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Abstract 

Artificial Intelligence in Education research for STEM domains has largely been quantitative in 

nature, but qualitative research offers several advantages as part of a mixed-methods approach. 

In particular, qualitative research enables researchers to develop deeper phenomenological 

understanding of how learners represent their activity to themselves. However, qualitative 

research can be challenging to apply in classrooms: it is resource-intensive, does not scale well, 

and the phenomena of the greatest interest to AIED researchers are often intermittent and 

occasional. For example, researchers may be interested in studying situations where a learning 

activity is known to be overly time-consuming or difficult, or in theoretical investigations of shifts 

in student affect such as transitions from confusion to frustration. However, given multiple 

potential learners to interview (e.g., a classroom of students), it can be difficult for a researcher 

embedded in the classroom to prioritize which learner to speak with next. Simple strategies, 

whether sequential or random, may miss (often fleeting) key moments in a participant's 

experience (e.g., affective transitions).  

We address this problem with a new app that leverages user modeling techniques (e.g., behavior 

and affect-sensing) to direct interviewers to learners at critical, theory-driven moments as they 

learn with AIED technologies in the classroom. This paper details the design and implementation 

of this research paradigm as an alternative method for studying learning and using existing STEM 

AIED technologies in research. We examine the potential of this paradigm through the lens of two 

case studies where 99 students interacted with a computer-based learning environment as part 

of their regular classroom instruction. Unscripted interviews were triggered at or immediately after 

critical moments (such as peak frustration or shifts from confusion to boredom). The app facilitated 

594 interviews, each averaging 1-2 minutes in length. Our findings indicate that by using machine 

learned models to optimize researcher time, we can gain a deeper insight into students’ behaviors 

and their motivations, thus furthering AIED research. We discuss the potential broader 

applications of this app and the research it affords. 

1 Introduction 

Educational software and computer-based learning environments have become an increasingly 

prominent part of K-12 education. Even before the COVID-19 pandemic, there was a considerable 

increase in the use of these technologies (Marcus-Quinn & Hourigan, 2017), and this trend has 

amplified in the last year as teachers who previously did not have technology (or the training to 

use it) were asked to convert to virtual teaching in a very short time. As students return to the 

classroom with these technological investments in place, interactive learning environments, such 



as intelligent tutoring systems, simulations, and problem-solving platforms are likely to be even 

more ubiquitous than they were two years ago. 

 

As we seek to improve these technologies and create richer, more dynamic experiences, we must 

first gain a deeper understanding of how students learn with technology, and how these processes 

may be different than those encountered in traditional classroom learning. In order to truly 

understand, we must often tap into a student’s internal cognitive and noncognitive processes, 

which may be hard for students (especially younger students) to articulate in traditional 

quantitative survey instruments. More qualitative methods such as think alouds, interviews, and 

open-ended self-reports, by contrast, can provide a clearer window into these processes. 

 

Qualitative research can be critical in improving education as it gives information on “how” and 

“why” research questions that may be otherwise unanswerable (Cleland, 2017). Qualitative data 

can focus on thoughts, concepts or experiences that may in turn be used to gain a deeper 

understanding of phenomena and context. By asking questions that cannot be boiled down to 

“how many” or “please rate”, it becomes possible to collect a rich dataset that can complement 

the quantitative data that is already frequently collected (e.g., log data, student models etc.) within 

AIED research. However, conducting qualitative research on AIED technologies has proven 

challenging, and the logistics of collecting enough qualitative data (and the right qualitative data) 

has often proven highly resource-intensive (e.g. Schofield, 1995). For example, one option might 

be to use think-alouds or emote-alouds to get students to vocalize processes. However, this 

approach is resource-intensive, does not scale well, and is challenging to apply in real 

classrooms, often requiring researchers to pull students out of context and into a separate room 

(e.g., Kelley et al., 2015). Other researchers have conducted interviews or observational 

approaches in classrooms -- however, doing so has also proven highly time-consuming when 

attempting to exhaustively capture key events (e.g., Cobb et al., 2001). 

 

Beyond this, in cases where a classroom observer is trying to study students’ internal cognitive 

and affective processes as they use an AIED system, it may be difficult to capture events and 

processes of interest, without capturing huge amounts of data that is then difficult and time-

consuming to filter through. Both observation and interview methods are vulnerable to what 

Wessel (2015) describes as the “one shot” problem, where events occur only once, and if missed, 

cannot be studied. Two sampling methods that are often used in classroom studies are 

momentary time sampling, (as with the widely-used BROMP quantitative observation protocol -- 

Baker et al., 2020; Ocumpaugh et al., 2015) and scan methods, where the observer monitors an 

entire classroom full of students at once. Momentary time sampling methods are known to bias 

towards events of longer duration and/or which occur more frequently (Meany-Daboul, Roscoe, 

Bourret, & Ahearn, 2007).Scan methods tend to bias towards more dramatic behaviors, while 

more subtle student actions may go unnoticed (Ostrov & Hart, Emily, 2013). This is of particular 

concern in observation of classroom learning with technology, where specific uncommon events 

may be particularly essential to study, whether changes in student engagement (Andres et al., 

2019) or critical but brief activities within a broader learning task (Bernacki, 2017; Jeong & Biswas, 

2008). 

