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Automated Detection of Engagement using 
Video-Based Estimation of Facial 

Expressions and Heart Rate 
Hamed Monkaresi, Nigel Bosch, Rafael A. Calvo, Sidney K. D'Mello 

Abstract—We explored how computer vision techniques can be used to detect engagement while students (N = 22) completed 

a structured writing activity (draft-feedback-review) similar to activities encountered in educational settings. Students provided 

engagement annotations both concurrently during the writing activity and retrospectively from videos of their faces after the 

activity. We used computer vision techniques to extract three sets of features from videos, heart rate, Animation Units (from 

Microsoft Kinect Face Tracker), and local binary patterns in three orthogonal planes (LBP-TOP). These features were used in 

supervised learning for detection of concurrent and retrospective self-reported engagement. Area Under the ROC Curve (AUC) 

was used to evaluate classifier accuracy using leave-several-students-out cross validation. We achieved an AUC = .758 for 

concurrent annotations and AUC = .733 for retrospective annotations. The Kinect Face Tracker features produced the best 

results among the individual channels, but the overall best results were found using a fusion of channels. 

Index Terms— Engagement detection, remote heart rate measurement, facial expression, writing task. 

———————————————————— 

1 INTRODUCTION

t is widely acknowledged that the way users engage in 
an activity is an essential component of their experience 

with the activity. The way people engage with an activity 
has been studied from multiple perspectives in HCI [1] 
and psychology [2]. The term “engagement” itself is in-
terpreted in somewhat different ways by different com-
munities of researchers [1], but most definitions maintain 
that engagement involves attentional and emotional in-
volvement with a task. Engagement is also not stable, but 
fluctuates throughout an interaction experience. In the 
area of HCI, Peters et al. [1] discuss four phases of en-
gagement: the beginning (i.e. point) of engagement, sus-
tained attention or engagement, disengagement (when 
attention fades) and re-engagement.  

Our present emphasis is on engagement during learn-
ing (or educational activities). Many authors (c.f. [2]) 
agree on four types of engagement during learning. Be-
havioral engagement can be assessed by observing persis-
tence and effort; emotional engagement can be assessed 
by detecting supportive emotions (e.g., interest, curiosity) 
and self-efficacy [3]. Cognitive engagement is demon-
strated when the student shows a sophisticated approach 
to the activity, for example by using deep rather than 

superficial learning strategies. Agentic engagement [4] 
occurs when the student attempts to actively enrich the 
experience, instead of merely acting as a passive recipient.  

Engagement and affect has been linked to increased 
productivity and learning [2], [5] and psychological well-
being [6]. When it comes to engagement in educational 
activities, an important consideration is that engagement 
is malleable. Numerous studies have shown that educa-
tional interventions, learning designs, and feedback are 
some of the ways in which student engagement can be 
enhanced (c.f. [2]). The impact of these interventions has 
been evaluated using multiple methodologies, often with 
an analysis of students’ motivation. 

Measuring engagement has been important in educa-
tional research because it allows researchers to under-
stand what decisions promote or hinder engagement. 
Studies that focus on students’ engagement need a way of 
measuring it. This can be done with one of the two types 
of data identified by engagement theorists: internal to the 
individual (cognitive and affective) and external observa-
ble factors, such as perceptible facial features, postures, 
speech, and actions [2]. Methodologically, as is common 
in many affective computing applications (c.f. [7]), study-
ing engagement requires bringing together observational 
data (e.g., facial expressions, speech) and subjective data 
(e.g., self-reports).  

New sensing and affective computing techniques al-
low for novel methodological approaches to measuring 
engagement. Different modalities such as video [8], audio 
[9] and physiological measures [10] are being used for 
affect detection in learning contexts. Multimodal ap-
proaches have also been explored to improve the accura-
cy of affect detection in learning applications [11]. The 
emotional states of students can be inferred from these 
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measures via affective computing techniques that are 
increasingly being used in learning technologies (e.g., 
[10], [12]–[14]). For example, Whitehill et al. [12] utilized a 
video-based method to detect engagement while students 
played cognitive training games. In this paper, we at-
tempt to detect engagement in a different educational 
task (writing) with a rather different methodological ap-
proach. Our focus on writing is motivated by the fact that 
writing is one of the most common activities in both work 
and educational contexts, so we aim to support writing 
tools that help students engage with and enjoy their writ-
ing activities.  

1.1 Contributions and Novelty 

This study contains several novel aspects: 1) We detect 
engagement during a writing task, which offers unique 
challenges including limited facial expressivity and fre-
quent downward head poses; 2) We use remote video-
based detection of heart rate as a channel for engagement 
detection; 3) We use self-reports, instead of relying on 
external annotations as is commonly done; 4) We com-
pare both concurrent and retrospective self-reports for 
“ground truth” labels. These contributions are discussed 
in more detail below. 

With respect to the first point, writing offers a particu-
larly difficult context for engagement detection for two 
reasons. First, when students use a computer to type, they 
frequently focus their attention downwards towards the 
keyboard instead of at the screen. This causes the head to 
tilt down, which in turn makes facial feature detection 
less accurate due to non-frontal and inconsistent head 
pose. Second, writing itself is less likely to be associated 
with detectable expressions compared to some other edu-
cational activities because it is less interactive than, for 
example, interacting with a conversational tutor or play-
ing an educational game. This leads to more subtle facial 
expressions. 

Second, in addition to using facial features, we also use 
heart rate extracted using computer vision techniques. 
We used a video-based method for measuring heart rate 
to detect user's engagement. This method initially re-
quires a physiological device in order to calibrate the 
remote HR monitor and improve HR estimation accuracy. 
In spite of this real-world limitation, we adopted this 
approach in order to explore the possibility of engage-
ment detection with high-accuracy remote HR sensing. 

With respect to the source (self-reports) and nature 
(concurrent and retrospective) of the engagement annota-
tions, we focus on self-reports of engagement as opposed 
to external annotations (by researchers or via crowdsourc-
ing techniques [15]–[17]) as is commonly done. Self-
reports of engagement differ from external annotations in 
that they are derived entirely (in the case of concurrent 
reports) or at least in part (in the case of retrospective 
reports) from the internal state of students. In the case of 
concurrent self-reports, students report engagement 
based on their current state, while in cued-recall retro-
spective protocols, the student’s reports are based on the 
memory of their internal state and on the video of their 
face (and sometimes computer screen) to aid recall of the 

situation. On the other hand, external annotations are not 
based on the student’s internal state, and thus may be a 
less accurate (or at least different) representation of the 
student’s internal state. This difference is particularly key 
for face-based engagement detection because external 
annotations (such as [16]) are often made based on videos 
of students’ faces. However, it is difficult to separate in-
stances of bonafide engagement from instances where 
students appeared to be engaged but may not have been. 
To the best of our knowledge this study is one of the first 
studies that focuses on video-based automatic detection 
of self-reported engagement. 

