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ABSTRACT 
We investigate generalizability of face-based detectors of mind 
wandering across task contexts. We leveraged data from two lab 
studies: one where 152 college students read a scientific text and 
another where 109 college students watched a narrative film. We 
automatically extracted facial expressions and body motion 
features, which were used to train supervised machine learning 
models on each dataset, as well as a concatenated dataset. We 
applied models from each task context (scientific text or narrative 
film) to the alternate context to study generalizability. We found 
that models trained on the narrative film dataset generalized to the 
scientific text dataset with no modifications, but the predicted mind 
wandering rate needed to be adjusted before models trained on the 
scientific text dataset would generalize to the narrative film dataset. 
Additionally, we analyzed generalizability of individual features 
and found that the lip tightener and jaw drop action units had the 
greatest potential to generalize across task contexts. We discuss 
findings and applications of our work to attention-aware learning 
technologies.   
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1. INTRODUCTION 
Consider a typical day when you were an undergraduate college 
student. Your first class is your favorite, so you are engaged in the 
lecture content and processing new information. In your next class, 
you watch a documentary about a subject that does not interest you, 
causing your attention to focus on unrelated thoughts of your social 
life, rather than processing the information in the video. Later, you 
work on a homework assignment that you find frustrating, leading 
to waning motivation. Towards the end of your day, you attend a 
chemistry lab, where you interact with a new educational game that 
teaches you the basics of chemical bonds. At some points you are 
enjoying the game, and thus engaged in deeply learning the content. 
However, you later become bored during a long period of repetitive 
gameplay, causing you to become distracted and miss important 
information. Throughout the day, your mental states (engagement, 
frustration, boredom) influenced your learning. Your learning 

experience could have been augmented with technology that 
responded to your changing mental state, thus assisting you in 
achieving the most effective learning experience. 

Educational interfaces that detect and respond to student mental 
states are driven by work on cognitive and affective state modeling, 
which has been investigated for many years. For example, attention 
and affect has been modeled in educational tasks such as reading 
comprehension [6, 16, 28] and computerized tutoring [3, 19], 
among others. In general, there has been a plethora of work that has 
modeled a variety of mental states within specific educational tasks 
(e.g., [2, 15, 19]) to better understand these states and use that 
knowledge to facilitate student learning. 

However, prior research has overwhelmingly investigated single 
task contexts, and has overlooked generalizability to different 
contexts. For example, models that track attention during reading 
might not generalize to lecture viewing, educational gaming, and 
so on. This makes it difficult to decouple task-specific effects from 
more fundamental patterns. In contrast, models that successfully 
generalize across multiple contexts should reveal observable 
signals (i.e. eye gaze, facial features, and physiology data) that are 
general, rather than task-specific. Models using such indicators will 
be key to developing adaptive technologies that are sensitive to 
student mental states and that can operate across a range of 
educational activities. 

We report results on modeling mental states in a generalized way 
using mind wandering (MW) as a case study. MW is a ubiquitous 
phenomenon where thoughts shift from task-related processing to 
task-unrelated thoughts [15]. MW is estimated to occur anywhere 
from 20% - 50% of the time, depending on the person, task, and 
environmental context [23]. It is has also been associated with 
lower performance on a variety of educational tasks, such as 
reading comprehension [16] and retention of lecture content [29], 
thus impacting student learning. 

As with work on other mental states, research on MW has largely 
failed to address models that generalize across contexts [6, 15]. 
MW detection has been investigated in reading comprehension [6, 
16], narrative and instructional film comprehension [25, 26], and 
student interaction with an intelligent tutoring system (ITS) [19]. 
To our knowledge, no work has investigated MW detection with 
the goal of generalizability across task contexts.  

We specifically investigate the generalizability of MW models 
across two task contexts - reading a scientific text and viewing a 
narrative film. These contexts were chosen because of their broad 
applicability to education in the classroom and online. For example, 
a documentary film could be shown in a sociology course or 
distance learning students could read instructional texts prior to 
engaging in an online discussion.  

