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ABSTRACT

Recent research has made strides toward fair machine learning.
Relatively few datasets, however, are commonly examined to eval-
uate these fairness-aware algorithms, and even fewer in education
domains, which can lead to a narrow focus on particular types of
fairness issues. In this paper, we describe a novel dataset modifica-
tion method that utilizes a genetic algorithm to induce many types
of unfairness into datasets. Additionally, our method can generate
an unfairness benchmark dataset from scratch (thus avoiding data
collection in situations that might exploit marginalized popula-
tions), or modify an existing dataset used as a reference point. Our
method can increase the unfairness by 156.3% on average across
datasets and unfairness definitions while preserving AUC scores
for models trained on the original dataset (just 0.3% change, on
average). We investigate the generalization of our method across ed-
ucational datasets with different characteristics and evaluate three
common unfairness mitigation algorithms. The results show that
our method can generate datasets with different types of unfair-
ness, large and small datasets, different types of features, and which
affect models trained with different classifiers. Datasets generated
with this method can be used for benchmarking and testing for
future research on the measurement and mitigation of algorithmic
unfairness.
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1 INTRODUCTION

Machine learning is increasingly used in education, such as when
predicting dropouts to facilitate advising processes [5] or for per-
sonalized learning to foster improved academic outcomes [67]. The
development of predictive models for these systems often relies on
curated datasets. These systems learn to identify extant patterns in
those data that provide valuable insights for fast, scalable decision
making [64]. In the process of curating the datasets, however, some
students may be underrepresented, or be accurately represented
as only a small fraction of the data. Moreover, the data itself can
represent unfair trends in education or even exacerbate them [36].
Thus, even though machine learning presents novel solutions and
tools for both public and private use, these models are not always
implemented in equitable ways. For example, African American
men tend to receive a lower score from an automatic essay scoring
system than a human rater[17]. As such, concerns about the poten-
tial impacts of these applications have been repeatedly documented
[6, 10, 53, 55, 65]. While a variety of algorithmic and sociotechnical
approaches to fairness have been proposed, a relatively small num-
ber of datasets are commonly examined to evaluate these concerns
[14, 61]. In the field of education, even fewer datasets are available
for examining fairness. Furthermore, the construction of datasets
presents several issues, such as including features like student sex
and job of students’ parents in the UCI student performance dataset,
and incorporating caste (an old system where people are born to
different groups that determine their social status) as a feature in
the publically available, UCI student academic dataset [25]. In this
paper, we describe a novel dataset modification and generation
method that utilizes a genetic algorithm to induce many types of
unfairness into datasets, allowing a broader range of research on
unfairness mitigation.

Existing works have demonstrated that even state-of-the-art
models are prone to making biased predictions with respect to a
variety of dimensions of identity [6, 26, 33, 65]. Generally, bias in
machine learning is defined in relation to existing demographic
and/or personal identifiers and is measured through observing dis-
parate outcomes in some element of the prediction process, such as
the accuracy or desirability of predictions across relevant subgroups
[55]. Categories used for comparison are commonly demographic,
including sex and race, but other identities, such as socioeconomic
status or age, can be similarly examined [11, 55, 70, 73].

In machine learning, data largely impact the final outcomes and
even shape the questions we are able to ask [9]. As such, there has
been a growing discussion about where these data come from and
how well they represent the problems being addressed [60]. Con-
cerns include issues of privacy, a lack of generalizability, and limited
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documentation [7, 34, 50, 60]. Similarly, with the rapid growth in ed-
ucational Al, many applications are driven by learning-related data.
Though these systems aimed to enhance the quality of education
students received, they were still at risk of amplifying the unfair-
ness reflected in societies. Additionally, the use of demographic
data in biased training datasets has been specifically critiqued [5].
As a result, fair educational Al focuses on the debiasing of unfair-
ness. Recent work has surfaced limitations with the benchmark
datasets used to provide standardized fairness comparisons across
algorithms [28]. Thus, there is a need for a standardized way of
generating test data for classification problems, particularly in the
field of algorithmic fairness.