 



Some researchers have instead focused on collecting qualitative data in the form of videos, and 

then coding those videos in depth (Kane, Kerr, & Pianta, 2014; Lehrer & Schauble, 2011). Videos 

can be re-watched an indefinite number of times, and coded in terms of a variety of constructs, 

often using complex coding schemes. Video addresses the “one shot” problem – at the cost of 

spending far more time coding data (Baker, Corbett, & Wagner, 2006). In cases where video 

captures rich dialogue between learners – or between learners and teachers – it is possible to 

make inferences about cognition as well as behavior. However, when learners work with a 

computer-based learning system (or individually, in general), this type of inference from video 

may be more challenging. A student may be working silently while complex activities are occurring 

internally. Even in video of classroom dialogue, we may not always have access to the complex 

reasoning (for instance, around self-presentation – Juvonen & Murdock, 1995) that impacts why 

students choose to say what they say. 

  

The methods described so far provide detailed insights into what students are doing but may not 

always help understand why students make the choices they do. One method that gets at 

students’ phenomenological understanding of why they do what they do is interviews. Interviews 

have a rich history in educational technology research. Perhaps the seminal work in this area was 

Schofield’s book Computers and Classroom Culture (Schofield, 1995), which involved months of 

ethnographic embedding in schools, conducting interviews both during and outside of class. 

Shorter-term classroom interview studies of students using technology have investigated student 

attitudes towards specific educational technologies and student understanding of what they 

learned (Warren, Shen, Park, Baylor, & Perez, 2005; Yoon, Anderson, Lin, & Elinich, 2017). 

However, interview methods – like observational methods – suffer from the “one shot” problem. 

While interviews can be conducted retrospectively, students may not always recall their exact 

reasoning around a decision made half an hour or a week earlier, or the emotions surrounding 

that decision. Even if interviews are conducted during class, in real-time, it can be a challenge to 

identify relatively rare events of interest, within a class of 25 students working quietly on 

computers. Take, for instance, a researcher attempting to understand why a sequence of 

emotions occurs. Trying to spot a student going through a specific sequence of these emotions 

would be difficult for an observer to catch, especially while trying to monitor multiple students at 

the same time.  

 

Finding the “right time” to interview has often been a logistical barrier to efficient qualitative data 

collection, however, new technologies may provide a solution to this long-standing problem. 

Specifically, the last decade has seen major advances in recognizing complex student behaviors 

and states from technology. Detectors have now been developed that can recognize engagement 

indicators (e.g., boredom, confusion, engaged concentration, frustration, off-task behavior, on-

task behavior, etc.) from student interactions with learning software. These indicators have been 

validated to agree with human judgment for a wide variety of educational systems (Bosch & 

D’Mello, In Press; Botelho et al., 2017; D’Mello, 2018; Wixon et al., 2014). These detectors of 

student affect and behavior have been used in both fine-grained and coarse-grained analyses, 

from studying the characteristic shifts in engagement over a matter of seconds (D’Mello & 

Graesser, 2012) to studying how these measures correlate with long-term outcomes such as 

college attendance (San Pedro, Ocumpaugh, Baker, & Heffernan, 2014) or career choices 



(Makhlouf & Mine, 2020). As such, these detectors can be used to identify critical moments in a 

learning process (Lodge, Panadero, Broadbent, & de Barba, 2018). Whereas previous work has 

considered using these detectors to drive in the moment automated intervention (e.g. Hutt, 

Krasich, Brockmole, & D’Mello, 2021; C. Mills, Gregg, Bixler, D’Mello, & D’Mello, 2021) or teacher 

reporting (Holstein, McLaren, & Aleven, 2017) in this work we use these detectors to drive data 

collection for qualitative research. This approach can in turn inform future design work to adapt to 

student behavior and affect.  

 

In this chapter, we discuss an approach that attempts to address these limitations of existing 

qualitative methods – proposing a new way of conducting interviews, and a tool to facilitate this 

approach. In this approach, we leverage existing AIED technologies to target interviews, so that 

the depth of understanding that interviews facilitate can be combined with the ability to capture 

key moments in the learning process. 

 

In the remainder of the chapter, we will detail the design of Quick Red Fox (QRF), a new research 

tool developed to facilitate targeted in-the-moment interviews. QRF is an open-source1 server-

client Android app. Specifically, QRF optimizes researcher time by directing interviewers to users 

that have just displayed an interesting behavior (previously defined by the research team). QRF 

integrates with existing student modeling technologies (e.g., behavior-sensing, affect-sensing, 

detection of self-regulated learning) to alert researchers to key moments in a user's experience. 

QRF listens for events (e.g., interaction patterns) and identifies moments of interest, prioritizes 

them, and directs interviewers, accordingly, allowing the interviewer to record their interview 

directly in the app along with relevant metadata (e.g., participant ID). We demonstrate the efficacy 

of this approach through a case study involving classroom research on student engagement and 

self-regulated learning. Finally, we discuss additional future applications of this tool in AIED 

technologies.    

2 Design 

QRF was designed based on principles for Minimal Attention User Interfaces (MAUIs). According 

to Pascoe et al., (2000), MAUIs for field work should consider four characteristics that are 

important to observational research: (a) the dynamic user configuration (i.e., working conditions 

of the fieldwork researcher), which are unlikely to include a desk or even a chair, (b) the limited 

attention capacity of the fieldworker, who necessarily needs to observe the object of their 

research, (c) the need for high speed interactions, should the research subject suddenly have a 

spurt of relevant activities that need to be documented, and (d) the context dependency needs of 

the field work, some of which (location, timestamps, etc.) can be automated by the system so that 

the researcher can focus on other things. 