2 BACKGROUND AND RELATED WORK 

Most previous work of affect detection has focused on 
detecting basic emotions [18], [19], but more recently 
some researchers have focused on the recognition of 
complex mental states, particularly attention and en-
gagement [20], [21], [22]. Engagement can be measured 
from different behavioral expressions: eye-gaze move-
ments, facial features, gestures, and so on. Nakano and 
Ishii [23] attempted to measure user’s engagement during 
human-robot conversations based on the user's gaze pat-
terns, and the robot asked questions when the user was 
disengaged. They showed that considering the user’s 
engagement can have a positive effect on the user’s verbal 
and nonverbal behavior during a conversation with the 
robot. Rich et al. [24] also proposed a framework to detect 
and maintain user engagement during human-robot in-
teractions. Their approach relied on tracking eye-gaze, 
speech, and gesture. Eye gaze has been shown to be a 
useful indicator of attentional focus, including mind 
wandering or zoning out [25]. Unfortunately, eye tracking 
is affected by head movements and is not yet easily scala-
ble in real-world contexts. The present emphasis is on 
physiology-based and facial-feature based engagement 
detection as these are the two methods we explore in this 
research. 

2.1. Physiology-based detection 

Central and peripheral physiological signals have been 
commonly used for detecting task engagement, alertness, 
and drowsiness. Most of the proposed methods for meas-
uring physiological states attempt to record and analyze 
the electrical signals produced by heart, brain, muscles 
and skin. The main instruments used to monitor physio-
logical signals include Electrocardiogram (ECG), Elec-
tromyogram (EMG), galvanic skin response (GSR), and 
Respiration (RSP). Electroencephalogram (EEG) is widely 
used to differentiate between alertness vs. drowsiness 
[26]. Various EEG-based engagement indices have been 
proposed [27]. Classification accuracies between 84% and 
99% have been achieved for detecting driver drowsiness 
detection using EEG methods [28]. A few studies have 
used EEG indices for engagement detection during hu-
man computer interaction [29], [30]. Belle et al. [31] 
achieved an accuracy of 85.7 % for detecting users' en-
gagement when they were watching video clips.  
Cardiac activity has also been explored for automatic 
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affect and engagement/alertness detection. Heart rate 
(HR) and heart rate variability (HRV) are two important 
ECG measures which have been used widely for these 
purposes. Previous researches showed that HR is a good 
indicator for discriminating between different affective 
states [32], [33]. For example, the HR tends to be higher 
during fear, anger and sadness than during happiness, 
disgust and surprise [33]. HR and HRV have been shown 
to be indicators of alertness and drowsiness [34], [35]. 
Liang et al. [35] analyzed HRV, HR, blood pressure and 
palm temperature to detect driver fatigue. They showed 
that HRV features could be highly effective for detecting 
driver drowsiness. Patel et al. [34] proposed a system for 
fatigue detection based on HRV features and achieved an 
accuracy of 90%. 

One of the main challenges associated with physiologi-
cal-based affective computing applications is the intru-
siveness of physiological sensors. Users must have access 
to a heart rate monitor, which typically must be physical-
ly attached to the skin. This issue can be addressed by 
using remote measurement techniques. Three different 
approaches have been investigated for remote, contactless 
measurement of vital signs such as heart rate. Microwave 
Doppler radar [36]–[38] was one of the earliest methods 
for sensing heart rate and respiration. Thermal imaging 
[39], [40] is another approach for heart rate detection us-
ing analysis of skin temperature modulation. More recent 
approaches include video-based imaging methods [41]–
[43] that use photoplethysmography to detect HRV. 
Compared to other approaches, video-based measure-
ment of vital signs is cheaper and easier to adopt [44]. 
Current studies showed that these methods can be used 
in HCI applications [45]. In this paper we explore video-
based HR sensing for engagement detection.  

2.2. Facial-feature based detection 

The use of computer vision techniques in affective com-
puting is gaining traction with recent advances in low-
cost hardware sensors (e.g., cameras) that can be integrat-
ed into computerized learning environments, as evi-
denced by a large body of existing work (see review arti-
cles [19], [46], [47]). The Microsoft Kinect and other simi-
lar depth cameras will likely become standard in future 
computer hardware. Cameras provide a non-intrusive 
continuous way of capturing images of peoples’ faces as 
they use cell phones, computers, and even automobiles. 
This facial information can be used to understand certain 
facets of the user’s current state of mind, and many tech-
niques have been developed to automate this measure-
ment process [19], [47], [48]. 

Ekman & Friesen [49] proposed the Facial Action Cod-
ing System (FACS), a widely used method for describing 
facial muscle action units (AU) and corresponding ex-
pressions. Current facial expression recognition systems 
can recognize several AUs with reasonable accuracies 
[50]. For example, a new face-tracker module embedded 
in Microsoft Kinect SDK (v1.5) is able to track six action 
units.  

Two main approaches have typically been used in the 
area of facial expression analysis: geometric-based and 

appearance-based approaches. Geometric features in-
clude shapes and positions of face components, and the 
location of fixed facial points [51] such as the corners of 
the eyes, eyebrows, etc. [52], [53]. Appearance-based 
methods recognize facial expressions by analyzing the 
changes of the face’s surface in both static and dynamic 
space (e.g., dynamic texture-based techniques). Facial 
expression recognition systems that use appearance-
based features have been reported in [54]. Several re-
searchers have used different types of features: for exam-
ple, Gabor wavelet coefficients [55], optical flow [56], and 
Active Appearance Models [57]. Bartlett et al. [54] inves-
tigated different methods, such as explicit feature meas-
urement, Independent Component Analysis (ICA), and 
Gabor wavelets. In their studies, Gabor wavelets provid-
ed the best results [58].  

There are strengths and weaknesses in both the geo-
metric-based and appearance-based approaches. Geomet-
ric-based methods typically track the position of a num-
ber of facial points in time. With this approach, some fea-
tures of facial appearances (e.g., shape of mouth, position 
of eyebrows) can be extracted, while features related to 
texture of the face (e.g., furrows and wrinkles) cannot be 
extracted. In contrast, appearance-based methods may be 
more sensitive to changes in illumination (e.g., brightness 
and shadows), head motions and differences between 
shapes of the faces [19]. Tian et al. [59] used a combina-
tion of geometric-based and appearance-based features 
(Gabor wavelets) for recognizing facial AUs. They 
claimed that the geometric features outperformed the 
appearance features, yet using a combination of both 
yielded the best results. 

Affect and engagement detection from facial features 
has also been investigated in learning contexts. For exam-
ple, Grafsgaard et al. [20] used the Computer Expression 
Recognition Toolbox (CERT) to track facial movements 
within a naturalistic video corpus of tutorial dialogue. 
The most frequent AUs including eyebrow raising (inner 
and outer), brow lowering, eyelid tightening, and mouth 
dimpling were selected to predict overall levels of en-
gagement, frustration and learning gains using forward 
stepwise linear regression. Their findings suggested that 
upper face movements would be a reliable predictor of 
engagement, frustration, and learning. They achieved 
reasonable agreement between their predictions and 
manual annotations, albeit at a rather coarse grained level 
(i.e., across the entire learning session) [20]. 

