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Abstract. Mind-wandering is a ubiquitous phenomenon that is negatively related 
to learning. The purpose of the current study is to examine mind-wandering dur-
ing vicarious learning, where participants observed another student engage in a 
learning session with an intelligent tutoring system (ITS). Participants (N = 118) 
watched a prerecorded learning session with GuruTutor, a dialogue-based ITS 
for biology. The response accuracy of the student interacting with the tutor (i.e., 
the firsthand student) was manipulated across three conditions: Correct (100% 
accurate responses), Incorrect (0% accurate), and Mixed (50% accurate). Results 
indicated that Firsthand Student Expertise influenced the frequency of mind-wan-
dering in the participants who engaged vicariously (secondhand students), such 
that viewing a moderately-skilled firsthand learner (Mixed correctness) reduced 
the rate of mind-wandering (M = 25.4%) compared to the Correct (M = 33.9%) 
and Incorrect conditions (M = 35.6%). Firsthand Student Expertise did not impact 
learning, and we also found no evidence of an indirect effect of Firsthand Student 
Expertise on learning through mind-wandering (Firsthand Student Expertise à 
Mind-wandering à Learning). Our findings provide evidence that mind-wander-
ing is a frequent experience during online vicarious learning and offer initial sug-
gestions for the design of vicarious learning experiences that aim to maintain 
learners’ attentional focus. 

Keywords: Mind-wandering, Vicarious Learning, Intelligent Tutoring Systems, 
Attention, Task-unrelated Thought. 

1 Introduction 

It is rather fascinating that simply viewing another student engage in an interactive tu-
toring session can yield (in the observer) approximately two-thirds of the learning gains 
obtained by the student who actually engaged in the session (d = 1.20) [1]. This obser-
vation-based learning method, called vicarious learning (defined as learning through 
observation without overt behaviors [2, 3]), produces robust learning gains in a number 
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of observational contexts including computer-based instruction and peer-to-peer inter-
actions [2–9]. The benefits of vicarious learning highlight its potential as an educational 
paradigm, particularly given the scalability and cost-effectiveness of learning vicari-
ously through video compared to, for example, engaging with an intelligent tutoring 
system (ITS). Despite its potential, there are many questions about which features of a 
vicarious learning session make it effective. This research gap is especially wide for the 
assessment of moment-to-moment process variables such as attention—a gap we ad-
dress in the current paper. 

1.1 Theoretical Background and Motivation for Current Study 

Vicarious learning activities provide a more interactive alternative to traditional online 
learning (e.g., MOOCs). Here, we are interested in a particular form of vicarious learn-
ing involving observing one-on-one tutoring sessions (e.g., [2, 3, 5]). In this context, it 
is necessary for the vicarious learner (i.e., the secondhand student) to actively process 
a dialogue between a tutor and another student (i.e., the firsthand student). This activity 
requires the student to engage in a number of complex processes, such as the integration 
of multiple perspectives, as well as the evaluation of the credibility and accuracy of 
each perspective [8, 10, 11]. This form of active processing contrasts with more passive 
learning activities, like monologues (e.g., video lectures), which remain a popular 
method of information delivery in online learning contexts (e.g., MOOCs and online 
courses). 

Dialogue-based vicarious learning activities are an effective educational tool that 
promote active learning, particularly in comparison to similar monologue-based activ-
ities [1, 3, 4, 6, 8, 11]. The effectiveness of such vicarious tasks can be explained 
through the ICAP framework [12] (Interactive > Constructive > Active > Passive), 
which suggests that while interactive tasks are the most effective for learning, followed 
by construct, active, and passive tasks. Olney et al. [13] recently extended ICAP to 
highlight the role of attention. According to their ICAP-A framework, students’ atten-
tional processes (i.e. mind-wandering) would follow the same general ICAP pattern, 
such that students would be least likely to mind wander during an interactive learning 
activity, followed by constructive, active, and passive activities. In line with their 
framework, mind-wandering tends to occur most often during monologues (i.e. video 
lectures, (~43% of the time [13, 14]) and least often during interactions with a dialogic 
intelligent tutoring system (~23% of the time [15–17]), although these results are cor-
relational.  