In this work, we propose using genetic algorithms to generate
unfair benchmark datasets with particular unfairness properties,
for the purpose of researching bias measurement and mitigation
strategies. We explored the usefulness and generalization of our
proposed method by addressing the following research questions:

e RQ1: Can genetic algorithms be modified to create a method
for generating synthetic educational datasets that capture
unfairness while maintaining accuracy?

e RQ2: For what kind of classification problems do data gener-
ated by genetic algorithms accurately capture unfairness?
Does the difficulty of the problem affect the performance of
this generation method?

e RQ3: How do existing fair algorithmic approaches perform
given generated unfairness benchmarks, and for which fair-
ness definitions?

We show that data can be generated to induce unfairness with
respect to specific unfairness metrics, creating a replicable way of
testing whether unfairness mitigation methods account for, and
subsequently remove, specific patterns of bias. These generated
datasets can mimic specific real-world situations of unfairness while
avoiding some of the pitfalls of existing fairness benchmarks. The
code used to generate data is available at https://github.com/lan-
j/unfair_dataset_generation.

2 RELATED WORK

Data are an essential part of machine learning, providing domain
specificity and shaping what problem(s) an algorithm can learn
to solve [9]. While domain generalizability and transfer learning
are research areas of interest, it still represents a difficult problem
[80], demonstrating the need for training data which represent the
problem being studied. The role of data extends to how we measure
fairness in machine learning systems. Fairness does not exist in a
vacuum, since it is measured in relation to labels and individual
student, teacher, or group categories present in the data. Datasets
may pose challenges to accurately assessing fairness in that they
can lack predictive information of interest, be sparse, or neglect
relevant demographic categories, among other issues [12, 46, 66].

2.1 Shortcomings in existing benchmark
datasets

To compare results across varying approaches, a small subset of

datasets are commonly examined as fairness benchmarks across

many machine learning projects [9, 34, 50]. Related work has sur-

faced a variety of issues concerning these common benchmark
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datasets used for machine learning, however, ranging from privacy
concerns to problems of domain specificity to the way categories
are defined [5, 7, 19, 28, 34, 66, 73]. One of the most well-known
benchmarks, COMPAS, concerns recidivism predictions for people
incarcerated in Florida. As pointed out by Bao et al. [7], the use
of this criminal justice data for fairness benchmarking ignores the
sociotechnical, contextual grounding relevant to this type of risk
prediction. In addition, the COMPAS dataset may not even capture
what we think it does, since it focuses on “re-arrest” rather than
“re-offense” [7]. Researchers have similarly noted issues with the
Adult dataset and called for the end of its usage [28]. Addition-
ally, researchers in the educational Al field are concerned about
designing and collecting data: whether the dataset is demograph-
ically representative of the societies, and whether demographics
cause differences in learning variables [6, 24]. In general, there is
a growing critique of the focus on a small number of benchmarks
for fairness and quality (e.g. representative of different contexts,
documentation, and design) of the datasets[7, 10, 34].

Privacy is an additional concern for data about people. Even
when a dataset is “anonymized,” it may be possible to identify
individuals unless the data have been subjected to rigorous stan-
dards using algorithms that support differential privacy [15, 31].
Anonymizing data might also necessitate removing the fine-grained
information required for exploring fairness with respect to small
groups. This may generally disadvantage identities that are under-
represented in the data, as well as potentially preclude the ability
to consider intersectionality [73].

2.2 Dataset generation in machine learning

While data sharing is important for transparency and reproducibil-
ity, a number of studies have identified how even anonymized
data can disclose private information (e.g., membership inference
[41, 63, 68] and model inversion [37, 57]). One type of solution is
the use of synthetic datasets, which mimic statistical properties of
the original data without including identifying information [1, 30].
Synthetic data can be shared and reproduced without risking the
privacy of students or other individuals represented in the data,
and have the additional benefit of testing different hypotheses by
representing specific patterns or scenarios at low cost. This is espe-
cially useful for edge cases that may not be easy to capture [47, 56],
allowing researchers to conduct experiments even when empirical
data is largely unavailable.