Whitehill et al. [16] used three different computer vi-
sion techniques to detect engagement in students as they 
interacted with cognitive skills training software. Box 
Filter features (which measure differences in grayscale 
pixel values among different regions of the face), Gabor 
features, and CERT features were used independently to 
create machine learning models for engagement detec-
tion. Labels used in their study were obtained from retro-
spective annotation of videos by external annotators. Four 
levels of engagement were annotated ranging from com-
plete disengagement (not even looking at the material) to 
strong engagement. Detection performance was quanti-
fied using 2AFC, a means of estimating the Area Under 
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the ROC Curve (AUC) for a classifier [60]. They were able 
to detect engagement in a user-independent fashion with 
AUC = .729 (averaged across all four levels of engage-
ment). Gabor features with an SVM classifier proved to be 
the most effective method they tried. This represents 
state-of-the-art engagement detection, which we will 
compare to in the present study. 

2.3 Present approach 

Similar to some related work [16], we detected engage-
ment with a video-based approach using computer vision 
techniques. Related work (see review [46]) has also shown 
improved detection performance from combining multi-
ple channels of data, so we adopted multiple techniques 
designed to produce different types of features. We used 
a combination of geometric features (Kinect Face Track-
er), appearance features (Local binary patterns in three 
orthogonal planes), and physiological features (heart rate) 
that were extracted using computer vision techniques. 
Machine learning classification models were trained in a 
person-independent manner to ensure generalization to 
new students. Ground-truth measurements of engage-
ment were obtained concurrently and retrospectively, 
and models were built separately for both types of self-
report. We compare state-of-the-art engagement detection 
results to our models built using a fusion of features ex-
tracted using different techniques. 

3 DATA COLLECTION METHODOLOGY 

3.1 Participants 

The participants were 23 undergraduate/postgraduate 
engineering students from a public university in Austral-
ia. The students ranged in age from 20 to 60 years (M = 34 
years, SD = 11) and there were 14 males and 9 females. 
One student did not complete the entire session, so data 
for this student was discarded. The study was approved 
by the University of Sydney’s Human Ethics Research 
Committee prior to data collection. The students signed 
an informed consent prior to the study. 

3.2 Procedure 

The study took approximately one hour and was con-
ducted indoors with a varying amount of ambient sun-
light entering through windows in combination with 
normal artificial fluorescent light. Students were asked to 
sit in front of a computer and write an essay (using 
Google docs) about a place they had visited recently (a 
journalistic genre), an activity that requires some research 
(e.g., finding information about the location) but not 
much prior knowledge and is likely to trigger arousing 
emotional memories. After receiving the topic, the writ-
ing session was based on a ‘draft-review-final’ activity: 1) 
Students wrote a draft and submitted it after 30 minutes; 
2) They waited for 10 minutes to receive feedback. They 
were asked to stay seated while feedback was being pro-
cessed but were free either to work on other manuscripts 
or browse the Internet; 3) They received human and au-
tomated feedback on how to improve the quality of the 
writing; 4) They had an additional 20 minutes to revise 

their manuscript according to the feedback and submit 
the final version. 

Videos of their faces and upper bodies were recorded 
with a Microsoft Kinect sensor in near mode. The sensor 
provides standard 2-dimensional color video, and 3-
dimensional depth data. Color video was recorded in 24-
bit RGB with 3 channels, 8 bits/channel, at 30 frames per 
second (fps) with a resolution of 640 × 480 pixels, and was 
saved in AVI format. The depth maps were also recorded 
at 30 fps with pixel resolution of 320 × 240. Sound was 
recorded using the Kinect microphone array. The stu-
dent’s heart rate was extracted from an ECG signal rec-
orded by a BIOPAC MP150 system. Two ECG electrodes 
were placed on the student’s wrists (left and right) and 
the ground electrode was placed on their ankle. Heart 
rate recordings were not used directly, but rather as 
ground-truth for video-based heart rate detection. 

Concurrent and retrospective affective annotations 
were collected during and after the essay writing proce-
dure, respectively.  

3.2.1 Concurrent self-reports 

For concurrent annotations, the system produced an audi-
tory probe (beep) every two minutes during the essay 
writing activity. Students were instructed to verbally 
report their level of engagement (engaged in the writing 
task or not) in response to this probe. Their spoken re-
sponses were recorded with the Kinect microphone array. 
This method was used because it is a less-intrusive meth-
od for concurrent self-reporting compared to interrupting 
the writing session by asking students to fill out a ques-
tionnaire on their affect [61].  
The impact of interrupting students to self-report their 
engagement level was not analyzed in this study. How-
ever, similar studies showed that this impact is not very 
high. For example, in a study involving a similar writing 
task, D'Mello and Mills [62] reported that the periodic 
(every 90 seconds) interruptions only had a negative im-

 

Fig. 1. Selected examples of disengagement (a and c) and en-
gagement (b and d) annotations. (a) The student is distracted by 
noise. (b) The student is reviewing his writing. (c) The student 
disengaged from the writing task. (d) The student is typing and is 
engaged. 
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pact on 4.8% of the students even though they used a 
complex affect measurement instrument involving select-
ing among 11 affective states plus neutral. Nevertheless, 
the present study attempted to minimize the intrusive-
ness of the concurrent measure by: 1) simplifying the 
information to be self-reported (engaged vs. not-engaged) 
in order to decrease the mental effort required; 2) using a 
think-aloud method which is less disruptive compared to 
paper-based or computer based questionnaires; and 3) 
making the reporting task voluntary by allowing the stu-
dents to ignore the prompt if they chose to do so. 

3.2.2 Retrospective self-reports 

Interval- and event- based segmentation are the two types 
of video segmentation used for retrospective video anno-
tation. Each method has its strengths and weaknesses. 
When the behavior of a person is unpredictable, such as 
during writing activities, researchers [17], [63] suggest 
that event-based segmentation provides more useful an-
notations. Accordingly, an event-based video segmenta-
tion was used wherein each recorded video was divided 
into meaningful segments for annotation. More specifical-
ly, each event, such as a change in facial expression, or 
head or body posture movement, was segmented as an 
event by a researcher.  

A week after their writing session, students returned to 
view their own extracted video segments and fill out a 
questionnaire after viewing each segment. They were free 
to play each segment as many times as needed to form an 
accurate judgment. The questionnaire simply asked them 
to report whether they were engaged or not (“Were you 
engaged in the task or not?”). Fig. 1 displays examples of 
disengaged and engaged instances as retrospectively 
annotated by the students.  

3.3 Affect Reports and Engagement Levels 

In concurrent self-reporting, the system asked students to 
verbally report their engagement every 2 minutes in each 
writing session (30 per session). Two students failed to 
report their level of engagement when the auditory 
probes sounded during the writing session, so no concur-
rent reports were available for those students. In all, 530 
responses were obtained in response to 660 system 
probes. Students indicated that they were engaged for 425 
cases (80%) compared to not being engaged (105 cases, or 
20%). 