Notably absent from the literature are studies exploring the frequency and influence 
of mind-wandering during vicarious learning tasks. Watching a video of a learning ses-
sion is similar to viewing a video of a lecture; yet, mind-wandering may be less frequent 
during vicarious learning due to the active processing required by perspective-taking 
when viewing a dialogue. The current study addresses this gap by asking participants 
(i.e. secondhand learners) to watch a short video of prerecorded interactive intelligent 
tutoring sessions to assess the frequency of mind-wandering during vicarious learning. 
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Two decades ago, Cox et al. originally posed the question, “What are good models 
for the vicarious learner - experts or novices?” [6] (p. 432). Three hypothetical expla-
nations were laid out for the “best” type of firsthand student: 1) experts can model per-
fect behavior, which may be preferable because the learning session is “uncluttered” or 
without error; 2) moderately-skilled learners can make the learning session more stu-
dent-centered since the secondhand learners may better identify with such learners; 3) 
unskilled firsthand learners may be effective because the secondhand learner would 
learn what to avoid, and would be motivated to do so after witnessing any negative 
feedback.  

Some prior work may be in support of the effectiveness of viewing unskilled an 
firsthand student. For example, viewing erroneous examples can help promote more 
critical evaluation and deeper learning [18, 19]. However, a study by Chi et al. [5] pro-
vided tentative evidence in support of the expert firsthand student. In their study, stu-
dents learned more from “good” firsthand students (five students were retroactively 
assigned to be “good” students based on their pretest scores) when secondhand students 
collaboratively observed a one-on-one human tutoring session. However, the authors 
acknowledged their small sample size (N = 20 secondhand students) and solely focused 
on learning outcomes. Thus, we also examined whether the expertise of the firsthand 
student would have an effect on the mind-wandering rates and subsequent learning of 
the secondhand learner.  

 
1.2 Current Study 

We take the first steps toward understanding mind-wandering in the context of vicari-
ous learning from an interactive ITS. We address three research questions: First, what 
is the overall rate of mind-wandering during vicarious learning from an ITS? This is an 
important consideration given the overwhelming discrepancy between monologue-
based learning activities – which have the highest rates of mind-wandering [20] – and 
vicarious learning from dialogues, both of which can be disseminated via short videos 
online. 

Second, does the expertise of the firsthand student influence mind-wandering and 
learning? We operationally defined expertise as correctness of the firsthand student’s 
responses, which we manipulated across three conditions: 100% correct condition, to 
correspond with Cox et al.’s expert level; 0% correct (Incorrect condition), to corre-
spond with the unskilled student; and 50% correct (Mixed condition), corresponding to 
the moderately-skilled student. Exploring the impact of the firsthand student’s expertise 
can help inform strategies on how to design effective vicarious dialogues.  

Third, we investigated if any main effects of Firsthand Student Expertise on learning 
are mediated by mind-wandering (Firsthand Student Expertise à Mind-wandering à 
Learning). 
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2 Methods 

2.1 GuruTutor Overview 

Participants viewed a video of a firsthand student interacting with GuruTutor, an ITS 
modeled after expert human tutors [21]. GuruTutor is designed to teach biology topics 
through collaborative conversations in natural language. Throughout the conversation, 
an animated tutor agent references (using gestures) a multimedia workspace that dis-
plays content relevant to the conversation (see Figure 1). GuruTutor analyzes learners’ 
typed responses via natural language processing techniques and the tutor’s responses 
are tailored to each learner’s conversational turns. For a more detailed description of 
GuruTutor, see [21–23]. Participants viewed the firsthand student interacting with the 
two sections of GuruTutor that involve collaborative dialogue: 1) Common Ground 
Building Instruction and 2) Scaffolded Dialogue. The Common Ground Building In-
struction section—sometimes called collaborative lecture [24]—is where basic infor-
mation and terminology are covered. This section is critical because many biology top-
ics involve specialized terminology (e.g., thermoregulation, metabolism) that need to 
be introduced before scaffolding can occur. In the Scaffolded Dialogue section, the tu-
tor prompts the learner to answer questions about key concepts using a Prompt → Feed-
back → Verification Question → Feedback → Elaboration cycle. Importantly, the tutor 
elaborates the correct answer after every response.  