Various algorithms have been proposed to generate synthetic
data. These algorithms have a shared goal of trying to model rela-
tions among variables that were present in the original dataset [3].
Most algorithms calculate distributions of variables of interest and
develop probabilistic models (e.g., mixture of Gaussians, multino-
mial feature distributions) that generate data [2, 23, 52, 69]. Machine
learning techniques like Bayesian networks [79], support vector
machines [29], and random forests [20] have been used to generate
synthetic data. More recently, synthetic data generation has been
boosted by deep learning models, especially generative adversarial
networks (GANSs) [39], which were originally proposed to simulate
realistic synthetic images but have since been used for a variety
of domains [22, 32, 48, 77], including fairness-related research [54].
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For example, Xu et al. [76] and van Breugel et al. [71] have intro-
duced methods to use GANs to generate tabular, fair synthetic data
in order to train fair models, a novel approach to preprocessing.
Generating synthetic data for fairness research is a growing topic,
with recent work using structural equation modeling to generate
biased datasets [8], using synthetic data to examine root causes
of bias in datasets [21], and demonstrating that synthetic data can
unintentionally create bias [40].

However, these algorithms target a specific bias measurement
and require the data to conform to a specific distribution. In the
realm of education, data usually consists of different types of vari-
ables, including categorical, binary, and continuous. Biases in those
data are driven by complex reasons, making education-specific met-
rics and resources required. Though a single dataset is unlikely to
capture the entirety of those reasons, ranging from parental sup-
port to teacher enthusiasm to student engagement, having strong
training data can allow our predictive models to provide as accurate
of insights as possible. In this study, our aim is to modify genetic
algorithms to handle diverse datasets and adapt various unfairness
definitions, using a transferable methodology for generating novel
training data.

3 METHOD
3.1 Genetic algorithm

Genetic algorithms are gradient-free optimization algorithms in-
spired by the process of natural selection [74]. Natural selection
is the process of differential survival of individuals based on their
traits, which is the mechanism of evolution [27]. Genetic algo-
rithms take inspiration from this idea to generate fit “individuals”
(i-e., optimized solutions) by iteratively going through four sub-
processes: evaluation, selection, crossover, and mutation [74]. To
begin, a genetic algorithm creates a set of random individuals (i.e.,
solutions). During each iteration, only a proportion of the fittest
individuals from the population are selected to create the next set
of offspring. These individuals are chosen according to the fitness
function, which may have any form (including non-differentiable
functions) as long as it can rank solutions. Next, pairs of the selected
individuals are combined at randomly chosen crossover points to
form new individuals. To mimic genetic drift over time, mutations
are then introduced into the offspring. This process repeats until a
termination condition is met, such as a certain number of iterations
or a desired fitness. The fittest individual at the point of termination
is then returned as the best solution found.

To adapt to the goal of generating unfairness benchmarks for
learning analytics purposes, we modified the classical genetic algo-
rithm as follows:

Initialization: In this phase, a large number of datasets are
generated based on a reference dataset, rather than purely random
data. For our experiments, we worked with both real-world and
simulated reference datasets (Section 4). The reference dataset is
used to generate a variety of datasets (i.e., individuals in a classical
genetic algorithm). To create each individual dataset in the initial
population, we sampled from the original distribution for each
feature.

Evaluation: The goal of our method is not only (i) to have a high
unfairness score, but also (ii) to retain important predictive patterns
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embedded in the original dataset. Thus, the relationships among
features should be consistent in order to ensure the generated
dataset’s usefulness. We achieved this two-part goal by considering
two terms in our fitness function: an unfairness measurement and
a similarity measurement (F = Sypfairness + Ssimilarity)- Which
unfairness definitions are most applicable depends on the specific
goal being pursued [13]; thus, different unfairness calculations are
used in our experiments, and can be user-specified. We ensure a
dataset’s usefulness by maximizing the percentage of values that are
the same between the generated dataset and the original reference
dataset. Maintaining a high similarity between the generated and
original data helps retain the important patterns in the dataset (e.g.,
predictive relationships between student behaviors and learning
outcomes) while changing only what needs to differ for a particular
type of bias to emerge.

o Similarity measurements: Similarity between two datasets
can be measured in a variety of ways. Three common metrics
are mean absolute error, mean squared error, and the per-
centage of matching values [78]. In our study, we calculated
the percentage of matching values between the original ref-
erence and the generated datasets. Percentage was chosen
because the range is consistent regardless of the magnitude
or data types in the chosen datasets. Percentage similarity
also makes no distributional assumptions about the datasets.
Hence, we did not need to adjust the similarity measure for
different datasets.

e Unfairness measurements: We tested three popular unfair-
ness measurements [13, 62]: overall accuracy equality, statis-
tical parity, and calibration equality. We choose the first two
measurements because they represent substantially different
types of fairness that cannot be achieved simultaneously.
The third one offers a different perspective by measuring
the unfairness of prediction probabilities, rather than cate-
gorical decisions. The mathematical calculations of them are
presented in Section 3.2.

