusion matrices are shown in Table 3. We note that the errors for global and 

Figure 13. Example grid used for locality features - the proportion of fixations in each cell is a feature 
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locality models were skewed towards false positives (vs. misses), which would explain the higher 

recall. In contrast the global+locality model had a higher proportion of misses, which would explain 

its lower recall score. 

We statistically compared the individual models using mixed-effects linear regression (due to the 

repeated and nested structure of the data—one or more instances nested within a participant) with 

participant as an intercept-only random effect. We regressed agreement between model prediction 

and ground truth (i.e., accuracy) on model type with session as a random intercept. To account for 

differences in predicted MW rate across models, we included it as a fixed effect covariate. We  used  

the  lme4 package  in  R  for  model  fitting, and  the  emmeans package  for  pairwise  comparisons. 

Additionally, p-value adjustment for multiple comparisons was performed using the false-discovery 

rate method.  

There was a significant main effect of model type (p < .05), which we probed with a series series 

of planned comparisons. We found no significant difference (p = .445) between global and locality 

classifiers with both being significantly (ps < 0.001) better than the context classifier. We then 

considered the effect of combining global and locality features and observed that both unimodal 

classifiers (global and locality) were significantly (ps  < .055) better than the combined model. We 

also explored the effect of adding context to the individual classifiers and found either no significant 

improvement (p = .16 for global) or a reduction in accuracy (p < .001). Finally, the unimodal 

classifiers (global, locality, context) were significantly better than the trimodal classifier (ps <.01).  

 

Table 2. Mind wandering (MW) detection results for classroom data  

Feature Set Predicted MW  

Rate 

F1 MW Precision MW Recall MW 

Global 0.52 0.59 0.55 0.65 

Locality 0.55 0.59 0.51 0.70 

Context  0.35 0.49 0.58 0.43 

     

Global + Locality 0.36 0.46 0.51 0.41 

Global + Context 0.45 0.53 0.51 0.53 

Locality + Context 0.34 0.49 0.59 0.42 

     

Global + Locality + Context 0.33 0.44 0.53 0.38 

     

Chance 0.23 0.24 0.22 0.26 

 

Results for CGB Phase. Locality features relate to spatial location of gaze; however, each phase of 

Guru had different screen content (e.g., Figure 1 vs. Figure 2). To examine if this reduced the 

effectiveness of locality features, we compared global vs. locality models for the Common Ground 

Building phase - the only Guru phase with enough data to build phase-specific models. The number 

of available instances was reduced to 1,259 (from 2,334) and mind wandering rate increased to 30%. 

Classification results are shown in Table 4, where we note a small (.02 mind wandering F1) 

improvement for the locality model. There were no other substantial differences compared to the 

phase-independent models shown in Table 2, assuaging concerns of bias.  

 

Predictive validity. To further explore the validity of our detector, we investigated whether 

predicted mind wandering was related to posttest performance similar to self-reported mind 

wandering. As expected, the student-level self-reported mind wandering rate was negatively 

correlated with posttest scores (Spearman’s rho = -.189, p = 0.058) as was predicted mind wandering 

for both the global (rho = -.112, p = 0.26) and locality (rho = -.177, p = 0.076) models. None of 

these correlations were significant (including the ground truth correlation) at the p < .05 level, 

ostensibly due to the small sample size. Nevertheless, it is encouraging that the predicted MW rate 

of the locality model correlate with learning to the same extent as the self-reported MW rate.  
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Table 3. Confusion matrices for gaze-based models 

Actual Predicted  

   

Global  MW Not MW 

MW 0.65 (hit) 0.35 (miss) 

Not MW 0.52 (false pos.) 0.48 (correct rej.) 

   

Locality  MW Not MW 

MW 0.70 (hit) 0.30 (miss) 

Not MW 0.56 (false pos.) 0.44 (correct rej.) 

   

Global + 

Locality  MW Not MW 

MW 0.41 (hit) 0.59 (miss) 

Not MW 0.31 (false pos.) 0.69 (correct rej.) 

 

Table 4. Models built for Common Ground Building phase, comparison values shown in 

parentheses.  

Feature Set 
 

Predicted 

MW Rate 

F1 MW Precision MW Recall MW 

Global 0.57 0.59 (0.59) 0.55 (0.55) 0.64 (0.65) 

Local 0.55 0.61 (0.59) 0.58 (0.51) 0.65 (0.70) 

Global + Local 0.37 0.44 (0.46) 0.54 (0.51) 0.37 (0.41) 

4.3.1 Feature Analysis 

In order to explore how gaze features were related to mind wandering, we compared the global gaze 

features across positive vs. negative instances of mind wandering. We only considered global gaze 

features as these are more interpretable in terms of understanding general gaze patterns. Cohen’s d, 

an effect size measure, was used to assess the direction and magnitude of the differences between 

the two classes (Cohen, 2013). Positive d values for a feature indicate higher values for positive 

instances of mind wandering. To better understand how eye gaze relates to mind wandering 

detection, we ranked the ten largest effect sizes in terms of their absolute Cohen’s d (shown in Table 
5). We observe that during mind wandering, students focus on fewer points on the screen for a longer 

time. In addition, the effects for saccade duration and fixation dispersion suggest that these points 

are likely to be more spread around the screen rather than focusing in on specific regions.  These 

effects mimic those observed in other scene viewing tasks (Krasich et al., in press) suggesting that 

they are relatively context-free. 