 

 
Fig. 1. Screenshot of learning session with GuruTutor. 

 
2.2 Participants and Design 

Participants (N = 118) were recruited from Amazon’s Mechanical Turk, a platform for 
crowdsourcing and online data collection [25–27]. Participants had to be at least 18 
years of age (M = 35.3 years, SD = 20.1) and their location was limited to the United 
States. Each participant received $2.75 for completing the study.  
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Participants were randomly assigned to watch a video of a Guru tutoring session 
recorded in one of three conditions that varied in terms of the frequency of correct re-
sponses provided by the firsthand student (here a simulated student) during the Com-
mon Ground Building Instruction and 2) Scaffolded Dialogue phases: 100% correct 
(Correct Condition), 100% incorrect (Incorrect Condition), and 50% correct (Mixed 
Condition). Participants in the Mixed Condition were randomly assigned to watch one 
of two videos that were counterbalanced with respect to which specific questions were 
answered correctly versus incorrectly. For example, whenever an answer was correct 
in version A, it was incorrect in version B, and vice versa (see Table 1 for examples). 
There were no differences in mind-wandering rates (p = .759), pretest (p = .935), and 
posttest scores (p = .338) as a function of counterbalance. 

2.3 Materials and Procedure 

Videos of GuruTutor Session. All videos were prerecorded with a screen capture pro-
gram (Camtasia) while a researcher interacted with GuruTutor using a predetermined 
script for firsthand student responses. The topic pertained to how animals maintain 
body temperature. Answer length and video length were consistent across conditions 
with an average video length of approximately 16-minutes with all videos being within 
45s in length from the others. Each video had the same number (n = 142) of dialogue 
turns, with the firsthand student’s responses comprising 18% (answering 21 questions) 
of the dialogue turns; the remaining were tutor turns.  

Order of answer correctness in the Mixed condition was pseudo-randomly deter-
mined so that vicarious learners could not detect a pattern. In both the Incorrect and 
Mixed Conditions, incorrect answers were thematically-related to the content but in-
correct with respect to the specific tutor question. Regardless of whether the firsthand 
student response was correct or incorrect, the tutor provided feedback about answer 
correctness and repeated the correct answer via elaborated feedback. This was done as 
a guard against false information being retained (see Table 1 for an example of the 
dialogue across the three conditions).  

Thought Probes. Mind-wandering was measured using a probe-caught method dur-
ing the video. Participants were presented with the following description, which was 
adapted from previous studies [6, 22]: “Sometimes when you are watching the video, 
you may suddenly realize that you are not thinking about what it is that you are watch-
ing. We call this "zoning out" or mind wandering about thoughts unrelated to the con-
tent of what it is that we are reading. So, we would like you to tell us when you are 
zoning out. During the presentation of the video, you will hear a "beep" and the video 
will stop. We would like to know if you are thinking about the video or if you are 
thinking about something else (e.g., what you will be eating for dinner, your plans for 
the week). When you hear the tone and you are zoning out, please indicate "Yes" by 
pressing the "Y" key on your keyboard. If you hear the tone and you are not zoning out, 
please indicate "No" by pressing the "N" key on your keyboard.” 

The instructions also emphasized that participants should be as honest as possible 
when reporting mind-wandering and that their responses would have no influence on 
their progress and compensation. There were nine probes per video with probe timings 



6 

approximately evenly interspersed and set to align with the same events across condi-
tions (e.g., after the tutor completed a specific turn). 