For retrospective self-reports, 1,325 video segments 
were extracted from all videos. On average, 60.23 (SD = 
8.25) video segments were extracted for each student. The 
average length of each video segment was 9.78 seconds 
(SD = 2.23). Students reported being engaged for a majori-
ty of the segments (996 segments or 75%), while they report-
ed not being engaged for 315 segments (24%). 14 segments 
(1%) were labeled as “Not Applicable (N/A).”  

There was a strong correlation between the proportion of 
engaged cases in concurrent and retrospective engagement 
reports (r = 0.82, p < 0.001). This provides evidence for the 

reliability of the two self-report measures.  
Fig. 2 shows the average engagement level of students 

and their affective states during writing sessions as obtained 
from concurrent and retrospective self-reports. According to 
Fig. 2, the average of students’ engagement was about 90% 
at the beginning of the task. Their engagement levels de-
creased gradually as they were approaching the middle of 
the session, when they had to submit their essays and wait 
10 minutes to receive feedback (Break). Engagement reports 
corresponding to the breaks were not used in the affect de-
tection analysis. Once they received the feedback they were 
engaged with writing for 90% of the reports. Again, their 
engagement waned as they neared the end of the session.  

5 ENGAGEMENT DETECTION METHODOLOGY 

We followed three main steps for detecting students’ en-
gagement levels. In the first step, three types of features 
(Kinect face tracker, LBP-TOP, and Heart Rate - HR) were 
extracted from each video segment. The last 10 seconds of 
video before each annotation was considered for concur-
rent segments. The features were synchronized with cor-
responding concurrent and retrospective labels. Next, a 
feature selection technique was applied to the data in 
order to reduce the dimensionality of the feature space (as 
discussed below, feature selection was only applied to 
training data, not testing data). Finally, machine learning 
classification techniques were applied on selected features 
and validated with leave-several-students-out cross-
validation for student-independent models. The sum-
mary of our methodology is illustrated in Fig. 3. 

5.1 Feature Extraction 

Three different methods were implemented for feature 
extraction from video recordings. These methods are ex-
plained in the following sub-sections. 

5.1.1 Face Tracking Engine 

The Kinect SDK’s face tracking engine (v1.5) was used for 
facial feature extraction. This engine is able to track head 
position, ANimation Units (ANUs) and 100 facial points 
in real time. It should be noted that ANU codes are dif-
ferent from Action Units (AUs) proposed by Ekman [64]. 
For example ANU0 is equivalent to AU10, which 
measures upper lip raises.  

 

Fig. 3. An overview of our methodology for classifying engage-
ment, (LBP-TOP: Local Binary Pattern in Three Orthogonal Plane) 
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Six ANUs were tracked by the Kinect face tracking en-
gine, which are a subset of those defined in the Candide3 
model [65]. Four ANUs represent lip motions and two 
ANUs correspond to eyebrow motions. Each ANU was 
expressed as a numeric value ranging from -1 and +1. For 
example, ANU0 represents Upper Lip Raiser and a value 
of 0 indicates the teeth are fully covered by the upper lips; 
ANU0 equals +1 if teeth are fully visible; and it decreases 
towards -1 if the person pushes down the lip. 

In addition to ANUs, the student’s head position was 
captured via pitch, yaw and roll. Head translation was 
also measured in meters using the face tracking engine. In 
all, six ANUs were calculated for each detected face along 
with 3 values which specify head rotation in 3D space and 
three values which indicate the position of the head (X, Y 
and Z). Accordingly, twelve measures were calculated for 
each frame in the segment. Features were then created by 
aggregating the values of the 12 across the individual 
frames in the segment. Seven statistical measures (mean, 
median, standard deviation, max, min, range, difference 
between the values in the first and the last frame) were used 
to aggregate the 12 frame-level measures to obtain the final 
set of 84 segment-level FT features.  

Lighting conditions, distance, and face occlusion are the 
main factors which affect the accuracy of the face tracking 
engine. The face tracking engine is also sensitive to the posi-
tion of the head in front of the camera. According to the 
manual provided by Microsoft [66] the face tracking engine 
can track when the student’s head pitch angle is less than 20 
degrees, the roll angle is less than 90 degrees, and the yaw 
angle is less than 45 degrees. However, it works best when 
the head pitch, roll and yaw angels are less than 10, 45, and 
30 degrees respectively. In some cases the face tracking en-
gine could not detect the face and returned values which 
were outside of the abovementioned ranges. We detected 
and ignored these cases in preprocessing stages. Sometimes 
the face tracking engine mistakenly detected faces in the 
background. In order to avoid such false positives, we only 

considered the detected faces which were located in the 
normal range between 60 cm and 140 cm.  

5.1.2 Local Binary Pattern in Three Orthogonal Planes 

The Local Binary Pattern (LBP) proposed by Ojala et al. 
[67] is a powerful method for texture description. We 
used this method to describe the appearance and dynam-
ics of facial objects. The LBP operator gets the color value 
of each central pixel and labels each neighborhood pixel 
by thresholding its color value with central pixel color 
value. Considering P neighboring pixels, 2P different pat-
terns could be considered. By calculating LBP for all pix-
els in an image and calculating the distribution of each 
pattern, a unique histogram could be extracted for each 
image. The histogram represents the number of occur-
rences of each specific local pattern. By defining different 
radii (R) and number of neighboring points (P), several 
types of LBP can be extracted. The best values for R and P 
depend on the application and general characteristics of 
the image sets. 

Different variations of this method have been used for 
the problem of facial expression recognition [68]. Zhao 
and Pietikäinen [69] considered facial expressions as Dy-
namic Textures and used Volume Local Binary Patterns 
(VLBPs) for facial expression recognition. The approach 
showed promising results, although only the six proto-
typical emotions were recognized and no temporal seg-
mentation was performed. In their approach, they nor-
malized the face using the eye position in the first frame, 
but ignored any rigid head movement that may have 
occurred during the sequence. In addition, they used 
fixed overlapping blocks distributed evenly over the face 
instead of focusing on specific regions of the face, such as 
the mouth, eyes and eyebrows, which include valuable 
information about facial expressions. In this study, we 
used the Local Binary Patten in Three Orthogonal Planes 
(LBP-TOP) to recognize engagement. This method has 
been previously used to recognize three levels of valence 
and arousal and has achieved reasonable accuracy [70]. 