 

Table 5. Ten largest effect sizes in terms of absolute Cohen's d 

Feature Cohen’s d 

Number of Fixations -.41 

Number of Saccades -.40 

Median Saccade Velocity -.33 

Mean Saccade velocity -.32 

Range of Saccade Angles -.26 

Mean Saccade Duration  .24 

Maximum Saccade Angle  -.24 

Fixation Dispersion .23 

Maximum Saccade Duration .23 

Median Saccade Duration .22 

 

4.4 Discussion 

We used the data from Study 1 to build student-independent gaze based mind wandering detectors. 

Despite the challenges involved in real-world data collection, we achieved mind wandering 
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detection rates (mind wandering F1 of .59) that substantially outperformed chance (mind wandering 

F1 = .24). We also extended previous work that only investigated content independent (global) 

features by exploring content sensitive (locality) features as well as a combination of the two. 

Content-sensitive features have been shown to be successful in other learning environments (Hutt, 

Hardey, et al., 2017; Mills et al., 2016) whereas in reading global features were sufficient (Bixler & 

D’Mello, 2016). Locality features did not yield any performance boost compared to global features, 

but did achieve similar results. In fact, predictions from the two feature sets were not too strongly 

correlated (rho = 0.25) suggesting they encode overlapping but non-redundant information.. 

 A combination of global and locality features also did not provide a boost over global features 

alone, possibly because the locality features we considered were too simplistic for this task. A further 

explanation is that the Bayesian network was affected by mutual information between the two 

feature sets. To address this, we regressed each of the global features using the locality features as 

inputs. The average R2 was .25 (SD = 0.12, Min = .06, Max = 0.66), suggesting that on average 25% 

of the variance in global features is explained by local features. Although it seems there is some 

mutual information between the feature sets, the overlap is perhaps too low to suggest that this is 

the only reason for the reduced performance of the two models. 

  Finally, the models’ estimates of mind wandering correlated with posttest scores at similar levels 

as self-reported mind wandering (particularly for the locality models), providing evidence of their 

predictive validity. Thus, though modest in accuracy, our mind wandering detector appears to have 

adequate validity. 

5 Study 3: Cross-Training Detectors between the Lab and Classroom 

5.1 Motivation 

Studies 1 and 2 focused on mind wandering detection in the classroom. However, learning occurs in 

many contexts, raising the question of whether mind wandering detectors generalize across 

contexts? Thus, Study 3 sought to address how models built from lab data compare to those built 

classroom data, whether a lab-model generalizes to a classroom-model, and vice versa. 

 

5.2  Methods 

5.2.1 Lab Data Summary 

Lab data were individually collected from 153 undergraduate students (one at a time) who received 

course credit for their participation (this dataset is an extension of data used in Hutt et al., 2016). 

After providing informed consent, students were seated at a desk in front of a 15-inch laptop 

connected to a Tobii EyeX eye tracker (another COTS eye tracker). We used the Tobii EyeX (with 

the appropriate liscencing to record data) because the EyeTribes were not available at that time. 

Students completed one session with Guru on one of the same topics used in the classroom study. 

Mind wandering was monitored using the same thought-probe method. In total, there were 2,066 

mind wandering probes, with a mind wandering rate of 23% (the classroom yielded an equivalent 

rate of 23%). 

5.2.2 Cross-Training Method  

We considered three datasets: lab data, classroom data, and the lab and school data combined. The 

combined dataset had a total of 4,400 instances, 2,334 from the classroom and 2066 from the lab.  

We considered various combinations of training and testing data as showing in Table 5. As before, 

the validation method ensured that a participant could be in wither the training and testing set but 

never both. As was done previously, each process was repeated over 15 iterations. We only focused 

on global eye gaze as these features are more generalizable, less affected by eye tracker accuracy, 

and resulted in equitable performance compared to locality features (see above).  

The two studies used different eye trackers, but both produced a similar quality of data (~95% 

average valid samples per session). However, the trackers had differing sampling rates, 30Hz for the 

EyeTribe and an average of 60Hz for the EyeX (note the EyeX sampling rate was not constant and 

varied slightly throughout the sessions). For both trackers, we used the same fixation filtering 

algorithm, however, due to the differing sampling rates we had to adjust the parameters by tracker. 

Specifically the number of samples required to constitute a fixation was set to three for the EyeTribe 

and six for the EyeX.  We applied z-score standardization by dataset to further mitigate any 
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differences between the two trackers.  