Selection: During selection, individuals from the current iter-
ation are selected to be “parents” of the next iteration. We used
roulette wheel selection [51], where all individuals are given a
probability of being selected according to their fitness score. Con-
ceptually, roulette wheel selection is represented by individuals
with a higher fitness score having a larger region assigned to them
on a circular wheel. Parents are selected by randomly choosing a
fixed point on this wheel. Therefore, a fitter individual (i.e., better
dataset) has a greater chance of being selected as a parent.

Crossover: In this phase, offspring are generated by combining
genetic information (i.e., values in the dataset) from two parents
chosen in the selection operation. For each pair of parent datasets,
a point on the feature list is randomly selected. The features of the
two parents are swapped at this crossover point to produce new
datasets, the “offspring.”

Mutation: Mutation is an operation that can maintain genetic
diversity and help solutions escape local optima. After offspring
have been produced, 0.2% of each offspring’s values will be replaced.
Mutation rates larger than this tend to lead to an essentially random
search [58]. For our method, we first randomly pick which values
will be replaced, then replace each of them with a value sampled
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from the original distribution of each feature. The population for
the next iteration is made up of these mutated datasets.

3.2 Unfairness Metrics

We enumerate the unfairness metrics used in our experiments in
both mathematical and descriptive terms. For all three metrics
described below, a higher score indicates a higher level of unfair-
ness. All of the metrics range from 0 to 1. Note that TP represents
the number of true positives, TN represents the number of true
negatives, FP represents the number of false positives, and FN
represents the number of false negatives. “True” here refers to the
predictions being the same as the ground truth labels, while “false”
refers to the predictions not being the same as the ground truth
labels. The unfairness definitions used in this paper are as follows:

(1) Calibration equality is achieved when people with any pre-
dicted probabilities scores have an equal probability of being
in a positive class. In our calculation, we calculated calibra-
tion scores for each group of people. The calibration scores
are calculated by the difference between true and predicted
probabilities of a certain number of instances, sorted by pre-
dicted probability. We set the number of instances in one bin
as 20% of the number of instances in the whole dataset. The
unfairness under this definition is calculated by the largest
difference in calibration scores over the groups.

(2) Owverall accuracy equality is achieved when the accuracy is
equal for different groups of people. That is, %
is the same for all groups. In this case, true positives and true
negatives are equally important. In cases with more than
two possible groups, we calculated the unfairness score as
the largest difference in accuracy across all groups (i.e., the
highest-accuracy group compared to the lowest).

Statistical parity is achieved when the distribution of pre-

. . . TP+FP
dicted classes is the same across groups. That is, TPIFPATNTFN

or m};ﬁ_% is the same for all groups. The unfairness

under this definition is calculated by the largest difference
in the proportion of predicted positive instances across all
groups.

@3

~

4 DATASETS

In this section, we introduce the datasets used as reference datasets.

4.1 Simulated datasets

When starting from scratch, without a real-world dataset, we used
the make_classification function in Scikit-learn [18] to generate
a synthetic dataset. This function can generate a classification prob-
lem by setting the number of features, the number of informative
(i.e., useful) features, the number of samples, and the difficulty of
the problem. We then transformed the starting dataset to create
two reference datasets:

(1) Simulated dataset (1 feature type: continuous) dataset
contains 1,000 rows in total and 16 features, 10 of which are
informative (i.e., correlated with labels and orthogonal to
other features). The labels are binary: 0 and 1. We converted
one additional feature to a binary format and then treated
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it as a sensitive feature — i.e., one which describes group
membership.

(2) Simulated dataset (3 feature types: continuous, binary,
categorical) dataset also contains 1,000 rows and 16 features,
10 of which are informative. To mimic real-world education
datasets that include a mix of variable types—e.g., the law
school dataset [75], which contains three categorical vari-
ables, three binary variables, and six continuous variables—
we converted six features into binary features, one of which
served as a sensitive feature, and five features into categori-
cal features. For binary features, we then transformed values
with a sigmoid function and binarized them at a cutoff value
of 0.5. For categorical features, we rounded the initial values
down to the nearest whole number.