The LBP operator was originally designed for static im-
ages. Recently, Zhao and Pietikäinen [69] proposed an ex-
tended version of LBP to describe dynamic textures. Instead 
of considering a video sequence as a series of XY planes in 
axis T, it could be analyzed as a series of XT planes in axis Y 
and YT planes in axis X, respectively. Zhao and Pietikäinen 
[69] divided each video sequence into three orthogonal sets 
of 2-dimensional planes. The LBP could be computed for 
each set of planes separately. The LBP-TOP [69] descriptor 
for each video clip is calculated by concatenating three LBP 
histograms. Fig. 4, shows the LBP-TOP procedure. In such a 
representation, XT planes represent the changes in the ap-
pearance of the image during the time and the others (XT 
and YT) represent the motion patterns of each set 
(row/column) of pixels through Y and X axes separately.  
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Each component of the face has a specific texture and ap-
plying the LBP-TOP operator on the entire facial image 
might not provide useful information. Hence, we divided 
each facial video sequence into three blocks of images: left-
eye, right-eye and mouth regions. These regions were de-
tected and extracted automatically using an extended boost-
ed cascade classifier [71]. Then, the deformation of eyes and 
mouth was monitored during each video segment. In order 
to have the same size blocks in each image, the detected 
objects (eyes and mouth) were resized to fixed sizes. The 
radius for extracting LBP-TOP patterns was set to 3. These 
setting (P = 8, R = 3) for LBP-TOP method provided the best 
result in our previous study on valence and arousal detec-
tion [72]. So, for each video sequence, 2,304 (3 regions × 3 
orthogonal planes × 28 patterns) features were extracted. 

5.1.3 Extracting HR features  

We estimated HR based on the method introduced by 
Poh et al. [43] and then improved by Monkaresi et al. [45]. 
The first step was to detect and track the face in the rec-
orded video using an extended boosted cascade classifier 
implemented in OpenCV (v. 2.2). The algorithm focuses 
on the regions which are more likely containing 
photoplethysmogram signal. The face area detected by 
the OpenCV library sometimes contains parts of the 
background region, which should be omitted before fur-
ther analysis. Poh et al. [43] suggest considering the cen-
ter 60% of the width of the detected face and the full 
height as the Region of Interest (ROI) in order ensure that 
there are no unwanted background regions. Next, the 
ROI was divided into the RGB channels and the average 
of each color (RGB) amplitude values was calculated 
across all pixels in the ROI. These three raw signals were 
inputs for an Independent Component Analysis (ICA). 
Before applying ICA, the raw signals were detrended [73] 
and normalized to improve the quality of the signals.  

ICA [74] is a special case of Blind Source Separation 
(BSS) techniques which attempt to separate a multivariate 
signal into statistically independent subcomponents by 
assuming that the subcomponents are non-Gaussian sig-
nals. ICA finds the statistically independent components 
while the level of independence is maximum. Here, we 
adopted a linear ICA based on the Joint Approximate 
Diagonalization of Eigenmatrices (JADE) algorithm [75]. 
In the linear ICA, it is assumed that the observed signals 
contain linear mixtures of source signals. Typically, the 
number of basic source signals cannot be identified by 

ICA but the number of recoverable sources is less than or 
equal to the number of observations. In our case, the out-
puts of ICA were three independent components.  

In order to identify the component that contains the 
HR signal, further analysis was needed. Poh et al. in [43] 
selected the second component manually as they argued 
that the HR signal could be observed clearly from that 
component. Monkaresi et al. [45] proposed a machine 
learning method to automatically estimate HR from the 
three components. Their proposed method improved the 
root mean squared error (RMSE) for HR prediction from 
43.76 beats per minute (BPM) to 3.64 BPM, thus demon-
strating the accuracy of vision-based HR measurement.    

According to Monkaresi et al.'s method, nine features 
were extracted from the three power spectral density 
(PSD) curves of the independent components. From each 
independent component three features were extracted: 
The first feature is the frequency of highest peak in the 
PSD curves before applying the noise reduction method. 
The frequency of highest peak might represent the HR 
frequency. The noise reduction method tried to find and 
ignore noises based on previous correct estimations. If the 
difference between new estimation and the previous HR 
prediction was greater than 12 BPM, then new estimation 
was ignored and the algorithm examined the next highest 
peak. The noise reduction method repeated this process 
to find the first peak in the PSD curves which had the 
distance less than 12 BPM from previous estimation. The 
frequency of that peak was considered as the second fea-
ture. The depth of searches in the noise reduction method 
was considered as the third feature. Then, a nearest 
neighbor model (used for regression by averaging the 
values of the nearest neighbors) was trained using the 
nine features as input vectors and actual HR extracted 
from the ECG signal recorded by the BIOPAC system. 
The training and testing process was done based on a k-
fold cross-validation approach (k = 10) for each student. 
The estimated HR values were used to extract HR fea-
tures for each video segment. A RMSE of 8.49 BPM for 
HR prediction was achieved using this algorithm. It is 
clear that this level of error is not acceptable in clinical 
applications. However we assumed that this estimation 
can be used for affect and engagement detection if this 
study could demonstrate that it can support the idea of 
replacing HR sensors with cameras in certain types of 
applications in affective computing research. Seven statis-
tical features (mean, median, standard deviation, max, 
min, range, difference) were extracted from the heart rate 
estimations for each video segment. 

5.2 Feature Selection and Supervised 
Classification 

We built engagement-detection models using each of the 
individual channels (HR, FT, LBP-TOP) as well as two 
models using a fusion of equal numbers of features from 
each of these channels (feature-level fusion) and two 
models using a fusion of the classifications from each of 
these channels (decision-level fusion). For the feature-
level fusion we built models using features from all three 
channels (Feature3). We used seven features from each of 

 

Fig. 4. LBP-TOP procedure: (a) A video sequence is divided into three 
sets of orthogonal planes, (b) LBPs are extracted and corresponding 
histograms are created for each set of planes, (c) Three histograms 
are concatenated to create the LBP-TOP histogram.  
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the channels in the Feature3 model because the HR chan-
nel has only seven features. Additional features could not 
be used without effectively weighting the influence of one 
channel more heavily than another. Second, we built 
models using features from two channels (Feature2), 
namely FT and LBP-TOP. We were able to selectively 
choose the most predictive features from each channel to 
build Feature2 because FT and LBP-TOP have many more 
features than HR. Finally, we also built decision-level 
fusion models using the classification output of all three 
channels (Decision3) and the classification output of FT 
and LBP-TOP (Decision2) to correspond to the feature-
level fusion models. 

Decision-level fusion classifiers used individual chan-
nel base classifiers to make a classification by using the 
decision (engaged or not engaged) of whichever base 
classifier had the highest decision probability. One of the 
key advantages of using a decision-level fusion classifier 
is that the base classifiers could be trained on instances 
regardless of whether or not those instances were availa-
ble in the other channels. For example, Feature2 could 
only be trained on instances where features could be de-
tected in both FT and LBP-TOP, but Decision2 used indi-
vidual base classifiers so the FT model was trained on all 
the valid FT instances (within the training dataset) even 
when those instances could not be detected using the 
LBP-TOP method (and vice versa for the LBP-TOP base 
classifier). Classifiers were tested using instances that 
were available in all channels, so that a decision could be 
obtained from each base classifier. 