5.3 Results 

Cross-training results are shown in Table 6. We first note that school-trained detectors outperformed 

lab-trained detectors (F1 of .59 versus .44), although the findings could be confounded by differences 

in eye gaze trackers and participants (see Discussion). Importantly, detectors trained on data 

collected in the controlled laboratory environment were transferable to the more complex school 

environment (F1 of .44 versus .43). The reverse was not as successful as models trained on the school 

data did not generalize well to the lab (F1 of .59 versus .33), though there was still improvement 

over chance (F1 = .23). It is possible that the different trackers had an effect here, but that would not 

explain the asymmetric relationship between the two cross-trained modes. The combined 

lab+classroom model generalized across data collected in both environments.  

As in Study 2, we compared the individual models using mixed-effects linear regression. For the 

Lab+Classroom model, we observed no significant difference between testing in the classroom or 

the lab (p = .32) . For the model trained on the lab, we note that after accounting for MW prediction 

rate, testing on the lab was significantly (p < .001) better than testing on the classroom data (despite 

the similar F1 scores). The reverse was true for models trained on classroom data as these yielded 

higher accuracies when tested in the classroom vs. the lab (p < .001).  

 

Table 6. Mind wandering F1 scores for cross training, predicted mind wandering rates 

shown in parenthesis   

Training Set Testing Set 

  Lab + Classroom Lab Classroom 

Lab + Classroom  0.50 (0.49) 0.44 (0.36) 0.58 (0.55) 

Lab  - 0.44 (0.42) 0.43 (0.58) 

Classroom  - 0.33 (0.30) 0.59 (0.52) 

    

Chance  0.24 (0.23) 0.23 (0.23) 0.24 (0.23) 

 

To further explore the asymmetric relationship, we examined the confusion matrices for the two 

cross trained models (shown in Table 7). The model trained in the lab and tested in the classroom 

followed a pattern (hit rate) similar to the model trained and tested on classroom data. However, the 

model trained on the classroom data and tested on the lab data had a low hit rate, whilst maintaining 

a high correct rejection rate, ostensibly because it may be underpredicting mind wandering compared 

to the other models. We attempted to mitigate the underprediction by altering the decision threshold 

used by the model. The model calculates a likelihood of mind wandering for each instance and we 

previously considered instances with likelihoods greater than .5 as mind wandering. We 

experimented with altering this threshold as a way to adjust the predicted mind wandering rate, 

however, the asymmetric relationship in the results was maintained.   

Table 7. Confusion matrices for cross trained models 

Actual Predicted  

   

Train Classroom, 

 Test Classroom 

MW Not MW 

MW 0.65 (hit) 0.35 (miss) 

Not MW 0.52 (false pos.) 0.48 (correct rej.) 

   

Train Lab, 

 Test Classroom 

MW Not MW 

MW 0.82 (hit) 0.18 (miss) 

Not MW 0.65 (false pos.) 0.35 (correct rej.) 

   

Train Classroom 

Test Lab  

MW Not MW 

MW 0.39 (hit) 0.61 (miss) 

Not MW 0.28 (false pos.) 0.72 (correct rej.) 
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5.4 Discussion 

We investigated generalizability of the mind wandering detectors across contexts. Although the 

stimuli (Guru topics, instruction framework etc.) were very similar between the classroom and the 

lab studies, the students, environment, and eye tracker were very different. Despite these challenges, 

the models largely generalized across these two contexts when trained on combined data from both 

contexts. There was also an asymmetry in the results in that the lab model yielded equitable 

performance when applied to the classroom, but accuracy of the classroom model was reduced by 

almost half when applied to the lab data.  

We also found that the classroom model yielded overall better results than the lab model. Though 

this result could be attributed to multiple factors (e.g., eye tracker, students, environment), the fact 

remains that while it may be appropriate to start out in the lab, in this case, real-world data provided 

better detection accuracy. 

6 Study 4: Multimodal mind wandering Detection from Gaze and Video 

6.1 Motivation 

Studies 1-3 indicated that eye gaze is a valid, albeit imperfect, channel to detect mind wandering. In 

Study 4, we attempt to improve detection accuracy, by considering a multimodal approach 

combining our gaze based detectors with detectors trained on facial features extracted from video. 

Previous work on video-based mind wandering detection (Stewart, Bosch, Chen, et al., 2017; 

Stewart, Bosch, & D’Mello, 2017) focused on facial features collected in the laboratory. In contrast, 

(Bosch & D’Mello, in preparation) developed a video-based mind wandering detector using the 

same classroom data used to develop our gaze-based mind wandering detector (see Studies 1-2).   

6.2 Methods 

6.2.1 Facial Feature Models  

The development of the facial feature models is outlined briefly here, for a more detailed description 

see (Bosch & D’Mello, in review). Facial features were extracted in real-time (simultaneously while 

gaze was recorded) using OpenFace (Baltrusaitis et al., 2016). Real-time processing was done due 

to privacy considerations, which precluded recording videos of students for offline feature 

extraction. The live feature extraction placed no additional requirement on the student (e.g. 

calibration) beyond positioning the camera correctly. 