With ubiquity of mobile phones, they present an attractive option for developing apps for field 

work, with existing mobile apps already being used in the classroom (Ocumpaugh, Baker, 

Rodrigo, et al., 2015; Shapiro, 2011). Existing work has often linked classroom observations to 

student interaction data following the learning session in post hoc data processing. However, the 

 
1 https://github.com/pcla-code/QRF 



QRF design requires knowledge of what students were doing before an observation or interview 

can be conducted, as data collection is targeted to events of interest, meaning that a stand-alone 

app would not be suitable. As such, QRF consists of two major components: (1) a server-side 

process that listens for events and assigns interviews, and (2) a client app (implemented in Java 

for Android mobile devices) that receives interview prompts and facilitates interview recordings. 

Interview triggers must also be defined, but are integrated with the learning environment rather 

than QRF (see section 2.1) 

When designing the client side app for QRF, we align with the design considerations outlined by 

(Pascoe et al., 2000) for MAUIs. In doing so we acknowledge that the classroom is a complex 

environment and observations, and interviews need to be as simple as possible to record as 

researchers will likely have many other issues to negotiate.  As such, QRF’s design aligns 

carefully with an interview research protocol and facilitates context-aware coding (e.g., 

timestamps and the recording of triggering conditions) while allowing the researcher to focus their 

attention on the student. As described in more detail below, QRF displays details to direct them 

to a student, including the student’s username and triggering conditions. The app also includes 

functionality for the researcher to take notes and/or record an audio file of an interview with the 

student. All data gathered is saved automatically, allowing the researcher to move on to the next 

observation with minimal effort devoted to the screen and reduced possibility of error.  

In this section we outline the design for both major components of QRF, as well as give detail on 

the process required for Interview Triggers.  

2.1 Interview Triggers 

In order for QRF to appropriately detect events, interview triggers must be defined. Detection 

services for QRF identify key moments in students’ learning processes in real time. They do this 

by parsing student log data or other available data streams. There are two components required 

to build a detection service: the individual detectors and (if necessary) the relevant patterns. First, 

automated detectors of constructs such as affect and behavior must have been trained 

beforehand, likely using a previously collected dataset often from the same learning system (i.e., 

Jiang et al., 2018). This process will also typically involve feature engineering, wherein a set of 

predictor variables was designed based on the student activity in the system. An example of a 

detector is a simple logistic regression model inferring boredom, which is a weighted combination 

of the selected features. The model output is then thresholded to predict a binary outcome (e.g., 

bored, or not bored).  

Once the individual detectors are developed, they are embedded in the detection service code. If 

the researcher is interested in patterns of constructs/behaviors (e.g., bored then confused, vs. 

just bored), these patterns must be distilled from the data. These patterns are limited only by the 

detectors trained and are defined by the researcher for their specific study. Pattern detection then 

becomes an additional layer of detection that uses the output of individual detectors.  

When a student starts interacting with the learning system, the detection service pulls in the 

student’s activities from the system’s interaction log data at a set interval of time (e.g., once every 



20 seconds). Based on the student activity in that interval, feature values are derived. Depending 

on the type of feature, the service may have to keep a history of the student activity. For example, 

some features may only require student activities in the current interval, while others may need 

data from the start of a session or from the student’s past sessions. These feature values are then 

fed into the individual detectors which in turn output predictions of relevant constructs (e.g., off-

task behavior, frustration). According to the prediction in the current interval and past few intervals 

(depending on the length of the pattern), the detection service alerts the server of any detected 

pattern and its corresponding priority level (assigned beforehand). In addition, the service also 

keeps track of clearing the history and updating the past feature and prediction values as required. 

This is repeated regularly at the predefined time interval. 

The detectors used to trigger interviews, are (though necessary) separate processes from the 

main QRF infrastructure. The machine learning (or other model definition) is outside the control 

of the app. Instead, QRF applies these methods to drive data collection. That means that 

researchers have the flexibility to develop detectors in whatever language they choose, relevant 

to their broader platform. For example, if studying an application written in Python, researchers 

may wish to integrate detectors also written in Python, whereas that may not be appropriate if 

studying an iOS application. The only requirement is that the detectors be able to send a package 

over a network (a feature present in almost all contemporary programming languages). This 

flexibility is crucial to the QRF design as it opens the door to a wider variety of future applications 

and research environments.  

2.2 Server Side Platform 

QRF’s server side receives packages from the detectors (containing student ID, pattern/trigger , 

and priority) and assembles the interview queue.  Each incoming pattern message is assigned a 

timestamp and inserted into a priority queue. The priority queue handles the selection & dispatch 

of pattern messages to the client side (described below). It sorts pattern messages (the detected 

triggers) based on their priorities, so that interviewers will be notified of the highest priority 

interview first. The sorting algorithm also includes two parameters to ensure that the same student 

is not interviewed too frequently: (a) ‘maxInterviews’ (default value: 4), i.e., the maximum number 

of interviews that can be conducted with a student in the current session, and (b) ‘interviewsGap’ 

(default value: 10 minutes), i.e., the minimum time gap between two successive interviews with a 

student. A pattern message lives in the priority queue until (a) it is sent to one of the QRF apps, 

or (b) the message expires, in which case it is no longer relevant to the student’s current activities 

and is hence expelled from the queue.  