 

 



1.1 Related Work 
Cross corpus training has been researched in a variety of 
classification problems, such as sentiment analysis [31] and 
acoustic-based emotion recognition [35]. Cross corpus training 
seeks to improve robustness of machine-learned models by 
leveraging multiple datasets in classifier training and testing. For 
example, Webb and Ferguson [32] applied cross corpus training 
techniques to characterize the function of segments of dialogue 
using automatically extracted lexical and syntactic features called 
cue phrases. Each extracted cue phrase was used to classify a 
segment of dialogue. They trained separate classifiers on two 
different datasets, and applied the classifier to the dataset on which 
it was not trained. They found the cross-training results were 
comparable to the results of training and testing on the same dataset 
(e.g. the best cross-trained classifier achieved and accuracy of 71%, 
compared to an accuracy of 81% when trained and tested on the 
same dataset). Additionally, they examined generalizability of the 
cue phrases across datasets by reducing the feature set to contain 
only cues present in both datasets. They found that reducing the 
feature set yielded slight improvements, and demonstrated the 
discriminative nature of a small number of features.  

Zhang et. al. [35] similarly explored the use of multiple datasets for 
creating context-generalizable models. They built classifiers for 
valence and arousal on highly varied emotional speech datasets 
using a leave-one-corpora-out cross-validation technique. 
Additionally, they explored methods for data normalization (within 
each dataset and between datasets) and agglomeration of both 
labeled and unlabeled data. They found that, of their six emotional 
speech corpora, training on some subsets yielded higher accuracy 
than others. Their work suggested that careful selection of corpora 
best suited for training might yield better emotional speech 
recognition performance than an all-or-nothing approach to cross-
corpus training.  

Our work approaches cross-corpus modeling through detection of 
MW. A variety of studies have investigated MW detection during 
educational tasks, such a reading [15], interacting with an 
intelligent tutoring system (ITS) [19], or watching an educational 
video [26]. No work has focused on MW from a cross-corpus 
modeling perspective, to our knowledge, so we review the 
individual studies below.  

Detection of MW from eye gaze features while reading has been 
amply investigated. For example, Bixler and D’Mello [4] built 
models to detect MW while students read texts about scientific 
research methods. This work made use of probe-caught reports 
(students respond yes or no to auditory thought probes of whether 
they were MW), instead of self-caught reports (students report 
whenever they catch themselves MW). Their analysis of eye gaze 
features showed that certain types of fixations were longer during 
MW. Specifically, they found that longer gaze fixations 
(consecutive fixations on a single word), first-pass fixations 
(fixations on a word during the first pass through a text), and single 
fixations (fixations on a word only fixated on once) were predictive 
of MW. In other work, Bixler and D’Mello [5] similarly used eye 
gaze features, but used self-caught reports of MW. They found that 
a greater number of fixations, longer saccade length, and line cross 
saccades were indicative of MW. Across studies on MW detection 
during reading, longer fixations were found to be indicative of MW 
[4, 15, 28], suggesting these features might generalize well. 

Pham and Wang [26] similarly used consumer-grade equipment to 
detect MW while students watched videos from massively open 
online courses (MOOCs). They made use of heart rate, detected by 

monitoring fingertip blood flow, using the back camera of a 
smartphone (i.e., photoplethysmography). Their models achieved a 
22% improvement over chance. Although their method for 
detecting MW could be implemented across a variety of tasks, the 
question of whether heart rate is indicative of MW across task 
contexts has not yet been investigated. 

Hutt et. al. provided limited evidence of generalizability of MW 
detection across different learning tasks during student interaction 
with an ITS [19]. They employed a genetic algorithm to train a 
neural network using context-independent eye-gaze features and 
context-dependent interaction features (e.g., current progress 
within the ITS). They achieved an F1 value of .490 (chance = .190). 
This work provided some evidence of generalizability because the 
visual stimuli and interaction patterns varied throughout. For 
example, students interacted with an animated pedagogical agent in 
a scaffolded dialogue phase and completed concept maps without 
the tutoring agent in another interaction phase. However, it is still 
unclear if their model would generalize to a broader range of tasks, 
particularly less interactive ones like reading or film viewing. 
Furthermore, their best-performing models used context-dependent 
features, which could prevent the detector from generalizing to a 
task where those features could not be used.  

1.2 Novelty 
Our contribution is novel in a variety of ways. First, we demonstrate 
the feasibility of building cross-context detectors of mental states, 
specifically MW. Further, previous work on MW detection has 
sometimes made use of context-specific features (e.g., reading 
times) that are not expected to generalize to other contexts [19, 25]. 
In contrast, our work detects MW using only facial features and 
upper body movement, recorded using commercial-off-the-shelf 
(COTS) webcams that are expected to generalize more broadly. 
Additionally, the use of COTS webcams support a broader 
implementation of MW detectors as webcams are ubiquitous in 
modern technology. This is in contrast to prior research that has 
used specialized equipment, like eye trackers [15, 19, 25] or 
physiology sensors [7], which students would likely not have 
access to. 