OpenFace provides intensity estimates of 14 (at the time of the study) action units (AUs), which 

represent specific facial muscle activations (Ekman & Friesen, 1978). AUs were extracted per frame 

as fast as real-time processing would allow (mean frames per second = 4.6). We also captured co-

occurrence relationships between AUs, which can be important for distinguishing facial expressions. 

For example, a connection between muscle movements around the mouth and eyes when smiling 

can be a telling of genuine smiles, versus smiles involving the mouth only (Messinger, Fogel, & 

Dickson, 2001). Co-occurrence relationships between all pairs of AUs (n = 14) were computed via 

the Jensen-Shannon divergence (JSD) (Lin, 1991) an extension of Kullback-Leibler divergence 

(KLD) for measuring similarity between two probability distributions (Kullback & Leibler, 1951) 

We used a 10-second window length for facial features based on previous work (Stewart, Bosch, 

& D’Mello, 2017) showing that a shorter window led to more accurate MW detectors for this 

modality. There were 2,888 10-second-long instances extracted from 135 students, of which 502 

were discarded because they contained fewer than 4 frames of data (approximately 1 second). As 

features were extracted in real time, missing data occurred when the face could not be automatically 

detected, for example, if the face was no longer in frame or if the student had turned the side. The 

automatic facial recognition is tolerant to small movements as well as multiple faces in frame.  

For each of the remaining 2,386 instances, AUs were aggregated across frames to obtain the 

mean, median, standard deviation, minimum, maximum, and range of each AU estimate within the 

video clip. This resulted in 84 AU features and 91 JSD features (all possible unordered pairs of 14 

AUs).  

A support vector machine (SVM) classifier was then trained on each feature set using a student-

level k-fold cross validation scheme. The SVM models used a radial base kernel and 

hyperparameters were trained using a cross-validated grid search. The SVM’s were used here instead 

of a Bayesian approach because they have been shown to be successful in this domain (Stewart, 

Bosch, & D’Mello, 2017).  
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6.2.2 Decision Fusion 

The modalities operate at different time scales (10s for facial features and 30s for gaze features) and 

there are cases where data was only available from a single modality. Therefore, we used decision-

level fusion to combine the two modalities instead of feature-level fusion. We combined the gaze-

based models (Global Gaze and Locality Gaze) developed in Study 2 with the facial feature models 

(Face AU, Face JSD) to develop a multimodal detector by aligning the instances of the two 

modalities by end-point (i.e., time of the MW probe). We compared the four individual predictions 

to an unweighted classifier that simply averaged the four individual binary predictions and to a 

weighted average classifier that weighted the individual predictions by the mind wandering F1 score 

of each individual classifier. Averages that exceeded a 0.5 threshold were taken as mind wandering. 

 

6.3 Results 

Results of the feature fusion classifiers are shown in Table 8. There was an overlap of 1,743 instances 

with no missing data across the two channels (instances that contained both valid gaze and face 

data). To ensure a fair comparison, this subset was used in initial fusion experiments. The results, 

shown in Table 8, indicate that neither of the fusion approaches outperformed the best single-channel 

models. As in Study 2, we compared the individual models using mixed-effects linear regression. 

We first compared within modality, observing no significant difference between the two gaze models 

(p = .417) or the two face models (p =. 683). We then compared the modalities to each other and 

observed that both gaze classifiers were significantly (ps < .001) better than both face classifiers. 

Finally, we compared the two gaze classifiers to the two fusion classifiers and found no significant 

difference (ps > .505). 
 

Table 8. Results of multimodal feature fusion for complete data (1,734 instances,) 

Classifier Predicted 

MW Rate 

F1 MW Precision 

MW 

Recall 

MW 

Individual classifiers     

Gaze Global 0.46 0.45 0.33 0.71 

Gaze Locality 0.47 0.49 0.41 0.62 

Face AU  0.35 0.31 0.25 0.4 

Face JSD 0.29 0.3 0.28 0.32 
     

Fused classifiers     

Unweighted Average 0.42 0.44 0.33 0.64 

Weighted Average 0.33 0.45 0.37 0.57 
     

Chance 0.22 0.23 0.22 0.23 

 
Next, we considered the 2,558 instances with either valid gaze or valid face data, by simply 

ignoring missing predictions when computing the averages. For example, if only gaze predictions 

were present, then only these two values were averaged instead of four. Results of this classification 

are shown in Table 9. We again conducted a statistical analysis (following the same method as above) 

and noted that similarly, no significant difference between the gaze classifiers (p = .145), which were 

significantly better than the face classifiers (ps < .001). We also found that the fusion classifiers 

were significantly better than the global gaze classifier (p = .02), but not the local gaze classifier (p 

= .531), likely because of the differing MW prediction rates.  