Table 1. Example dialogue across the three conditions. 

 Correct Incorrect  Mixed A Mixed B 
Example from Collaborative Lecture Section 

Tutor Our bodies inevitably get too hot.  

Tutor They release a watery substance onto its surface which serves to cool 
skin down during evaporation processes. 

Tutor Hint. Recollected that when you are hot it occurs 

 Do you foresee what this substance is called? 
  

Firsthand 
Student* 

Sweat Blood Sweat Blood 

     
Tutor* OK, Good. That’s not it. OK, Good. That’s not it. 

Tutor It’s sweat. It’s sweat. It’s sweat. It’s sweat. 
 

Example from Scaffolding Section 

Tutor The brain changes the body’s metabolism in order to change the 
body’s temperature. Here is a related question. 

Tutor What is metabolism? 
     

Firsthand 
Student* 

Rate of chemical 
reactions 

Energy used 
to pump 
blood 

Energy used to 
pump blood 

Rate of chem-
ical reactions 

     
Tutor* Very good. Nope. Nope. Very good. 

     
Tutor Metabolism is the rate of chemical reactions in the body. It can be 

slowing down or speeding up. 
  

Notes. Italics * = manipulated dialogue. Mixed 1 and 2 represent the two different coun-
terbalanced videos in the Mixed condition. 

 
Learning Measures. We used 16 four-foil multiple-choice questions to assess 

learning. The questions were derived from previously administered standardized test 
items or from researcher-created items (see [28]). The questions targeted specific con-
cepts mentioned during the session, such as: Which of the following is true about blood 
temperature?: a. it is cooled as it is pumped near the brain: b. it is heated as it is 
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pumped near the extremities: c. it is heated as it is pumped near the core (correct an-
swer): d. blood temperature generally stays about the same. Two parallel versions of 
the test were created (8 items each) by randomly dividing the questions, which were 
counterbalanced as pre- and posttest. 

Procedure. After providing electronic consent, participants completed a pretest to 
gauge prior knowledge. They then received instructions for the thought probes and  
were informed they would watch a prerecorded video of a student interacting with a 
computer tutor called GuruTutor. They were instructed that their task was to watch the 
video in order to understand the concepts being taught and that they would be subse-
quently assessed on their learning. At this point, the video was presented along with the 
thought probes. Finally, participants completed the posttest and were debriefed. 

3 Results and Discussion 

Table 2 presents descriptive statistics for key variables. An analysis of variance 
(ANOVA) revealed no differences across conditions with respect to prior knowledge, 
F(2,115) = 2.29, p = .106, thereby confirming successful random assignment. 

Table 2. Means and standard deviation (in parentheses) for key variables across the conditions. 

 Correct  Incorrect Mixed 

 M (SD) M (SD) M (SD) 

n participants 40 40 38 
Mind-wandering proportion .339 (.325) .356 (.340) .254 (.288) 

    
Pretest scores .278 (.207) .353 (.189) .272 (.163) 
Posttest scores .605 (.274) .574 (.223) .554 (.274) 

 
3.1 How often did Participants’ Mind-wander? 

We first explored the frequency of mind-wandering during the vicarious learning ses-
sion. Participants reported mind-wandering 31.7% of the time (SD = 31.9; or 2.9 mind-
wandering episodes on average during the session). This finding parallels the rates 
found in other active online learning activities, such as reading [13, 20, 29]. 