2. DATASETS 
This study makes use of narrative film [23] and scientific reading 
comprehension [22] datasets collected as part of a larger project. 
Here, we include details pertaining to video-based detection of 
MW. 

2.1 Narrative Film Comprehension 
Participants were 68 undergraduate students from a medium-sized 
private Midwestern university and 41 undergraduate students from 
a large public university in the Southern United States. Of the 109 
students, 66% were female and their average age was 20.1 years. 
Students were compensated with course credit. Data from four 
students were discarded due to equipment failure. 

Students viewed the narrative film The Red Balloon (1956), a 32.5-
minute French-language film with English subtitles (Figure 1). The 
film has a musical score but only sparse dialogue. This short fantasy 
film depicts the story of a young Parisian boy who finds a red 
helium balloon and quickly discovers it has a mind of its own as it 
follows him wherever he goes. This film was selected because of 
the low likelihood that participants have previously seen it and 
because it has been used in other film comprehension studies [34]. 



Students’ faces and upper bodies were recorded with a low-cost 
($30) consumer-grade webcam (Logitech C270). 

Students were instructed to report MW throughout the film by 
pressing labeled keys on the keyboard. Specifically, students were 
asked to report a task-unrelated thought if they were “thinking 
about anything else besides the movie” and a task-related 
interference if they were “thinking about the task itself but not the 
actual content of the movie.” A small beep sounded to register their 
report, but film play was not paused. After viewing the film, 
students took a short test about the content and completed 
additional measures not discussed further. 

We recorded a total of 1,368 MW reports from the 105 participants 
with valid video recordings. In this work, we do not distinguish 
between the two types of MW, instead merging the task-unrelated 
thoughts and the task-related interferences, both of which represent 
thoughts independent of the content of the film. 

2.2 Scientific Reading Comprehension 
Participants were 104 undergraduate students from a medium-sized 
private Midwestern university and 48 undergraduate students from 
a large public university in the Southern United States. Of the 152 
participants, 61% were female and their average age was 20.1 
years. Participants were compensated with course credit. Data from 
eight participants were discarded due to equipment failure. 

Students read an excerpt from Soap-Bubbles and the Forces which 
Mould Them [8]. Like The Red Balloon (Figure 1), we chose this 
text because its content would likely be unfamiliar to a majority of 
readers. The text contained around 6,500 words from the first 
chapter of the book. In all, 57 pages (screens of text) with an 
average of 115 words each were displayed on a computer screen in 
36-pt Courier New typeface. The only modification to the text was 
the removal of images and references to them after verifying that 
these were not needed for comprehension. 

Students who read the scientific text were instructed to report MW 
in the same way as those who watched the narrative film. They were 
instructed to report a task-unrelated thought if they were “thinking 
about anything else besides the task” and a task-related interference 
if they were “thinking about the task itself but not the actual content 
of the text.” Participants completed a comprehension assessment 
after reading the text. We recorded a total of 3,168 MW reports 
from the 144 students with valid video recordings. 

2.3 Self Reports of MW 
MW was measured via self-reports in both studies, so it is prudent 
to discuss the validity of self-reports. We used self-reports because 

this is currently the most common approach to measure an 
inherently internal (but conscious) phenomenon [5, 15]. Self-
reported MW has been linked to predictable patterns in physiology 
[30], pupillometry [17], eye-gaze [28] and task performance [27], 
providing evidence for the convergent and predictive validity for 
this approach. To improve the quality of self-reports, we 
encouraged students to report honestly and assured them that 
reporting MW would not in any way effect the credit they received 
for participation.  
The alternative to using self-caught reports is using probe-caught 
reports, which require a student response to a thought-probe (e.g., 
a beep). We chose self-caught reports over the probe-caught 
because the probe-caught method can potentially interrupt the 
comprehension process (i.e., when participants report “no” to the 
probes). Interruptions are particularly problematic in the film 
comprehension task, as participants did not have control over the 
media presentation (i.e., no pausing or rewinding of the film). 
Furthermore, it is also unclear if a probe-caught report takes place 
at the beginning or end of MW, or somewhere in between. 
Conversely, self-caught reports are likely to occur at the end of a 
MW episode when the student became aware that they were not 
attending to the task at hand. 

3. MACHINE LEARNING 
We explored a variety of machine learning techniques for cross-
context MW detection using the same approach to segmenting 
instances and constructing features for both datasets. 