6.4 Discussion 

We compared gaze- and face- based mind wandering detectors and found that the gaze models 

yielded the highest accuracies. We also showed that one solution to the missing data problem 

inherent in real-world contexts is to combine two modalities. It also should be noted that the 

improvement of the multimodal classifier over gaze classifiers was minimal so adding additional 

modalities may well over complicate MW detection and increase points of failure.  
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Table 9. Results of multimodal feature fusion with missing data included  

(2,558 instances) 

Classifier Predicted 

MW Rate 

F1 MW Precision 

MW 

Recall 

MW 

Individual classifiers     

Gaze Global 0.48 0.47 0.37 0.61 

Gaze Local 0.37 0.47 0.43 0.54 

Face AU  0.38 0.35 0.32 0.39 

Face JSD 0.26 0.29 0.32 0.27 
     

Fused classifiers     

Average 0.38 0.5 0.42 0.63 

Weighted Average 0.29 0.49 0.46 0.53 
     

Chance 0.25 0.24 0.24 0.24 
 

7. Study 5: Real-Time Mind Wandering Detection in Classrooms (Online model) 

7.1 Motivation 

Having provided evidence that eye gaze collected in the classroom could be used to detect mind 

wandering in Studies 2-4, we next considered if these models could be used to detect mind 

wandering “live” as students are using Guru. This is a critical step to verify that the models can be 

used to trigger real-time mind wandering interventions, an important goal of this work. In this initial 

exploration of live detection, we considered only gaze for simplicity and although there was an 

improvement in accuracy for the gaze+face multimodal model, the improvement was quite small 

(mind wandering F1 .50 vs. .47). We also focused on global features because they are more 

generalizable, more robust to noise than locality features, and yielded better performance when 

missing data was included (see Table 9), which is an important requirement for a real-time system. 

7.2 Methods 

7.2.1 Development 

We integrated the mind wandering detector from Study 2 into Guru to enable real-time mind 

wandering detection. In this initial implementation, mind wandering predictions were generated in 

non-overlapping 30s windows; overlapping windows are considered in Section 7.4. We reconfigured 

Guru to deliver two types of probes: (1) a probe triggered by the detector (triggered probe) and (2) 

a pseudorandom probe as used previously (random probe). Triggered probes occurred based upon 

the mind wandering detector’s estimates with a 0.5 classification threshold, whereas random probes 

occurred as before (every 90-120 seconds). Students would receive only one probe (triggered or 

random) in a 90 second window. Pseudocode for the probing algorithm is shown in Figure 14. 

A lab-based user test with seven college students indicated that the detector triggered only one 

probe each for six students; the seventh received 12 probes. Due to this imbalance, and to account 

for detector error, we replaced the binary 0.5 cutoff with a nonlinear probabilistic approach. 

Specifically, a prediction of less than 0.25 resulted in no probe, a prediction greater than 0.75 always 

yielded a probe. In between these bounds, probing was probabilistic (e.g., a prediction of 0.45 

resulted in a 45% chance of yielding a probe whereas a prediction of 0.65 garnered a 65% chance).  

7.2.2 Classroom Testing 

Using a similar setup to Study 1 (Section 3.4), we tested Guru with real-time mind wandering 

detection in two classes. Participants were a new set of 39 high school sophomores, who were 

enrolled in their first high school biology class with the same teacher and in the same classroom as 

Study 1. Each student completed two Guru sessions in an 80-minute class period (with the exception 

of two students who were late to class and therefore only completed one session). Students were 

randomly assigned to two topics from among the following: Carbohydrate Function, Facilitated 

Diffusion, Interphase, Protein Function, or Osmosis.  
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7.3  Results 

Although the equipment used for the study was unchanged from Studies 1 and 2 (Study 4 continued 

to use the EyeTribe), software and protocol were adapted to address some of the technical issues 

that had previously arisen such as computer crashes due to windows updates. As a result of these 

modifications, our software was successful in recording gaze data for 93.4% of sessions. 

There were 351 total probes triggered by the detector; a further 350 probes were triggered 

pseudo-randomly. The observed mind wandering rate across all probe responses was 27%, on par 

with the rates found in Study 2 (23%). 

7.3.1. Live mind wandering detection results 

We treated a positive mind wandering response to a random probe as a miss, a negative mind 

wandering response to a triggered probe as a false positive. There were six cases in which the 

detector predicted that a student was mind wandering, however, the constraint of requiring 90 

seconds between consecutive probes prevented these from occurring. However, a random probe was 

triggered within the next 10s (as the time constraint had then expired), and the student answered that 

they were mind wandering. We counted those cases as correct predictions of mind wandering and 

are reflected in the confusion matrix shown in Table 10. 

 

Table 10. Confusion matrix for live detector (predicted mind wandering rate 0.50) 

Actual Predicted  
MW Not MW 

MW 0.55 (hit) 0.45 (miss) 

Not MW 0.48 (false pos.) 0.52 (correct rej.) 

 

We obtained a mind wandering F1 of 0.40, precision of 0.32, and recall of 0.55 (chance baseline 

values 0.24, 0.26, 0.22, respectively). Although we outperform chance, there was still a reduction 

from results obtained in Study 2 (mind wandering F1 = 0.59). This could be attributed to how missing 

data was handled. In Study 2, cases with insufficient data (< 1 fixation in the window) were 

excluded, but all cases were considered for the online model. For example, a student may be mind 

wandering but the detector was unable to generate a prediction if valid gaze data was not recorded; 

this would be considered to be a miss. We examine how many instances did not contain enough valid 

eye gaze to generate a prediction. The detector attempted to make a prediction every 30 seconds, but 

there were 84 instances in which there was not enough data to make a prediction (mean per session 

= 1.10, SD =  1.62 min = 0, max =  7).  