The framework also includes a QRF Ruby library which handles the registration, initialization and 

communication between the server and the QRF app through a RabbitMQ message broker. Once 

the interviewer starts the QRF app and registers their handheld device on it, a direct 

communication line is established between the mobile app and the Betty’s Brain server. Then 

pattern messages flow back & forth between the server and the app as requests for new patterns 

are made, accepted, or rejected by the interviewer. 



2.3 Client Side 

QRF’s client side was implemented for Android devices using Java due to Android’s strong 

support for app development and dissemination, and cost considerations (Android devices are 

often cheaper and more durable than other tablets). QRF synchronizes to internet time using an 

NTP server for logging purposes. 

To make the process as smooth as possible, the app is heavily streamlined to require minimal 

interaction and thus allow the researcher to focus their resources elsewhere. The app was 

designed to avoid subpages that may be confusing to the researcher or result in erroneous 

recordings and aligns with several of the design principles from previous work discussed above.  

In addition to facilitating context awareness and limiting the number of times the researcher needs 

to enter the same information, QRF also allows the researcher to work with a small screen, thus 

reducing its obtrusiveness in the classroom. Finally, and perhaps most critically, QRF presents a 

user interface that aligns with the research protocol. 

2.3.1 Set-up & Login 

QRF requires a login with username and password, during which time it registers with the server-

side application.  It then requests information about the research session (e.g., classroom name, 

etc.) to verify which data to receive and provide annotations for later research. Once the Android 

device is registered with the server, messages between the two flow back and forth (e.g., requests 

for new interviews are sent to the server, which responds as soon as a prioritized trigger event is 

identified.). This process is completed once per research session (e.g., class period). Following 

set-up, the researcher is presented with the primary interface (see below).  

 

Figure 1. QRF Login screens where researchers login (left) and enter the class session ID (right) 

2.3.2 Presentation of Student and Trigger Information 

Figure 2 shows the primary QRF interface. From this screen, researchers receive information 

regarding which student to interview next, and can record said interview from the same screen. 

When a prioritized trigger event is identified, QRF presents this to the researcher by displaying 



the User ID (i.e., what the student uses to log in with or a deidentified number, in cases where 

regulatory compliance requires it) at the top of the screen.  Immediately below this information, 

QRF presents the trigger for the interviewer’s use. 

 

Figure 2. User Interface 

2.3.3 Interview Recordings & Notes 

Should the researcher choose to interview the student, they can tap the “start recording” button, 

and an integrated recording system records the material to the SD card on the android device. 

The recording is then stopped when the interview taps the “stop recording” button.  A timestamp 

is recorded at both the start and end of the interview. Interviewers can generate more than one 

interview with a student from the same trigger (this functionality was rarely used in the case study).  

If the interviewer notices additional useful information, they can type notes into a textbox. This 

functionality can also be used to add contextual notes, including why a student was not 

interviewed (e.g., they were already talking to their teacher or if they declined to be interviewed). 

The text box was also occasionally used to note if a neighboring student also participated in an 

interview. These notes are automatically saved to the interview log file to avoid any potential data 

loss. 

2.3.4 Moving on (Next, Skip, End) 

Once the interview and/or observation concludes, the interviewer selects the “next” button to 

advance. If the interviewer wishes to ignore a certain trigger (e.g., if a student should not be 

interrupted at that time) they can “skip” that observation. Both “next” and “skip” send a new trigger 

request to the server. If the class (or observation) session has ended, the interviewer can 

deregister from the server-side process by pressing “end.” Notably, there is not a back button to 

return to a previous interview, in keeping with design principles that suggest not allowing real-

time corrections if they might introduce cascading errors. 



2.3.5 Data 

Data produced by the QRF app records all of the transactions made by the interviewer in CSV 

format. This includes timestamps of all button presses, the interviewer currently logged in, the 

student being observed or interviewed, the recorded affect and behavior, the trigger that prompted 

the interview recommendation, and any other notes that the interviewer provides to the system. 

Also stored are audio files for each of the recorded interviewer. Files are names are stored with 

the transaction data to allow recordings to be linked to the appropriate participant. These data 

can then be analyzed by researchers, or synchronized alongside system data using the 

timestamps from the app. 

3 Case Study 

We demonstrate the use of, and opportunities made possible by, QRF with a case study 

examining self-regulated learning (SRL) behaviors as students interact with AIED technologies. 

Understanding self-regulation lends itself to this data collection paradigm, as research has shown 

that multiple data sources are needed to evaluate SRL strategies (Azevedo, Johnson, Chauncey, 

& Burkett, 2010; Winne, 2010), and that students may not be conscious enough of their approach 

to provide complete information in traditional self-report instruments.  

This case study involved middle school students, interacting with a computer-based learning 

environment, Betty’s Brain (Biswas et al., 2005), in an urban public school in Tennessee that 

serves approximately 700 5th-8th grade students. The school reports a student population that is 

60% White, 25% Black, 9% Asian, and 5% Hispanic. Around 8% were enrolled in the free and 

reduced lunch program. 99 6th graders used Betty’s Brain during the 2018–2019 school year as 

part of their regular science classes. No demographic data was collected from individual students.  