3.1 Segmenting Instances 
Reports of MW were distributed throughout the course of the film 
viewing or text reading session. We created instances that 
corresponded to reports of MW by first adding a 4-second offset 
prior to the report. This was done to ensure that we captured 
participants’ faces while MW vs. in the act of reporting MW itself 
(i.e., the preparation and execution of the key press). This 4-second 
offset was chosen based on four raters judgements of whether or 
not movement related to the key-press could be seen within offsets 
ranging from 0 to 6 seconds. Data was then extracted from the 20 
seconds prior to the MW report. A window size of 20 seconds was 
chosen based on prior experimentation that sought to balance 
creating as many instances as possible (shorter window sizes) and 
having sufficient data in each window (longer window sizes) to 
detect MW. 

We extracted “not MW” instances from windows of data between 
MW reports. The entire session (reading or video watching) was 
divided into 24-second segments (20 second windows of data and 
a 4 second offset as with the MW segments). Any segments 

                  
Figure 1. A screenshot of the narrative film (left) and scientific text (right) are shown. 

 



overlapping the 30 seconds prior to a MW report were discarded. 
We do not know precisely when MW starts, so we chose to discard 
instances overlapping the 30 seconds prior to MW reports, to 
separate students when they were actually MW from when they 
were not. We also discarded any segments overlapping a page turn 
(discussed in Section 3.2). All remaining segments were labeled 
Not MW. Our approach to segmenting instances is shown in Figure 
2. 

 
Figure 2. Illustration of the instance extraction method. 

3.2 Instance Selection 
A full accounting of the instance selection process is shown in 
Table 1. Our goal was to make the two data sets as similar as 
possible so that task-specific effects could be studied without 
additional confounds. 
We first discarded any instances where there was less than one 
second of usable data in that time window. Data was not usable 
when the student’s face was occluded due to extreme head pose or 
position, hand-to-face gestures, and rapid movements. 
Additionally, for the scientific reading dataset, we discarded 
instances that overlapped with page turn events. In prior 
experimentation, we trained a model to detect MW using only a 
binary feature of whether or not that instance overlapped a page 
turn boundary. MW was detected at rates above chance in this 
experimental model. Therefore, we concluded that including 
instances that overlapped page turn boundaries would inflate 
performance as the detector could simply be picking up on the act 
of pressing the key to advance to the next page. 
After discarding instances using the method above, we matched the 
scientific reading and narrative film datasets on school (medium-
sized Midwestern private university or large Southern public 
university), reported ethnicity, and reported gender. The scientific 
reading dataset was randomly downsampled to contain 
approximately the same number of students in each gender, race, or 
school category, as the film dataset. This participant-level matching 
on school, ethnicity, and gender was done to eliminate external 
sources of variance that could influence MW detection, potentially 
obfuscating task effects from population effects. 
Finally, the datasets were downsampled to contain equal numbers 
of instances because the size of the training set is known to bias 
classifier performance [13]. We also downsampled the data to 
achieve a 25% MW rate in order to be consistent with research that 
suggests that MW occurs between 20% and 30% of the time during 
reading and film comprehension [6, 23]. Further, the MW rates of 
30% and 14% obtained in these data are more artefacts of the 
instance segmentation approach rather than the objective rate, so 
resampling ensures a dataset that is more reflective of expected 
MW rates.  
 
 

Table 1. An accounting of instance selection process  

 Reading  
(% MW) 

Film  
(% MW) 

Base 7,267 (30%) 7,313 (14%) 

Face Detected 7,266 (30%) 7,238 (14%) 

Page Boundary 1,400 (36%) N/A 

Participant Matching 1,273 (35%) N/A 

Downsampling 1,100 (25%) 1,100 (25%) 

3.3 Feature Extraction and Selection 
We used commercial software, the Emotient SDK [36] to extract 
facial features. The Emotient SDK, a version of the CERT 
computer vision software [24] (Figure 3) provides likelihood 
estimates of the presence of 20 facial action units (AUs; specifically 
1, 2, 4, 5, 6 ,7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, and 
43 [14]) as well as head pose (orientation), face position (horizontal 
and vertical within the frame), and face size (a proxy for distance 
to camera). Additionally, we used a validated motion estimation 
algorithm to compute gross body movements [33]. Body movement 
was calculated by measuring the proportion of pixels in each video 
frame that differed by a threshold from a continuously updated 
estimate of the background image generated from the four previous 
frames. 