4.2 Existing datasets

We also tested the genetic algorithm on two existing educational
datasets:

(1) MATHia dataset includes 458 records of 49 students and 198
features of statistical information about students’ actions
(e.g., answers submitted, the number of attempts students
made, the hints they accessed) and outcomes during the us-
age of MATHia, which is designed to teach math to middle
school and high school students. In addition, information
about students’ identities were obtained through an open-
ended, free response survey that allowed students to describe
themselves with up to twenty statements [49]. We used the
presence of gendered responses as a sensitive feature (that is,
whether gender was an important part of their identity). The
labels in the dataset indicate whether a student was “gam-
ing the system”, a specific type of disengagement in which
students attempt to make progress with minimal learning
by, for example, repeatedly guessing consecutive numbers
as answers until finding the correct answer [4].

Student Performance dataset [25] includes 395 students
and their multiple-choice, person-level survey responses.
The dataset contains students’ demographic information and
students’ grades from two courses. We extracted 33 features
and predicted whether final grades were above or below the
median. Whether students live in urban or rural areas was
used as the sensitive feature, based on previous research
indicating that this is a student characteristic that relates to
unfairness in machine learning [59].

—
S
~

5 EXPERIMENTS
5.1 Model training

We selected a simple machine learning method, logistic regression,
as the model in the evaluation phase. Models were trained with
4-fold cross-validation. For each fold, we randomly selected 75%
of the data for training and the other 25% of the data for testing.
If an individual was represented in more than one instance (i.e.,
hierarchical structure in the data), we used group 4-fold cross-
validation to prevent person-level data leakage. We calculated an
unfairness score for each fold using the sensitive feature and used
the mean unfairness across folds as the unfairness for the dataset.
We set the genetic algorithm population size as 100, the number of
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iterations as 50, the gene mutation rate as 0.002, and the selection
rate for crossover as 0.6 (as used in many GA algorithms [43, 45]).
We ran all experiments on a Macbook Pro M1 Max with 10-core
CPU, 32GB RAM, and MacOS 13.5.

5.2 Effectiveness of the proposed algorithm

We conducted several experiments to assess the effectiveness of
the proposed algorithm (RQ1). We simulated unfairness benchmark
datasets for both real-world reference datasets and generated refer-
ence datasets, while testing three notions of unfairness to determine
if our algorithm can generate datasets that fulfill various require-
ments. To assess the usefulness of simulated dataset, we applied
the model that was trained on the simulated dataset to the original
dataset and measured performance by calculating both accuracy
(ACC) and area under the receiver operating characteristic curve
(AUC) scores. ACC measures the number of correct predictions
divided by the number of total predictions (i.e., proportion correct).
AUC score measures how well a model can produce probability
scores to discriminate among different classes across all possible
thresholds.

5.3 Generalizability of our algorithm

For the following experiments, we used the Simulated Dataset (3
types) as the default reference dataset and overall accuracy equality
as the unfairness metric to explore the performance of our algo-
rithm. To assess the generalizability of our algorithm (RQ2), we
examined whether the difficulty of the problems and the number
of samples affect the usability of our algorithm. To test increasing
difficulty of classification problems, we randomly changed a pro-
portion of the labels in the dataset (.01, .1, .2, and .5 proportions),
and simulated unfair datasets for each value. A higher proportion
means there is more noise in the labels, which leads to a harder
classification problem. We also varied the number of samples (500,
1000, 5000) in the dataset to identify if the algorithm can generate
an unfair dataset when the dataset is larger or smaller. We addition-
ally used random forest and extremely randomized trees [16, 38]
to evaluate the unfairness of the dataset, in order to identify if the
simulated dataset also presents unfairness using other classifiers.

5.4 Performance of existing bias mitigation
algorithms on simulated unfairness
benchmark datasets

We tested whether existing bias mitigation methods can remove
unfairness from a simulated dataset under different measurements
of unfairness. We specifically tested the simulated dataset (3 types).
The metrics chosen to measure fairness were overall accuracy equal-
ity, statistical equality, and calibration equality. We tested reweigh-
ing [44], disparate impact remover [35], and equalized odds [42]
methods for the existing fairness approach.