Students interacted with the Betty’s Brain software in the classroom, as part of their regular 

science instruction. Students interacted with the software for 45-50 minutes per day for eight days 

total. As students interacted, two interviewers were directed to students at key moments in the 

learning process by QRF. QRF listened for two types of events: affective sequences and 

behaviors related to self-regulated learning strategies (more details in section 3.2). Using 

previously integrated affect detectors (outlined below and in Jiang et al., 2018), we set the server-

side process to listen for affect sequences that are aligned with theoretical models of affect 

dynamics in educational contexts (D’Mello & Graesser, 2012), and predefined action sequences 

relevant to SRL (Jeong & Biswas, 2008).  

3.1 Betty’s Brain 

Betty’s Brain uses a learning-by-teaching model (Biswas et al., 2005), where students must teach 

a virtual agent named “Betty” by creating a causal map of a scientific process (e.g., climate change 

or thermoregulation). Students then check their maps' validity by having Betty answer questions 

about scientific relationships, which she can only answer with information they have entered into 

the map. Betty demonstrates her “learning” by taking quizzes that are graded by a mentor agent, 

Mr. Davis. As students construct Betty’s map, they must navigate a variety of learning resources, 



including hypermedia resources about the subject matter and a teaching manual that explains 

how to represent causal reasoning. In this open-ended system, students choose how they build 

their maps, and how often they quiz Betty. They may also interact with Mr. Davis, who can support 

their learning and teaching endeavors (Biswas, Segedy, & Bunchongchit, 2016).  

Betty’s Brain presents a suitable environment for examining SRL behaviors for two reasons. 

Firstly, students choose when and how to perform each step of the learning process (both their 

own and Betty’s) (Kinnebrew, Biswas, Sulcer, & Taylor, 2013; Roscoe, Segedy, Sulcer, Jeong, & 

Biswas, 2013). Indeed, the pedagogical agents in Betty’s Brain are designed to facilitate the 

development of SRL behaviors by providing a framework for the gradual internalization of effective 

learning strategies. Secondly, students’ interactions with Betty’s Brain are logged to an online 

database with detailed timing information, enabling the microanalysis of student actions (Siadaty, 

Gasevic, & Hatala, 2016) for the measurement of SRL strategies.   

3.2 Developing Interview Triggers 

The affect and behavior detectors used in Betty’s Brain were developed using the data collected 

in 2017 from 93 sixth-grade students recruited from four urban public schools in the southeastern 

region of the United States (Jiang et al., 2018). The predictors were derived from interaction log 

data (146,141 actions). The outcome labels (five affective states and off-task behavior) were 

collected from real-time classroom observation by two coders using BROMP (Baker et al., 2020). 

Interrater reliability had Cohen’s Kappa >= 0.60 for every construct, between the two coders. The 

5,212 observations (~56 per student) of affect were distributed as follows: 78% engaged 

concentration, 6% confusion, 4.6% frustration, 4.2% boredom, 2.9% delight. Off-task behavior 

comprised 10.2% of the total observations.  

Using feature engineering, a set of meaningful features of student activity with Betty’s Brain was 

generated as predictors for the automated detectors of affect and behavior. A total of 249 features 

were chosen from three categories. First, 41 basic features were designed including, time-based 

features (e.g., time spent reading a resource), count-based features (e.g., number of causal maps 

viewed), proportion features (e.g., percentage of effective actions), and descriptive features (e.g., 

average quiz score). Each feature was calculated in three different ways based on the time 

interval: since the student first started using the system (both total and normalized by time 

elapsed) and within the last 20-seconds. This led to a total of 123 basic features. Second, 30 

sequence features were chosen based on the most frequent three action sequences (e.g., answer 

quiz -> read resource -> add concept). These were similarly conceptualized in three different ways 

(within a 20-second clip, thus far, and thus far divided by time elapsed), leading to a total of 90 

sequence features. Third, 36 threshold features were developed using the optimized threshold 

values that led to the best correlation between the feature and student’s post-test performance. 

The feature set, integrating across these three types of features, was then optimized to remove 

highly collinear features. 

Finally, affect and behavior classifiers were built in RapidMiner 5.3 using selected features and 

binary outcome variables (e.g., off-task versus on-task, bored versus not bored). Due to the 

outcome labels being highly skewed, the data samples were resampled to balance the classes.  



In addition, a forward selection algorithm was used to only pick features that led to better model 

performance. The Logistic Regression, Step Regression, Naive Bayes, C4.5 (J48), and RIPPER 

(JRIP) algorithms were used to train the model (a selection based on previous affect detectors). 

The models were evaluated using Cohen’s kappa and AUC ROC on 10-fold student-level cross-

validation. Experiments conducted by Jiang and colleagues (2018) showed that models with only 

basic features worked well for the detectors of engaged concentration, frustration, and delight. A 

combination of basic, sequence, and threshold features showed better results for confusion and 

boredom, and off-task behavior. In all cases model performance exceeded chance (average 

Kappa = 0.183, AUC ROC = 0.614). The final models were implemented in the server-side code 

to automatically detect students’ affect and behavior based on the feature values that are 

continuously computed as the students interacted with Betty’s Brain in real-time. 