5.2.1 Feature Selection 

In order to reduce the dimensionality of extracted fea-
tures, RELIEF-F feature selection was used (on training 
data only) [76]. This technique assigns weight to features 
according to the Euclidean distance of instances from one 
class to other instances in the same class, compared to the 
distance to instances in another class. Features were then 
ranked by weight and a certain proportion of the top-
ranked features were used. We explored six different 
proportions of features used in FT channel (.10, .20, .30, 
.40, .50, .75), five in the LBP-TOP channel (.003, .005, .008, 
.012, .016), and three in the HR channel (.25, .50, .75). The 
HR data had only seven features, so we did not use as 
many different proportions as in the FT channel. The 
LBP-TOP channel had such a large number of features 

that it was not feasible to try a large proportion of them as 
was done in the FT channel (with .75) so we tried only 
five small proportions. 

5.2.2 SMOTE 

Synthetic Minority Oversampling Technique (SMOTE 
[77]) was used in some of the resulting models as a means 
to handle data imbalance in the training data (but not 
testing data). SMOTE creates synthetic instances by pro-
jecting new data points in the feature space at random 
positions that fall between a point in the minority class 
and the nearest within-class neighbors of that point. We 
compared the effect of using SMOTE to no resampling. 

5.2.3 Outlier Handling 

Outliers were considered to be any value in an instance 
that was more than three standard deviations from the 
mean of that feature. We experimented with two outlier 
treatments: leaving them unchanged and Winsorization 
(replacing outliers with the value three standard devia-
tions above or below the mean). 

5.2.4 Classifiers 

We used WEKA [78], a machine learning tool, for classifi-
cation. We experimented with different classifiers for 
each model that was built. 

Updateable Naïve Bayes. This classifier finds the distri-
bution (mean and standard deviation) for each feature with-
in each class. The class label for a test instance is then pre-
dicted by applying Bayes’ theorem to determine the proba-
bility of the instance being a member of a particular class 
given the distribution for that class, and choosing the class 
with the highest such probability. 

Bayes Net. This classifier is a graphical model that also 
utilizes Bayes’ theorem to compactly represent conditional 
probabilities of a set of features. A simple network structure 
was used in which individual features were assumed to be 
independent of each other but related to the class label. 

Logistic Regression. This classifier works by regressing 
the class label on the features using the logistic function. The 
logistic function is bounded on the [0, 1] interval and can 
thus be interpreted as indicating one class or the other de-
pending on which side of a cutoff (e.g., .5) the prediction lies 
for a test instance. 

Classification via Clustering. K-means clustering (with K 
= 2 to match the number of classes) is applied to the training 
data to produce two clusters. Each cluster is then assigned a 

TABLE 1 

Summary of models built with concurrent self-reports 

Channel AUC Classifier SMOTE Winsorization No. Features No. Instances Prop. Engaged 

HR 0.544 Nearest Neighbor No Yes 4 408 0.841 

FT 0.635 Logistic Yes Yes 26 243 0.810 

LBP-TOP 0.645 Bayes Net Yes No 37 222 0.795 

Feature3 0.751 Updateable Naïve Bayes No Yes 21 142 0.788 

Feature2 0.758 Updateable Naïve Bayes No Yes 26 146 0.763 

Decision3 0.635 Decision-Level Voting Mixed Mixed - - 0.820 

Decision2 0.690 Decision-Level Voting Yes Mixed - - 0.800 

 



AUTHOR ET AL.:  TITLE 9 

 

label depending on which class it corresponds to best. Test 
instances are then assigned labels according to which cluster 
they correspond to. 

Rotation Forest. In the Rotation Forest classifier, features 
are randomly split into groups of three and then principle 
components analysis (PCA) is applied to each group. A sep-
arate classifier (C4.5 decision tree) is then applied to the PCA 
components to build a base classifier on a randomly chosen 
50% of instances. This process is repeated ten times to pro-
duce an ensemble of classifiers, and then test instances are 
classified by assigning them to the class with the highest 
average confidence. 

Dagging. This classifier creates an ensemble of ten base 
classifiers (decision stump classifiers) by randomly splitting 
training data into ten folds and training a separate classifier 
on each. Test instances are then classified by majority vote of 
the base classifiers. 

5.2.5 Validation 

All models were trained and tested with student-level 
nested cross validation. The training set consisted of all 
data from 66% of students (chosen randomly), while the 
testing set consisted of the data from the remaining stu-
dents. Feature selection was performed with nested cross-
validation within the training set only. That is, feature 
selection was performed repeatedly on the training set 
using data from 66% of the students in the training set 
(44% of total students) and averaging results across 10 
rounds of feature selection. The entire classification pro-
cess was repeated 100 times for each model with different 
randomly chosen students in the training and testing sets. 

We used estimated Area Under the ROC Curve (AUC) 
as our primary classification performance metric because 
it accounts for chance level accuracy (AUC = .5), closely 
approximates the A’ statistic, and is more robust to class 
imbalances than common measures of classification per-
formance such as kappa and accuracy [79]. An AUC of 0 
represents completely incorrect classification while an 
AUC of 1 represents perfect classification 

6 CLASSIFICATION RESULTS 

In this section the performance of the classifiers for dis-
criminating two levels of engagement (Engaged vs. Not 
Engaged) using different channels are reported. Accord-
ing to the methods explained in the Section 5, for each 
video segment, 84 features were extracted for the FT 
channel, 2,304 features were extracted using the LBP-TOP 
method, and 7 features were extracted for the HR chan-
nel. In addition to these three channels, results of combi-
nations of channels are also presented. The first fusion 
model (Feature3) combined all three channels using fea-
ture-level fusion, while in the second fusion model (Fea-
ture2) only the best-performing two individual channels 
were combined. Similarly, decision-level fusion models 
on all three channels (Decision3) and the best two chan-
nels (Decision2) were built. Results are reported separately 
for retrospective and concurrent labels. 

6.1 Concurrent Self-Report Classification Results 

The best performing models that were built with data 

from the concurrent self-reports are presented in Table 1. 
Before delving into the results, it is important to discuss 
issues pertaining to the varying number of instances and 
features across the models. 

The number of instances varied between channels, as 
can be seen in Table 1. The HR channel was least suscep-
tible to missing instances, as it relied on less specific facial 
features than FT or LBP-TOP and could handle situations 
with more extreme head pose and occlusion. Fusing mul-
tiple channels at the feature level required data from each 
channel, so Feature2 was missing instances that were 
missing in either the FT or LBP-TOP channel, and Fea-
ture3 was missing instances in one or more of any of the 
three channels. Loss of instances did not adversely affect 
engagement base rates as noted in Table 1. 

The decision-level fusion models used the same num-
ber of instances for testing as the feature-level fusion 
models (142 for Decision3 and 146 for Decision2), as dis-
cussed in Section 5.2. The number of training instances 
was larger for the decision-level fusion models than for 
the feature-level fusion models, however, because 408 
instances could be used during training of the HR base 
classifier, 243 for FT, and 222 for LBP-TOP. Note that in-
stances were still chosen only from the training data in 
each iteration, however, so that proper training/testing 
independence was preserved. 