3.2 Did Firsthand Student Expertise Influence Mind-wandering in 
Secondhand Learners (Participants in current study)?  

Mind-wandering rates were analyzed using a Poisson regression which is suitable 
for count data (i.e. the count of the number of probes with positive mind-wandering 
responses). We first assessed the main effect of Firsthand Student Expertise by includ-
ing it as the only independent variable. A significant omnibus test indicated that model 
fit improved after including Firsthand Student Expertise in comparison to the intercept-
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only model, χ2(2) = 6.69, p = .035. Comparisons of parameter estimates revealed that 
participants in the Mixed condition reported significantly less mind-wandering com-
pared to both the Incorrect (B = .335, SE = .139, Wald χ2(1) = 5.81, p = .016) and 
Correct conditions (B = .287, SE = .140, Wald χ2(1) = 4.18, p = .041). Rates of mind-
wandering across the Correct and Incorrect conditions were on par with one another, p 
= .704, yielding the following pattern of results (Mixed < [Correct = Incorrect]). 

We tested whether the main effect of Firsthand Student Expertise was robust after 
adding prior knowledge as a covariate. The omnibus test was significant, χ2(3) = 8.95, 
p = .030. The tests of model effects indicated that pretest was not a significant predictor 
of mind-wandering, B = -.445, SE = .299, Wald χ2(1) = 2.22, p = .137. The effect of 
Firsthand Student Expertise was still significant after including the covariate, Wald 
χ2(2) = 7.32, p = .026, with the same pattern of effects: Participants reported less mind-
wandering in the Mixed condition compared to the Correct (p = .040) and Incorrect (p 
= .009) conditions, which were on par with one another (p = .524). 

3.3 Did Firsthand Student Expertise Influence Learning? 

We first assessed participants learned from the vicarious learning session using a paired 
samples t-test. There was a significant increase from pre- to posttest, t(117) = 9.99, p < 
.001, d = 1.22 after pooling across conditions, suggesting that vicarious learning was 
effective in our context. We then tested whether Firsthand Student Expertise predicted 
post-test scores after controlling for pre-test in an ANCOVA, but found no main effect 
of Firsthand Student Expertise, F(2,114) = .434, p = .649.  

3.4 Did Firsthand Student Expertise Influence Learning through 
Mind-wandering? 

Although there was no evidence for a main effect, it is possible that Firsthand Student 
Expertise may influence learning indirectly through mind-wandering (Firsthand Stu-
dent Expertise à mind-wandering à learning) [30] – particularly given that mind-
wandering was negatively related to posttest scores, rho = -.173, p =.061. We tested 
indirect effects using the ‘mediation’ package in R [31]. We specified two models: 1) 
a mediator model, which was a Poisson model regressing mind-wandering on Firsthand 
Student Expertise, controlling for pretest scores; and 2) an outcome variable model, 
which was a linear model regressing posttest scores on mind-wandering and Firsthand 
Student Expertise including the same covariate. We obtained causal estimates for the 
indirect effect over 10,000 quasi-Bayesian Monte Carlo simulations; however, there 
was no evidence of mediation, p = .190, 95% CI = -.005, .014. 

4 General Discussion and Conclusion 

Until now, mind-wandering had not been explored in the context of vicarious learning 
from an ITS—an important context given the effectiveness of vicariously observing 
dialogues [3, 4] combined with the cost-effectiveness of delivering vicarious learning 
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sessions online. The current study addressed this gap while also examining whether 
Firsthand Student Expertise influenced the rate of mind-wandering, learning, including 
both direct and indirect effects. 

4.1 Main Findings 

Participants reported mind-wandering approximately 32% of the time, underscoring its 
frequency during vicarious learning activities [20]. These rates are considerably lower 
than those typically observed by students viewing a monologue – e.g., recorded class-
room lectures (rates around 40% [14, 34]). At the same time, these rates are slightly 
higher in comparison to rates produced by interacting with an ITS (23% reported in 
[15]), perhaps because ITSs afford a more interactive experience. These general pat-
terns are in line with predictions made by ICAP-A [13] in that participants may be more 
likely to mind wander in passive contexts compared to active (e.g., vicariously listening 
to a dialogue or interactive (e.g., engaging with an ITS) contexts.  