6 RESULTS

In this section, we describe the results of our experiments. In sec-
tion 6.1, we present the results of our dataset generation algorithm
when using different definitions of unfairness as well as different
reference datasets. We also demonstrate the impact of different gene
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mutation rates on the resulting dataset. In section 6.3, we present
datasets generated to reflect increasingly difficulty prediction tasks
and larger datasets. In section 6.4, we present the performance
of three extant fair machine learning methods on our simulated
unfairness benchmark dataset.

6.1 Results of our algorithm (RQ1)

The proposed algorithm was able to create datasets encoding unfair-
ness using both real-world and simulated datasets as the reference.
Table 1 demonstrates the results. For each generated dataset, we
measured unfairness using overall accuracy, statistical parity, and
calibration equality. Our algorithm successfully increased unfair-
ness under these three different statistical metrics. Overall accuracy
equality, statistical parity, and calibration increased by 0.143 (+
0.018), 0.129 (+ 0.015), and 0.103 (+ 0.010) respectively. Overall,
unfairness increased by 0.125 (+ 0.022) across datasets and met-
rics, representing a 156.3% increase. The AUC and ACC scores, in
comparison, did not change dramatically. When the model was
trained on the generated dataset and tested on the original refer-
ence dataset, the AUC score was comparable to that of the model
trained on the original dataset, demonstrating that the relationship
to the original dataset is preserved with this method.

We additionally explored different gene mutation rates. In short,
we used one dataset and unfairness metric while varying the gene
mutation rate. The results show that the proposed method can
generate a dataset encoding unfairness given all three different gene
mutation rates. When we increased the gene mutation rate from
.002 to .004, unfairness increased only slightly, by .014. However,
comparing results between mutation rates of .004 and .008, the
unfairness slightly decreased (by .008). This likely indicates that
the larger gene mutation rate also led to too much randomness in
the search process to achieve unfairness. We also found that higher
mutation rates did cause slight decreases in accuracy, demonstrated
by lower ACC and AUC scores for the simulated dataset as well as
a lower AUC score on the original dataset.

We also experimented with changes in population size. We pre-
dicted that increased population size would affect the performance
of our algorithm with respect to both unfairness and speed. A larger
population size was predicted to increase unfairness in the result,
given that each iteration simulated a larger number of datasets,
providing a denser sampling of the search space for optimization.
Our results support this intuition and are shown in their entirety in
Table 2. In this experiment, the same reference dataset and unfair-
ness metric were used while the population size was varied. As the
population size increased, compared with population of 50, datasets
with higher unfairness scores were generated (up to .035 higher
with a population of 200). However, the elapsed time also increased
(up to 2x), reflecting the increased computational task.

6.2 Analysis of generated datasets

To gain a deeper understanding of which type of feature is likely to
be modified using this method, we analyzed the generated datasets
to determine what had changed compared to the initial reference
dataset. The last column in Table 1 demonstrates that each dataset
has only been changed by around 6.2% while successfully inducing
bias. We additionally investigated the correlation between the type
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Table 1: Results of the modified genetic algorithm on different reference datasets, including MATHia, student performance,
simulated 3-type, and simulated 1-type datasets. For each dataset, we used calibration equality, overall accuracy, and statistical
parity as the metrics to identify unfairness.

Dataset Original Generated

Metric Unfairness | AUC ACC Unfairness | AUC ACC AUC on | Prop. Change in

original | values unfairness
dataset unchanged

MATHia calibration .053 .869 .930 162 757 .897 .842 .966 .109

equality

overall accuracy | .059 .869 .930 178 .766 .893 .873 .982 119

equality

statistical parity | .066 .869 930 .186 .852 .900 .877 973 120
Student calibration .052 756 .698 164 742 .668 752 974 112
performance equality

overall accuracy | .044 756 .698 182 743 .670 754 .980 138

equality

statistical parity | .176 756 .698 320 736 .675 753 975 144
Simulated calibration .036 .895 .807 132 .869 772 .892 961 .096
dataset (3 types) | equality

overall accuracy | .040 .895 .807 .200 .863 775 .890 955 .160

equality

statistical parity | .183 .895 .807 322 .876 793 .891 .956 139
Simulated calibration .042 955 .897 134 940 .867 954 949 .092
dataset (1 type) | equality

overall accuracy | .009 955 .897 162 939 .844 957 943 153

equality

statistical parity | .199 955 .897 311 940 .870 956 952 112
Average .080 .869 .833 .204 .835 .802 .866 964 125

Table 2: Results of simulated unfair datasets using different gene mutation rates and different population sizes (50, 100, and
200).