Patterns selected to be interview triggers were a mixture of theoretically selected patterns (e.g., 

the affective pattern of engaged concentration -> confusion -> frustration -> boredom developed 

by D’Mello and Graesser, 2012) or patterns empirically identified as important (e.g., a high 

correlation between sustained boredom and poor post-test performance). SRL patterns, including 

both strategic behaviors and affect transitions, obtained from the detector algorithms in the Betty’s 

Brain student-end, are packaged as [pattern, priority, student_ID] messages and communicated 

to a Betty’s Brain data server via a router.  

3.3 Procedure 

Two sessions of data collection were conducted, over the course of seven school days each (not 

all days were spent interacting with Betty’s Brain). The first data collection was conducted in 

December 2018, and the second occurred two months later. Students completed two different 

scenarios within the Betty’s Brain system in these two sessions, climate change (session 1) and 

thermoregulation (session 2). Minor alterations were made to the feedback system within the 

platform between the first and second session, based on the findings from the interviews 

conducted in the first session (Ocumpaugh et al., 2021). The alterations consisted mainly of 

feedback providing scaffolds and prompts to users who followed previously identified sequences 

of actions or affect while using the system. More specifically, conversation trees between the user 

and the virtual agents (either Betty or Mr. Davis) were adjusted to provide better guidance/hints 

and encouragement to students who ineffectively use within-platform resources or transition 

towards boredom. For example, students who incorrectly place or edit causal links on their 

concept map and take a quiz are prompted with one of three possible conversation scripts to help 

them recognize that the additions made to their concept maps were incongruent with the 

information they were given. 

3.4 Data 

As students interacted with Betty’s Brain, automatic detectors of educationally relevant affective 

states (Jiang et al., 2018)  and behaviors (Munshi et al., 2018), already embedded in the software, 

identified key moments in the students’ learning processes (see above), either from specific 

affective patterns or theoretically aligned behavioral sequences. This detection was then used to 

prompt student interviews via QRF. Interviewers assumed a helpful but non-authoritative role 



when interacting with students. Interviews were open-ended and occurred without a set script; 

however, students were often asked what their strategies were (if any) for getting through the 

system. As new information emerged in these open-ended interviews, questions were designed 

to elicit information about intrinsic interest (e.g., “What kinds of books do you like to read and 

why?”) were added. Overall, however, students were encouraged to provide feedback about their 

experience with the software, their goals while using the software, and their choices.  

A total of 594 interviews (358 from session 1 and 236 from session 2) were conducted during 

classroom sessions, and audio recordings were simultaneously collected during these 

interactions. These interviews lasted no longer than 260 seconds. Audio files were collected from 

the QRF app and stored on a secure file management system available only to members of the 

research team. Three members of the research team manually transcribed the interviews, having 

agreed upon formatting and style. Metadata, including associated timestamps and recording IDs, 

were preserved, but student-level information was deidentified (i.e., each student was assigned 

an alphanumeric identifier, used across data streams). Transcriptions of each interview were 

organized together along with their respective unique timestamps, filenames, interviewer, and 

student ID of the student being interviewed.  

3.5 Data Coding 

Interview transcripts were then coded for qualitative categories that correspond with SRL 

constructs. These constructs were based on several theoretical frameworks and perspectives 

(Bandura, 1986; Boekaerts, 1999; Efklides, 2011), primarily focusing on the COPES model 

(Winne & Hadwin, 1998). These previously published works were examined during the 

development process for the interview codes to identify relevant constructs that would support 

deeper analysis and understanding of the data in relation to experiences of self-regulated 

learning. Previously published findings and models guided our approach to the development of 

codes and their subsequent analysis. It is important, however, to note that individual contexts, 

implicit biases, and perspectives of the members of the research team inherently influence the 

entire process of the study and interpretations from the data collected (Constas, 1992; Howe & 

Eisenhart, 1990). 

 

The process followed a recursive, iterative method used in (Weston et al., 2001) that includes 

seven stages: conceptualization of codes, generation of codes, refinement of the first coding 

system, generation of the first codebook, continued revision and feedback, coding 

implementation, and continued revision of the codes (Weston et al., 2001). The conceptualization 

of codes included a review of related literature to capture meaningful experiences relevant to 

affect and SRL. Using grounded theory (Charmaz, 1983), we worked to identify categories that 

were (1) relevant to affective theory (i.e. D’Mello & Graesser, 2012) and self-regulated learning 

theory (e.g., Winne & Hadwin, 1998)  and (2) likely to saliently emerge in the interviews. A draft 

lexicon and multiple criteria were generated for a coding system to help identify these constructs. 

 

The draft lexicon was discussed with all members of the research team to build a common 

understanding of the constructs being examined and the features of the system. Feedback was 

provided by team members and the lexicon further refined. This process was repeated until the 



entire research team had reached a shared understanding of the criteria and constructs being 

examined by the codebook.   

A total of 12 interview codes were developed and applied to the interview data (see Table 1). 

Table 1. Interview Coding Categories. 