Figure 14. Pseudocode for probing algorithms 
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7.3.2. Follow-up analyses 

Locality model. We investigated how the locality model would have performed compared to the 

current global model by using the locality model trained in Study 2 to generate (offline) predictions 

for the same instances as the global model. The results, shown in Table 11, suggest equitable 

performance compared to the global models with a mind wandering F1 of 0.42, precision of 0.37, 

and recall of 0.53. Again, we observed a drop-off from the results obtained in Study 2 (mind 

wandering F1 = 0.59). The two models also agreed on 74% of all instances - the locality model 

agreed with the global model’s mind wandering and not mind wandering predictions for 63% and 

82% of the instances, respectively. 

 

Table 11. Confusion matrix for Locality Model (predicted mind wandering rate 0.38) 

Actual Predicted  
MW Not MW 

MW 0.45 (hit) 0.54 (miss) 

Not MW 0.33 (false pos.) 0.66 (correct rej.) 

 

Overlapping Windows. In this study, we generated a “live” mind wandering prediction every 30 

seconds to be consistent with the offline model from Study 2. However, to improve temporal 

granularity of the predictions, we conducted a post-hoc analysis by generating a mind wandering 

prediction every one second using a 30-second sliding window and the global gaze features. This is 

particularly important if the goal is to address mind wandering when it occurs as a 30s delay is likely 

too excessive. 

Visual examination of the predictions across time suggested three representative patterns. Figure 

15 (a) shows a representative time series of the sliding window predictions for 19 of the 71 sessions 

with no triggered probes, whereas Figure 15 (b) represents a session with a high reported mind 

wandering rate (46%). The difference among the two time series is readily apparent with Figure 15a 

containing low and flat mind wandering predictions, but Figure 15b shows multiple spikes, 

indicating MW predicitons.. Finally, Figure 15 (c) represents a session with an average reported 

mind wandering rate (20%). For this session, the detector was mainly flat like Figure 15a with a few 

bursts of high mind wandering predictions (like Figure 15b). Though Figure 15c represents a session 

with average reported MW rate, the timing of predicted MW varies between participants since not 

all occurred at the end of the session.  

 

Correlations with learning. We computed an average mind wandering rate for each session by 

averaging the sliding window predictions. Whereas self-reported mind wandering was largely 

uncorrelated with posttest scores (Spearman’s rho = -0.04), the predicted mind wandering rate 

showed a similar negative correlation (rho = -0.20) as in Study 2 and previous research (D’Mello, 

in press). 

7.4  Discussion 

We have demonstrated that offline detectors trained in Study 2 can be used for real-time mind 

wandering detection albeit with a drop in performance. We partly attribute this performance change 

to differences in how missing data was handled. In future refinements, we will investigate additional 

methods to handle missing data in real-time. One such approach is to consider multimodal mind 

wandering detection when a second modality could substitute when one is missing and vice versa 

as discussed in Study 4.  
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Figure 15. Mind wandering predictions for overlapping 30 second windows 
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8 General Discussion 

It is widely acknowledged that attention is necessary for learning (D’Mello, 2016; Pham & Wang, 

2015). An attention-aware learning technology (Olney et al., 2015) which can monitor and react to 

a student’s attentional state could assuage the cost of attentional failures (like mind wandering), 

thereby improving engagement and learning. However, until very recently, the high cost of eye 

trackers (which are the most robust method to track visual attention) has relegated eye tracking 

technology to the confines of the lab. We addressed this issue by studying the feasibility of using 

COTS eye trackers to obtain valid gaze data in a noisy classroom environment (Studies 1) and to 

use this data to build automatic mind wandering detectors (Study 2). We then extended this work by 

comparing models trained on lab vs. classroom data as well as built cross-trained models (Study 3); 

compared gaze-based models to and face-based models and multimodal combinations of eye gaze 

and facial features for mind wandering detection in classrooms (Study 4); and investigated real-time 

mind wandering detection in classrooms (Study 5). Our main findings are summarized below, 

followed by a discussion of applications, limitations, and future work.  

8.1 Main Findings 

Despite the fact that the classroom is a complex and noisy environment, we show that is feasible to 

collect valid eye tracking data with COTS eye trackers (Study 1). Furthermore, we maintained 

realistic classroom conditions in that students were relatively unconstrained throughout the study. 

And other than receiving initial guidance as to seating position for eye tracker calibration, they also 

independently completed the calibration. Despite these lack of constraints, we achieved median gaze 

validity scores of 75% (both eyes tracked) and 95% (one eye tracked) for the sessions (85%) where 

gaze data was collected. Although we were only able to collect data for 85% of the sessions in Study 

1, this was primarily for reasons beyond our control (e.g., hardware issues with school computers, 

automatic system updates, failure to calibrate). Success rates improved to 93% in Study 5. 