Original Generated Time
Unfairness | AUC ACC Unfairness | AUC ACC AUC on
original
dataset
.002 .040 .894 .807 .200 .863 775 .890 1x(6m10s)
Mutation rate | .004 .040 .894 .807 214 .853 .763 .891 1x(6m28s)
.008 .040 .894 .807 .206 .845 765 .887 1x(6mé6s)
50 .040 .894 .807 .185 .862 774 .892 0.5x (3mb5s)
Population 100 .040 .894 .807 .200 .863 775 .890 1x (6m10s)
200 .040 .894 .807 .220 .860 .783 .889 2x (12m35s)

of feature and the amount of change. The correlation between the
number of possible values and the amount of change is 0.787 on
average across datasets and unfairness definitions, even the lowest
correlation reaches 0.697. We found that features with a larger range

6.3 Results of generalizability (RQ2)

We simulated datasets with 500, 1000, and 5000 rows and used each
of these as a reference dataset for our algorithm. All results showed
increased unfairness in the generated dataset when compared to the

of possible values experienced more change. Finally, we computed
the correlation between feature importance and the amount of
change but found it not to be statistically significant.

reference. When the number of features remained constant and the
number of examples increased, the total unfairness of the resulting
dataset was more difficult to increase. When the reference dataset
had 500 rows, the generated dataset had an unfairness of .307. When
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Table 3: Results of using reference datasets with different numbers of examples (500, 1000, and 5000) but same number of
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features and with different difficulties (A higher flip ratio generally means a harder classification problem).

Original Generated Time
Unfairness | AUC ACC Unfairness | AUC ACC AUC on
original
dataset
500 .090 .853 .764 .307 815 .730 .853 0.8x (5m)
# of examples | 1000 .040 .894 .807 .200 .863 775 .890 1x (6m10s)
5000 .022 .837 .754 .087 821 737 .836 2.5x (15m35s)
.01 .040 .894 .807 .200 .863 775 .890 1x (6m10s)
Flip ratio 1 .054 .830 754 .200 .826 741 .832 1x(6m11s)
2 .025 .834 773 .206 .805 .738 .832 1x(6m28s)
5 .067 .683 .640 228 .686 .643 .684 1x(6m7s)

Table 4: We tested all 4 datasets as reference, logistic regression (LR), random forest (RF), and extremely randomized trees (ERT)
as the fitness function, and overall accuracy equality as unfairness metric. All three classifiers were trained on the simulated

unfair dataset. The results shown in the table are unfairness changes.

Classifier Classifier in evaluation

in fitness Student MATHia Simulated (3 types) Simulated (1 type)
function | LR RF ERT LR RF ERT LR RF ERT LR RF ERT
LR 138 .000 .005 113 .007 .002 .160 .087 .051 152 .042 .049
RF .034 .088 .039 .005 .027 -.005 .034 142 .052 .014 .042 .021
ERT .028 .037 124 .016 .015 .025 .037 .067 137 .014 .012 .056

the reference dataset had 1000 rows, unfairness increased, but only
to .200. When the reference dataset had 5000 rows, the unfairness
increased even less, to .087. While unfairness did not achieve the
same amount of change with larger dataset size, the model learned
on the simulated unfair datasets achieved comparable AUC scores
as the model trained on the original dataset — a difference of only
.002 (+.002). We also calculated the time elapsed; increasing size
increased the running time approximately linearly since logistic
regression was used as the model. Running time is largely domi-
nated by machine learning model training time, and thus depends
on the model used in the evaluation operation. The detailed results
are shown in Table 3. The results imply that the modified genetic
algorithm might not be suitable for handling large datasets.

We also investigated the impact of increasingly difficult catego-
rization problems on our algorithm and present the full results in
Table 3. As the difficulty increased, the AUC and accuracy scores de-
creased overall. Making accurate predictions is demonstrably more
difficult. However, in each case, our algorithm still successfully
increased unfairness while keeping the AUC score of the model
trained on the new dataset but tested on the original dataset similar.