Code Description 

Difficult  Negative evaluations, confusion, or frustration while interacting 

with the platform 

Helpfulness  Utility of within-game resources in learning, improvement, and 

positive evaluations of the resources 

Interestingness  Interestingness of within-game resources in learning and a 

continued desire to use the platform 

Strategic Use  Indicates a plan for interacting with the platform, notes changes in 

strategy or interaction with the platform based on experiences 

Perceived Familiarity  The content has been previously learned or encountered and the 

student mentions ease in answering questions/ completing 

modules with familiar content 

Positive Mr. Davis 

Attribution  

Explicitly mentions interactions with Mr. Davis as positive or 

negative experiences 

Positive Science 

Attribution  

Explicitly mentions science in relation to books read, future 

careers, subjects in school, expressed interest, and overall 

evaluations of science 

Positive Persistence  Expression of a desire for challenge and that the current task is a 

challenge, there is active pursuit of a goal, and repeated attempts 

to complete a step/problem 

Procedural Strategy  Step by step approach to the learning activity, active use of within-

platform tools and interaction with the system, references a 

previous step or step following current actions 

Motivational Strategy  Explicit indication of an expected outcome from behaviors/actions, 

explicitly mentions a pursuit for mastery, contains a positive 

attribution/emotion towards completion of an activity, and 

mentions a desire to meet task demands 

Task Adaptation  Indicates a comparison between learning modules/activities, 

describes a change in activity in response to achievement or 

failure with a previous action 

Self-Confidence  Positive description of one's own progress or ability, implied 

monitoring of progress while learning, willingness to encounter 

challenges while learning, recognition of helpful resources 

Following the production of the codebook and accompanying manual, multiple coders 

simultaneously coded a subset of the data to reach inter-rater reliability between them before 

applying the coding system to all of the transcripts. The resulting kappa values for each of the 



interview codes are summarized in Table 2. Table 2 also summarizes the rates at which each 

interview code was observed across all students and all interviews. Throughout the coding 

process, the external coders met and clarified any concerns with authors of the codebook to avoid 

misinterpretation or miscoding of the data. As these qualitative codes are not mutually exclusive, 

a single interview may be coded under multiple categories. 

Table 2. Inter-rater reliability and frequency of each interview code across all students and 

interviews. 

  Student Level Interview Level 

 κ 

Study 1 

(93) 

Study 2 

(89) 

Study 1 

(358) 

Study 2 

(236) 

Difficult  .911 76.77% 73.74% 40.78% 59.32% 

Helpfulness  .463 35.35% 63.64% 12.29% 50.85% 

Interestingness  .726 8.08% 18.18% 2.23% 8.90% 

Strategic Use  .911 78.79% 77.78% 48.88% 73.73% 

Perceived Familiarity  .789 16.16% 10.10% 4.47% 4.24% 

Positive Mr. Davis Attribution  .838 6.06% 48.48% 1.68% 30.08% 

Positive Science Attribution  .837 21.21% 17.17% 6.70% 7.20% 

Positive Persistence  .911 48.48% 66.67% 22.35% 52.12% 

Procedural Strategy  .862 80.81% 79.80% 52.79% 75.85% 

Motivational Strategy  .870 65.66% 72.73% 37.99% 62.29% 

Task Adaptation  .808 75.76% 81.82% 45.81% 74.58% 

Self-Confidence  .877 71.72% 79.80% 41.62% 70.76% 

3.6  Impact on Scholarly Work 

These interviews, the codes, and by extension, the QRF method have led to several scientific 

papers examining self-regulation, affect, and the interplay between the two. Bosch et al., (2021) 

used QRF interview transcripts to better understand metacognition and affect in AIED 

technologies. This work leveraged the affect data collected as well as automatically analyzing 

interview transcripts for markers of metacognition.  Work by Hutt et al., (2021) showed that QRF 

interviews could be combined with log data for more effective predictions of future self-regulated 

learning behaviors than if predicted from log data alone. These predictions were subsequently 

predictive of future learning, more so than log data. Baker et al., (2021) used the data collected 

for an in-depth analysis of frustration in AIED systems, considering both the causes and the 

effects of frustration in different students. Ocumpaugh et al., (2021) demonstrated the potential of 

targeted interviews for identifying "pain points" in the AIED software and subsequent iterative 

design process, refining the design of Mr. Davis and Betty in ways that improved outcomes. Taken 

together, these articles demonstrate the wide potential of this data collection approach. By 



facilitating the collection of rich, time synchronized interviews with theoretically grounded triggers, 

we can pursue a wide variety of research questions.  

 

4 General Discussion and Conclusions 

4.1 Summary 

This chapter introduces the Quick Red Fox (QRF) handheld app for targeted classroom 

observation and the associated backend software that enables its functionality. QRF informs a 

researcher when predefined events of interest occur in the classroom and provides support for 

collecting interviews and collecting qualitative observations. The key innovation in QRF is the idea 

of targeting qualitative data collection in real-time, thus optimizing researcher time.  

We then presented a case study that used QRF to study self-regulated learning and affect in 

multiple classes as students interacted with the Betty’s Brain learning system. This case study 

demonstrates the potential of this approach, yielding several findings around the manifestation of 

both affect and self-regulation that would be difficult to obtain using previous methodology.  

In general, QRF helps to address the “one shot” problem by alerting researchers to infrequent or 

unseen behaviors. Though this approach does not fully solve the “one-shot” issue – unexpected 

patterns may still be missed, and a single researcher still cannot be in two places at once – QRF 

comes closer to optimizing researcher time. In principle, any event that can be automatically 

detected (either through interaction analysis or more complex sensors) could be used as an 

interview trigger. Selecting triggers remains highly context-dependent and relies on researcher 

judgment, but the app and approach can support a wide range of use cases.  