Validity, however, does not imply usefulness. To address this, we built student-independent mind 

wandering detectors from the eye gaze data and self-reported mind wandering collected in the 

classroom (Study 2). We achieved moderately accurate mind wandering detection rates despite 

challenges of class imbalance, noisy gaze data, and unrestricted movements. The F1 mind wandering 

score of 0.59 was higher than the previous score of 0.49 achieved in a lab study with GuruTutor 

(Hutt et al., 2016), though this comparison is tentative due to several differences between the two 

studies. We also extended this previous work that only investigated global gaze features by exploring 

locality features as well as a combination of the two. These enhancements did not yield accuracy 

improvements, not did the inclusion of a simple set of contextual features. One possibility is that the 

global features are sufficient for this task. However, it is more likely that the locality and contextual 

features were too simplistic and benefits may be gained by refining them (see Future Work). 

We found that mind wandering detectors trained on laboratory data were also transferable to an 

“in the wild” environment, despite several differences among the two samples (Study 3). The 

reverse, however, was not true. The implication is that while it might be sufficient to start out in a 

controlled lab environment, this is no substitute for collecting real-world data (and in our case the 

difference was quite profound). Combining data from both sources led to equitable performance on 

each source though.  

We explored decision fusion between gaze- and video- based mind wandering detectors (Study 

4). One finding was that the gaze-models substantially outperformed the video-based detectors. 

More importantly, when considering cases where both modalities had valid data, we did not observe 

any significant improvement of the multimodal model over the best individual models. However, 

when cases with missing data were included, the combination of the gaze and facial detectors 

improved overall mind wandering detection. Interestingly we note that the fusion classifiers showed 

a significant difference to the global gaze model but not to the locality model.  

Importantly, we provided evidence for the feasibility of real-time mind wandering detection 

(Study 5) using the gaze-based model. Although model performance decreased during live detection 

vs an offline model (mind wandering F1 = 0.59 to 0.40) the detector still outperformed chance (0.24) 

and the difference can partly be attributable to differences in how missing data was handled (also 

see above). Specifically, In Study 2, we only considered the 2,334 instances with valid gaze data, 

achieving a mind wandering F1 score of 0.59 for the global gaze model (Table 2). When we reduced 

the number of instances to 1,734 for which there was both face and gaze data, we obtained a 

reduction in classifier performance (F1 = 0.46 for the global model – Table 8). When we increased 

the number of instances to the 2,558 with either face or gaze data we also noted a decrease in 

performance (F1 = 0.48 for the global model). Thus, it is important to devise better methods to 
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address cases with missing data especially since they are unlikely to be missing at random. 

Finally, we note that detected mind wandering rates negatively correlated with learning at rates 

comparable (Study 2) or better than self-reports (Study 5). This provides critical evidence regarding 

its predictive validity. 

8.2 Applications 

One important application of this work is to develop an attention-aware version of Guru that detects 

and combats mind wandering in real time in an effort to reengage students’ attention toward learning 

materials. Such a system has a number of paths to pursue. One immediate effect of mind wandering 

is that students may fail to attend to a unit of information or event because they are consumed by 

internal, off-task thoughts. To combat this, one approach may be to simply repeat the missed 

information (e.g., “John, let me repeat that…”) or to direct the student’s attention to an area of the 

screen that may help them (e.g., “Mary, you might want to look at the image showing the enzyme 

breakdown…”). A more involved approach might be to ask the student a content specific question 

(e.g., “Santiago, what happens to an enzyme when it is subjected to heat?”) or ask the student to 

self-explain a concept (e.g., “Kiara, why don’t you summarize what you just learned”). Additional 

measures might be needed if mind wandering persists despite these interventions. One option is to 

simply change to a new activity (e.g., quitting the lecture and moving to concept mapping). Guru 

might even suggest changing topics or offering students a choice of what to do next. If all else fails, 

Guru might even suggest that the student take a break.  

It is important to consider that the aforementioned interventions rely on mind wandering 

detection, which is inherently imperfect. In our view, mind wandering detection does not need to be 

perfect as long as there is a modicum of accuracy. Imperfect detection can be addressed with a 

probabilistic approach, where the detector’s mind wandering likelihood is used to determine whether 

an intervention is triggered (i.e., if the likelihood of mind wandering is 70%, then there is a 70% 

chance of an intervention), similar to the approach used in Study 5 for real-time mind wandering 

detection. The interventions should also be designed to be “fail-soft” in that there are no harmful 

effects if delivered incorrectly and the examples above were designed with this principle in mind.  

Beyond immediate intervention, the mind wandering detector could also passively monitor mind 

wandering rates, tagging content with high mind wandering rates for retesting or restudy or 

providing reports to teachers and instructional designers on which sections or activities were 

associated with high mind wandering rates (as considerations for redesign). It could also be used as 

a feedback tool for students, for example, for use as an objective measure of attention for those 

interested in improving attentional focus via mindfulness training (Zoogman, Goldberg, Hoyt, & 

Miller, 2015), meditation, or some other strategy. Similarly, it can be used as tool to promote 

metacognitive reflection, where students monitor their own attention levels to identify periods where 

there are most attentive. 