The previously described experiments measured fitness using
logistic regression. We therefore designed an additional experiment
to test our generated datasets against other models. We trained a
logistic regression classifier, a random forest classifier, and an ex-
tremely randomized trees classifier on one unfair dataset generated
with the logistic regression fitness function. The unfairness of the
logistic regression model was .200, while unfairness of the random

forest and extremely randomized trees classifiers were lower, at
.124 and .097, respectively. Therefore, generated datasets may not
express unfairness in classifiers other than the one used to mea-
sure fitness, at least to the same extent. However, we demonstrate
experimentally that our algorithm can generate unfair benchmark
datasets using different models as the fitness function in Table 4.

While the modified genetic algorithm can be applied to different
sizes of datasets, problems with varying difficulties, and different
classifiers, we acknowledge that the algorithm only works for tabu-
lar datasets. There may be potential for the algorithm to be applied
to datasets in other domains where genetic algorithms have been
valuable, such as object recognition in computer vision. However,
the algorithm cannot currently handle sequential datasets, which
is also a common format in education, because of the complex con-
straints (e.g., logical and statistical dependencies between elements
in a sequence) that are not yet considered during mutation and
crossover in the genetic algorithm.

6.4 Fair algorithms (RQ3)

We tested different unfairness mitigation methods, including reweigh-
ing, disparate impact remover, and equalized odds algorithms on
the simulated unfair dataset to determine whether unfairness miti-
gation approaches can improve fairness in a model trained on the
generated dataset. The results are shown in Table 5. We observed
that reweighing substantially decreased the statistical inequality
(by .160); disparate impact remover only slightly reduced overall
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Table 5: Changes in unfairness scores under different notions of fairness when applying various methods for bias mitigation.

Unfairness definition Initial Reweighing Disparate impact remover Equalized odds
unfairness
Unfairness ~ Change Unfairness ~ Change Unfairness ~ Change
Calibration equality .082 .078 -.004 .069 -.013 135 +.053
Overall accuracy equality — .189 173 -.016 179 -.010 .228 +.039
Statistical equality .335 175 -.160 325 -.010 .068 -.267
accuracy inequality (.010) and calibration equality (.013); and equal- ACKNOWLEDGMENTS

ized odds substantially decreased statistical inequality (.267). This
result demonstrates that existing bias mitigation methods decreased
unfairness to some extent, but not necessarily equally across all
definitions, illustrating the importance of exploring — and creating
— datasets with different specific types of unfairness embedded in
them.

7 CONCLUSION

In this paper, we presented a novel data generation method us-
ing a genetic algorithm to intentionally induce bias in datasets
from educational domains for multiple statistical fairness metrics.
Based on our experiments, nearly all datasets exhibit unfairness
of less than 0.1. When evaluating bias mitigation methods, the im-
provements achieved by different algorithms may not be significant.
Current benchmark datasets limit the types of unfairness that can
be studied, especially in the education field. Furthermore, even if
new debiasing algorithms emerge, the evaluation methods may not
accurately quantify the performance of these algorithms if we con-
tinue to use a small number of outdated benchmarks. Researchers
may therefore encounter growing challenges in selecting among
various bias mitigation algorithms. Our modified genetic algorithm
is scalable and can generate patterns of unfairness that may not be
captured in the few benchmark datasets commonly examined in
fairness research. By varying the parameters given to the genetic
algorithm, a variety of unfair datasets can be generated with this
method and can therefore be used to reflect situations with different
fairness goals. It is also robust to categorization problems of vary-
ing difficulties. Though the unfairness mitigation methods tested
only decreased unfairness under certain statistical definitions, this
likely reflects the fact that there is no one-size-fits-all approach to
measuring — much less mitigating — algorithmic unfairness [72].
Moreover, the current approach exhibits limitations when dealing
with large datasets: our modified genetic algorithm may not in-
crease unfairness for large datasets as much, and the running time
increases approximately linearly. In the future, we plan to extend
this method to generate additional types of datasets, such as those
with sequential data, and to generate model-agnostic unfairness
benchmark datasets by expanding the fitness function to consider
unfairness with respect to multiple machine learning models. Ulti-
mately, we expect that datasets generated with this method can be
used for benchmarking and testing for safe future research on the
measurement and mitigation of algorithmic unfairness, particularly
for situations where collecting unfair real-world data may itself be
a questionable, unfair action.
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