We also examined how the expertise of the firsthand student influenced mind-wan-
dering rates. Secondhand learners reported mind-wandering less often when the 
firsthand student’s answers included a mix of both incorrect and correct answers (i.e. 
Cox et al.’s [6] version of a moderately-skilled student). This pattern is consistent with 
Cox et al.’s prediction that secondhand learners may identify with a moderately-skilled 
student and therefore attend more closely to both perspectives in the dialogue. Another 
plausible explanation is that uncertainty about the firsthand student’s answers held par-
ticipants’ attention in the Mixed condition, whereas correctness was predictable in the 
other two conditions. Future work, however, will be needed to determine which of these 
accounts explains why participants were on task more often in the Mixed condition.  

All three conditions performed equally well on the posttest and Firsthand Student 
Expertise did not indirectly influence learning through mind-wandering. This may in-
dicate that participants in condition adopted a different strategy for processing the dia-
logue – by paying attention more overall (Mixed condition), or perhaps only to certain 
parts of the dialogue (Incorrect/Correct conditions). For example, once participants un-
derstood the firsthand student’s level expertise, they may have guessed which pieces of 
information required more focused. Recent evidence from a sustained attention task 
suggests that participants indeed develop strategies to alter off-task behaviors based on 
motivation to perform well on the task [35], but future studies should assess the specific 
strategies employed in vicarious dialog-based learning contexts. 

4.2 Limitations and Future Directions 

It is important to note the limitations of this study. First, this study was conducted 
online, so we had no control over the participants’ environment. However, this may 
also be reflective of vicarious learning in ecologically valid scenarios during online 
learning. Further, although the use of Mechanical Turk has been validated as a reliable 
source of data [25], replication with actual students is warranted. Second, our sample 
size was limited to 118 participants. It is therefore possible that we did not have ade-
quate power to detect an indirect effect of mind-wandering (see section 3.4). Third, in 
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contrast to prior work on vicarious learning [7], we used experimenter-generated learn-
ing sessions instead of authentic learning sessions to implement the key manipulation 
with high internal validity. Future work should, therefore, attempt to use authentic 
learning sessions by first having an actual student interacting with the ITS, then assign-
ing a second participant to watch their video. This method could provide a broader 
range of student expertise rather than two extremes used here (100% and 0% accuracy). 
Fourth, we only explored one topic (maintaining body temperature) in a single ITS; 
therefore, follow up studies are needed to determine if results generalize more broadly. 

Finally, some people may object to the intentional use of incorrect responses. We 
acknowledge this limitation, but we feel that they are less of a concern in the current 
study for the following reasons: 1) all incorrect responses were corrected immediately 
after the firsthand student’s response; 2) all three conditions performed equally well on 
the posttest; 3) all protocols were approved by the appropriate ethics board; 4) 
secondhand learners were consenting participants instead of actual students.  

Our findings can help inform the design of vicarious learning systems that aim to 
promote engagement and learning. For example, GuruTutor could be strategically mod-
ified so that the firsthand student introduces and resolves specific misconceptions [36] 
or asks deep-reasoning questions [7]—both of which have been shown to be effective 
for learning. Additional characteristics of the firsthand student can be manipulated, in-
cluding factors like affective tone, length of responses, or amount of turn-taking in the 
dialogue. It is also possible to build detectors of mind-wandering (e.g., using eye-gaze 
[16, 37, 38]) during vicarious learning so that real-time interventions can be deployed 
to steer participants back on task. Such systems could dynamically adjust the correct-
ness of firsthand student answers depending on mind-wandering, while also ensuring 
that correct answers are repeated after a mind-wandering episode. 

4.3 Conclusion 

This study provides a foundation for examining the role of attention in vicarious learn-
ing contexts. Although online vicarious learning sessions are a time- and cost-effective 
learning method [2], mind-wandering still occurs with some regularity (approximately 
30% of the time) during vicarious learning. The current study sheds light on how the 
expertise of the firsthand student can influence mind-wandering. However, more work 
is needed to explore ways to design and optimize online vicarious learning tasks to 
promote attention and learning. 
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