Variance in the number of features across models was 
a factor of number of available features and feature selec-
tion. For the Feature2 model, the number of features was 
chosen by considering the number of features selected in 
the individual channel models (63 in FT, 28 in LBP-TOP) 
and taking the minimum of those two. Thus 28 features 
were used from the FT and LBP-TOP channels, 14 from 
each. This was done to ensure that a channel with more 
features (e.g., LBP-TOP) did not dominate a channel with 
fewer features (e.g., FT and HR). Feature3 used seven 
features from each modality because the HR channel only 
had seven features. 

A number of key conclusions can be drawn from Table 
1. First, performance of individual channels could be or-
dered as: HR < FT < LBP-TOP, though the difference be-
tween FT and LBP-TOP is quite muted. Second, fusing 
channels resulted in noticeable performance improve-
ments over the best individual channel (FT). Third, fusing 
the individual FT and LBP-TOP models across both fu-
sion schemes yielded more accurate results over fusing all 

TABLE 2 

Confusion matrices for the best individual channel and best chan-

nel fusion models built with concurrent self-report labels 

 Actual Classified  Priors 

  Engaged Not Engaged  

 

LBP-TOP 
Engaged .723 (hit) .277 (miss) 0.795 

Not Engaged .544 (false 

alarm) 

.456 (correct 

rejection) 

0.205 

  Engaged Not Engaged  

 

Feature2 
Engaged .841 (hit) .159 (miss) 0.763 

Not Engaged .528 (false 

alarm) 

.472 (correct 

rejection) 

0.237 
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three channels (presumably due to the lower performance 
of the HR model). Fourth, feature-level fusion outper-
formed decision-level fusion, and the most accurate mod-
el was the feature-level Feature2 model (i.e. FT + LBP-
TOP). 

To examine the advantages of channel fusion over in-
dividual channels in greater detail, we assessed the con-
fusion matrices (see Table 2) for the best individual chan-
nel (LBP-TOP) and the best fusion model (Feature2). We 
note that most of the improvement in detection perfor-
mance achieved by channel fusion can be attributed to 
more accurate detection of true positives (hits); identifica-
tion of true negatives (i.e., correct rejection) was con-
sistent across the two models. 

6.2 Retrospective Self-Report Classification 
Results 

Table 3 shows an overview of performance for different 
channels when using retrospective labels. Similar to the 
concurrent labels, instances for the retrospective models 
also differed across channels due to challenges caused by 
head pose and other occlusions. However, the number of 
instances for each channel and fusion was higher for ret-
rospective labels than for concurrent labels. As evident in 
Table 3, instance removal did not drastically alter the base 
rate of the retrospective engagement distribution. 

As with concurrent fusion models, we created a fusion 
model with the best two individual channels (FT and 
LBP-TOP), called Feature2. The model for the FT channel 
had 42 features while the LBP-TOP model had 37, so we 
used 36 features in our Feature2 model (18 from each 
channel) since 37 could not be evenly divided between 
the two channels. The Feature3 model had 21 features, 7 
from each modality, due to the limitation of 7 features in 
the HR channel. 

The results indicated that, similar to the concurrent 
models, HR resulted in the lowest performance. FT was 
the best individual channel, though its accuracy was simi-
lar to LBP-TOP. The fusion models provided a notable 
increase in performance over individual channels for both 
feature- and decision- level fusion. Once again, the Fea-
ture2 and Decision2 models outperformed the Feature3 
and Decision3 models. However, unlike the concurrent 
models, performance of the Feature2 and Decision2, 
models was mostly equivalent.  

Confusion matrices for the best individual model (FT) 

and best fusion model (Feature2) are shown in Table 4. In 
the case of retrospective labels, classification performance 
was largely improved in terms of correct rejection rates. 
Specifically, both FT and Feature2 models had nearly 
identical hit rates, but the correct rejection rates were 
much higher for the fusion model.  

It should be noted that although Feature2 model 
showed a small advantage over the Decision2 model 
(AUC of .733 vs. .730), the Feature2 model had a disad-
vantage in terms of instances used for training and test-
ing. Decision2 had nearly equal performance to Feature2, 
but with the added advantage of additional training data 
(470 instances for FT, 650 for LBP-TOP) that may produce 
better performance in cases where the additional training 
data could be especially advantageous.  

6.3 Comparison of Concurrent and Retrospective 
Results 

Fig. 5 shows a comparison of the best concurrent and 
retrospective models. For the individual channels, the 
retrospective models outperformed the concurrent mod-
els for HR and FT but not for LBP-TOP. Fusion improved 
results for both concurrent and retrospective models, 
albeit in different ways. Specifically, feature-level fusion 
was more successful for the concurrent models and vice 
versa for the retrospective models. Overall, the best con-
current model had a higher AUC (.758) than the best ret-
rospective model (.733), but on average, performance for 
both label types was equivalent (mean AUC = .665 for 
concurrent and .678 for retrospective). 

6.4 Comparison to State-of-the-Art Results 

The work by Whitehill et al. [16] perhaps reflects the state 
of the art in vision-based engagement detection in learn-
ing contexts. They used human coders to retrospectively 
judge the level of student engagement based on videos of 
the students’ faces recorded during a cognitive skills 
training activity. The four levels of engagement ranged 
from complete disengagement (level 1, i.e. not looking at 
the screen or closed eyes) to very engaged (level 4). Their 
best person-independent model, an SVM classifier with 
Gabor features, yielded an average AUC of 0.729 for de-
tecting each level of engagement from all the other levels 
(i.e., level 1 vs. levels 2, 3, and 4, etc). In contrast, our best 
person-independent concurrent model achieved an AUC 
of .758, which reflects a measurable improvement over 

TABLE 3 

Summary of models built with retrospective self-reports 

Channel AUC Classifier SMOTE Winsorization No. Features No. Instances Prop. Engaged 

HR 0.590 Updateable Naïve Bayes Yes Yes 4 817 0.792 

FT 0.666 Updateable Naïve Bayes No No 42 470 0.784 

LBP-TOP 0.644 Updateable Naïve Bayes No No 37 650 0.761 

Feature3 0.697 Logistic Yes No 21 323 0.774 

Feature2 0.733 Updateable Naïve Bayes No Yes 36 342 0.773 

Decision3 0.683 Decision-Level Voting Mixed Mixed - - 0.777 

Decision2 0.730 Decision-Level Voting No No - - 0.763 
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the previous state-of-the-art for person-independent en-
gagement detection. However, detection associated with 
level 1 was very high (AUC = .914), so their approach 
may be more successful for complete disengagement (e.g., 
not even looking at screen). For the three remaining levels 
involving some degree of engagement (levels 2-4), their 
average AUC was .667, which may indicate that our ap-
proach is more appropriate when there is some amount of 
engagement.  

It is important to note, however, that a direct compari-
son of techniques between studies is not without its diffi-
culties, since the datasets differ in terms of both videos 
and annotation methods. For example, the engagement 
annotations in Whitehill et al. were obtained by research-
ers after the learning session, while the labels in our data 
were provided by student self-reports both during and 
after the session. However, despite the difficulty of com-
parison we believe that our results have the potential for 
establishing a new state of the art standard in face-based 
engagement detection.  