COTS eye tracking in the classroom opens doors to several additional applications beyond mind 

wandering detection and responding. One involves monitoring attentional states beyond mind 

wandering (e.g., focused attention, alternating attention) to ensure that limited attentional resources 

are being optimally deployed (D’Mello, 2016). Another includes large-scale user testing of new 

learning technologies in the classroom. Student eye-gaze could also be used as a feedback tool to 

teachers, who can revise instruction/materials based on what captures and sustains students’ 

attention. Indeed, there are numerous potential applications afforded by scalable tracking of eye gaze 

in real-world environments. 

8.3 Limitations & Future Work 

There were several limitations of this work. Our system was designed to include a low-cost eye 

tracker so that it may scale to large numbers of students. However, COTS eye trackers have a lower 

sampling-rate and are less accurate compared to research-grade eye trackers. Regrettably, the 

specific eye tracker we used is no-longer available after the company was acquired, but alternatives 

are available (Tobii 4C; GazePoint). There is also some cost associated with these alternatives, so 

deployment in underfunded schools is not a guarantee, thereby creating equity issues. Eye tracking 

with inexpensive web-cams are a promising alternative to consider (Papoutsaki et al., 2016; Sewell 

& Komogortsev, 2010). 

In a related vein, the lab- and school- studies used different eye trackers (due to shipping delays) 

and different participants (due to convenience), which limits what can be concluded from a direct 

comparison of models built from the two data sets. That said, the fact that differences among the 

two were asymmetric (lab models generalized to school but not vice versa), suggests that other 

factors beyond type of tracker and sample are at play. Future work is needed to resolve the difference 
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among the two approaches. 

With regard to mind wandering detection, we are limited by the features used in the supervised 

learning models. We used a small subset of gaze features and did not model any temporal patterns 

in eye gaze. For example, if a student had multiple fixations in one area, were these concentrated or 

distributed across time? In addition, we only considered a small number of contextual features and 

our locality features were quite primitive. Future work should explore a more refined set of locality 

features for mind wandering detection – for example, AOI (area of interest) features that capture 

fixations on various parts of the display, such as the tutor agent, aspects of the multimedia panel, the 

response box, and so on. When images are present, we can analyze image-specific gaze fixations, 

such as proportion of fixations on images, number of image components fixated on, and fixation 

durations on different components (e.g., objects, labels, and arrows). Guru uses a slow-reveal 

animation, where image components slowly appear as they are being referenced throughout the 

session. This affords computing of animation-based locality features that measure gaze latencies to 

different image components as they are slowly revealed. A further possibility would be to explore 

temporal gaze features, for example how the fixations and saccades interact with the displayed 

content over time.  

Furthermore, because we extracted facial features in real-time and discarded the video frames to 

protect privacy, the features were limited in scope (e.g., facial textures could not be extracted). A 

richer set of facial features (Bosch et al., 2015) may make this channel more competitive with eye-

gaze. Future work should also extract a richer se of contextual features from Guru interaction data 

to augment the enhanced set of face and gaze features and integrate them using more advanced 

multimodal fusion models (D’Mello, Bosch, & Chen, in press) than the simplistic decision-fusion 

approaches considered here. 

A further limitation relates to the use of thought probes, which require users to be mindful of 

their mind wandering and respond honestly. Although this methodology has been previously 

validated (Franklin et al., 2013; Randall et al., 2014; Reichle et al., 2010) it is still limited due to the 

reliance on self-reports. Unfortunately, there is no clear alternative to track a highly internal state 

like mind wandering outside of measuring brain activity in an fMRI scanner, which is also limited 

in many respects. One futuristic possibility is to combine self-reports and wearable 

electroencephalography (EEG) as a means of collecting more accurate mind wandering responses, 

but it is unclear if this can be done in the wild – though one previous study shows some promise 

(Girn et al., 2017) . 

In addition to the aforementioned improvement to mind wandering detection, it is important to 

close the loop by developing mind wandering interventions. This presents two challenges to explore: 

what kind of intervention should be delivered and given the imperfect nature of mind wandering 

detection, what mechanism should be in place for triggering said intervention? We are in the process 

of addressing these challenges akin to the strategies discussed above (Section 7.1). Having 

completed initial design activities with teachers and students, we have implemented the first 

attention-aware version of Guru. Upon completing multiple rounds of iterative refinement, we will 

summatively test the technology by randomly assigning students to the attention-aware Guru with 

the mind wandering interventions enabled (experimental group), disabled (business as usual control 

group), or with interventions triggered based on historic mind wandering distributions rather than a 

student’s current mind wandering likelihoods (active control group). Whether the attention-aware 

Guru increases engagement and learning compared to the controls awaits future technology and 

development.  
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