4.2 Applications 

QRF can be used in a variety of education and training contexts. This is due to the combination 

of two factors. First, in classroom and training contexts, there are typically a number of people 

interacting with a given learning system at the same time. Second, research has consistently 

shown that internal cognitive and affective processes greatly influence how we learn but are often 

challenging to observe (Duckworth & Yeager, 2015; Linnenbrink, 2007). In K-12 educational 

research, there has been increased interest in understanding how complex internal processes 

such as emotion regulation, or engagement, impact learning, and how we might scaffold beneficial 

learning behaviors for students (Azevedo & Hadwin, 2005; Dumdumaya et al., 2017). QRF 

facilitates data collection that could allow interviewers to tap into a number of constructs that are 

crucial for effective learning but typically challenging to collect data on.  

As such, QRF could be used for several potential applications, for both research and design. The 

case study above shows its potential usefulness for studying self-regulated learning and affect. 

In problem-solving domains such as mathematics and science, targeted interviews could be used 

to collect students’ explanations of their problem-solving strategies, allowing researchers to better 



understand student misconceptions. QRF could be used to interview students who become stuck 

in a puzzle game, to figure out if the learner is not perceiving a key part of the interface or task. 

Furthermore, QRF could be used when a learner is wheel-spinning (Beck & Gong, 2013), to see 

what hints or scaffolding could get them back on track. QRF could also be used to evaluate new 

AIED technologies as they are developed, interviewing students about their experiences as 

software is refined.  

Beyond education, QRF or apps like QRF could be used in usability research. QRF might be used 

to trigger interviews when users make actions not initially expected by developers, or to better 

understand how users respond to error messages from the system. QRF could also be used to 

study usability outside the lab in real-world contexts, a crucial step for many projects, when real-

world conditions may impact usability (Bevan & Macleod, 1994). For example, QRF may be useful 

in studying the usability of medical technologies (Acharya, Thimbleby, & Oladimeji, 2010), a field 

where researchers would want to limit the number of interviews so as not to distract the users 

from their primary task of caregiving. Similar to educational environments, there are often multiple 

interactions happening at any given time (multiple caregivers each with multiple patients) thus 

optimizing interviewer time would be critical.  

Though we provide these sample applications, a key benefit of the QRF infrastructure is it can be 

used to address the “one shot” problem in almost any environment, providing researchers can 

detect the event of interest. Detection must be timely, and somewhat accurate, and similarly the 

environment must be suited to interviews (e.g., not a silent theatre). QRF leverages existing 

detection, likely machine learned models, but could also be triggered by other kinds of event such 

as rationally defined interaction patterns. Put simply, if you can define the event, and detect the 

event, you can interview after the event with QRF.  

4.3 Limitations 

The interviewing approach that QRF enables is not without its limitations. Many of those 

limitations center around the ways that QRF is targeted. QRF’s targeting is based on pre-defined 

triggers. The approach is therefore limited by the triggers that are chosen. Interesting and useful 

opportunities may be missed if the research team was not aware in advance that a specific event 

would be important to study. This may occur either because of limited relevant theory or 

researchers' limited knowledge of the system. Therefore, it may be useful to conduct a round of 

more open observation or data analysis prior to commencing work with QRF. Similarly, if the 

detectors used are inaccurate, and do not correctly identify the moments of interest, then the 

method is severely weakened. That said, it will still facilitate an interview approach that avoids 

students being interviewed too frequently. But in this situation the data may not provide the same 

level of insight on specific events of interest as it would with accurate detectors.  

Furthermore, even if the research team knows what is relevant and important to study, the 

approach may be limited by the quality of detection available. QRF research in the context of 

Betty’s Brain was largely enabled by the availability of high-quality detectors of self-regulated 

learning and affect. Learning systems for which sophisticated detection is unavailable may find 

that there are limits to what can be studied using QRF. It may still be possible to identify when a 



student spends substantially more time on a learning task than their peers or performs more 

poorly on a task relative to the average, but more complex constructs may be unavailable. In 

these cases, approaches such as clustering, sequence mining, or outlier detection may be used 

to provide more information for triggering interviews but may be unable to achieve the clarity of 

high-quality detectors of specific, well-understood constructs. 

As such, an approach like QRF that focuses researcher time on key events is only as good as 

our ability to automatically detect that key event. Fortunately, the last decade has seen 

considerable progress within the educational data mining community on developing high-quality 

detectors of the types of constructs that might serve as triggers in QRF. A methodology like QRF’s 

targeted interviews has only now become feasible now due to that progress.  

4.4 Future Development 

The next key step for QRF is expansion: to a broader range of constructs, and to a broader range 

of learning systems. Expanding the use of QRF in these fashions will naturally lead to 

enhancements to the app and infrastructure, to tailor their application for other uses. Potential 

extensions could include providing more information on the learner to the interviewer, and 

suggested questions for less experienced interviewers when the app is used at greater scale. All 

a platform needs to be used with QRF is a high-quality interaction data stream, and a server 

architecture where the communications architecture can be integrated. Our code for QRF is 

available online and fully open source, at https://github.com/pcla-code/QRF. We also invite 

researchers interested in using QRF to reach out to us to discuss potential collaborations. 
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