7 DISCUSSION AND CONCLUSIONS 

The pervasiveness of cameras, be it simple webcams or 
more sophisticated technologies such as the Kinect, opens 
new opportunities in the design of software interfaces. 
Though there is considerable research on video-based 
detection of affect, much (but not all) of this research fo-
cuses on the basic emotions (anger, fear, surprise, disgust, 
sadness, and happiness). Taking a different approach, the 

present paper focused on automatic detection of engage-
ment, which is a complex state with affective, cognitive, 
behavioral, and agentic components [4]. In the remainder 
of this section, we discuss our main contributions and 
findings and consider limitations and avenues for future 
work. 

7.1. Contributions and Findings 

The main goal was to introduce automated video-based 
methods to detect engagement in a learning context. This 
is an important step towards developing software tools 
and interventions that promote engagement. Our results 
showed that engagement can be detected in realistic sce-
narios with moderate accuracy. We compared the per-
formance of the engagement detectors to state-of-the-art 
engagement detection results that also use video data 
(section 6.4). Our results showed improved engagement 
detection performance when compared to current results 
that discriminated across multiple levels of engagement. 

 The most successful models overall were created with 
a fusion of features and with concurrent engagement 
labels. In particular, the model using a fusion of the best 
two channels (Feature2) with concurrent labels provided 
the best overall result, with AUC = .758. In comparison, 
the best retrospective model had lower (but respectable) 
accuracy (AUC = .733 using the Feature2 model). Im-
portantly, the models were validated using student-level 
nested-cross validation, so we have some confidence that 
the results will generalize to new students with similar 
demographics. 

One important contribution of the present study in-
volved the fact that it directly compared both concurrent 
and retrospective engagement annotations. We found a 
tradeoff between hit rate and false alarm rate that may 
affect which model is most suitable for use in an applica-
tion. If concerned primarily with high-precision engage-
ment detection, the choice for which model to use is clear: 
the concurrent Feature2 model has the highest hit rate. 
However, the best retrospective model had higher correct 
rejection rate than the best concurrent model (i.e., better 
detection of disengagement). The cost to students that 
may arise from incorrectly classifying a student as not 
engaged when they are actually engaged may be quite 
different from the cost of missing an occurrence of disen-
gagement, and is arguably more important for learning 
environments that need to intervene when students be-
come disengaged. The set of retrospective labels was also 
larger than the concurrent labels, so in a situation where it 
might be most advantageous to have a large amount of 
training data, the retrospective decision-level model Deci-
sion2 might be the best choice.   

Furthermore, the advantages of decision-level fusion 
are worth considering while choosing a “best” detector 
for deployment. One benefit of decision-level fusion is 
that the individual base classifiers could be trained with 
more data than the feature-level fusion models. A deci-
sion-level fusion model can potentially operate in more 
situations than any one individual detector. For example, 
it could use a decision from the FT channel detector when 
the LBP-TOP channel is unavailable, or vice-versa. 

TABLE 4 

Confusion matrices for the best individual channel and best chan-

nel fusion models built with retrospective self-report labels 

 Actual Classified  Priors 

  Engaged Not Engaged  

 

FT 
Engaged .790 (hit) .210 (miss) 0.784 

Not Engaged .546 (false 

alarm) 

.454 (correct 

rejection) 

0.216 

  Engaged Not Engaged  

 

Feature2 
Engaged .789 (hit) .211 (miss) 0.773 

Not Engaged .465 (false 

alarm) 

.535 (correct 

rejection) 

0.227 

 
 

 

 

 

 

Fig. 5. Concurrent and retrospective results 
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Another important contribution of this work was the 
use of video-based methods for remote monitoring of 
heart rate. Although physiological-based engagement 
detection has shown promise (as reviewed in Section 2), 
video-based detections is more scalable due to the wide-
spread availability, low cost, and lower intrusiveness of 
cameras compared to physiological sensors. Thus, we 
attempted to capitalize on the merits of both approaches 
by considering video-based remote sensing of a physio-
logical signal (HR). The results indicated that perfor-
mance of the HR channel was lower than the facial ex-
pression based channels (FT and LBP-TOP). One reason 
for this result is that HR only provides one index into 
cardiac activity. Other features such as HRV are more 
informative and have been known to be more strongly 
correlated with mental states [35], but could not be ex-
tracted with the proposed approach. Future advances in 
remote physiological sensing might be needed before 
their potential can be fully understood. 

7.2 Limitations and Future Work 

It is important to point out several limitations with this 
research. First, gathering and analyzing behavioral data 
in naturalistic scenarios is one of the most challenging 
issues. The current study suffered limitations in this re-
gard. Due to limits in analyzing head motions, and fre-
quent face occlusions, our methods were not able to ex-
tract features from some video segments, thereby leading 
to data loss. For example, some students were too close to 
the screen during writing, and their face (or part of it) was 
not in the range of video recording. We had to ignore 
these video segments for classification. The Kinect Face 
Tracker was more sensitive to these conditions compared 
to the LBP-TOP method. Furthermore, our approach re-
lied on a manual segmentation of the videos, which might 
need to be replaced with random segmentation. 

Another limitation of this study is associated with the 
method we used for HR estimation. Current video-based 
methods are far from perfect when detecting HR in natu-
ralistic and practical scenarios. Several studies showed 
that photoplethysmography signals could not be detected 
when the subject was moving [43], [80]. Machine learning 
approaches [45], [80] have been proposed to improve the 
accuracy of HR detection when the users behave normal-
ly in front of camera. We used a method that provided 
acceptable accuracy, but needed to be trained with HR 
signals which were recorded by a BIOPAC system. In a 
real world-context, this defeats the purpose of remote-
sensing since one needs a sensor-based approach to pa-
rameterize the vision-based approach. It could also be 
argued that using the actual HR signals might improve 
the results reported in this paper. We acknowledge this 
limitation given that our goal was to experiment with an 
accurate video-based HR tracking system. Improving the 
accuracy of remote physiological measurement tech-
niques, ostensibly without requiring a learning phase, for 
practical applications is an important item for future 
work. 

7.3. Concluding Remarks 

It is our hope that improved automatic detection of en-
gagement in computerized education environments will 
lead to more effective learning and a more engaging ex-
perience for students. To that end we presented our 
methods and results for detecting student engagement in 
the context of a writing task. Our methods showed that 
combining facial texture- and appearance- based features 
resulted in the most accurate student-independent en-
gagement detectors. We also considered the possibility of 
engagement detection from remote-sensing of heart rate, 
however, this did not result in improved performance, 
ostensibly due to the limited amount of information that 
could be sensed. Future improvements to remote heart 
rate detection will provide more opportunities to explore 
the combination of channels and further increase the ef-
fectiveness of engagement detection in computerized 
learning environments. 
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