 
Figure 3. Interface demonstrating AU estimates detected from 

a face video. 
Features were created by aggregating Emotient estimates in a 
window of time leading up to each MW or Not MW instance using 
minimum, maximum, median, mean, range, and standard deviation 
for aggregation. In all, there were 162 facial features (6 aggregation 
functions × [20 AUs + 3 head pose orientation axes + 2 face 
position coordinates + face size + Motion]). Outliers (values greater 
than three standard deviations from the mean) were replaced by the 
closest non-outlier value in a process called Winsorization [11].  

We used tolerance analysis to eliminate features with high 
multicollinearity (variance inflation factor > 5) [1], after which, 37 
features remained. This was followed by RELIEF-F [21] feature 
selection (on the training data only) to rank features. We retained a 
proportion of the highest ranked features for use in the models 
(proportions ranging from .05 to 1.0 were tested). Feature selection 
was performed using nested cross-validation on training data only. 
We ran 5 iterations of feature selection within each cross-validation 
fold (discussed below), using data from a randomly chosen 67% of 
students within the training set in each iteration.  

3.4 Supervised Classification and Validation 
Informed by preliminary experiments, we selected seven classifiers 
for more extensive tests (Naïve Bayes, Simple Logistic Regression, 
LogitBoost, Random Forest, C4.5, Stochastic Gradient Descent, 
and Classification via Regression) using the WEKA data mining 



toolkit [18]. For each classifier, we applied SMOTE [9] to the 
training set only. SMOTE, a common machine learning technique 
for dealing with data imbalance, creates synthetic interpolated 
instances of the minority class to increase classification 
performance. 
We evaluated the performance of our classifiers using leave-one-
participant-out cross-validation. This process runs multiple 
iterations of each classifier in which, for each fold, the instances 
pertaining to a single participant are added to the test set and the 
training set is comprised of the instances for the other participants. 
Feature selection was performed on a subset of participants in the 
training set. The leave-one-out process was repeated for each 
participant, and the classifications of all folds were weighted 
equally to produce the overall result. This cross-validation 
approach ensured that in each fold, data from the same participant 
was in the training set or testing set but never both, thereby 
improving generalization to new participants. 
Accuracy (recognition rate) is a common measure to evaluate 
performance in machine learning tasks. However, any classifier 
that defaults to predicting the majority class label of an imbalanced 
dataset can appear to have high accuracy despite incorrect 
predictions of all instances of the minority class label [20]. This is 
particularly detrimental in applications where detecting the 
minority class is of upmost importance. In our task, we prioritized 
the detection of MW despite the large imbalance in our dataset. 
Therefore, we considered the F1 score for the MW label as our key 
measure of detection accuracy since F1 attempts to strike a balance 
between precision and recall. 

4. RESULTS 
4.1 Cross-dataset Training and Testing 
We trained three classifiers: one on the scientific text dataset, one 
on the narrative film dataset, and one on a concatenated dataset 
comprised of the first two. For each of the three training sets, the 
classifier that yielded the highest MW F1 is shown in Table 2. We 
used leave-one-student-out cross validation for within-dataset 
evaluations. Conversely, to measure generalizability of the models 
across contexts we applied the classifier trained on scientific text 
data to the narrative film data, and vice versa. We compared our 
model to a chance model that classified a random 25% (MW prior 
proportion) of the instances as MW. This chance-level method 
yielded a precision and recall of .250 (equal to the MW base rate).  

Table 2. Results for the models with highest MW F1 for the 
within-data set validation (cross-training results in 

parentheses).  

Training Set Classifier MW F1 Precision Recall 

Scientific Text Logitboost .441 (.267) .376 (.252) .553 (.284) 

Narrative Film C4.5 .436 (.407) .303 (.278) .775 (.760) 

Both Logistic .424 .314 .655 
 
We calculated improvement over chance as (actual performance – 
chance)/(perfect performance – chance). All three models showed 
improvement over chance (25% for scientific text, 25% for 
narrative film, and 23% for the concatenated dataset) when trained 
and tested on the same dataset. When tested on the alternative 
dataset, the narrative film classifier generalized well to the 
scientific text dataset (21% improvement over chance). However, 
the scientific text model showed chance-level performance on the 
narrative film corpus (2% improvement over chance). The MW F1 

of the concatenated dataset model was simply an average of the 
MW F1 score of the individual datasets when the instance 
predictions of the individual datasets are separated (.413 for the 
scientific reading dataset and .436 on the narrative film dataset). 
These results showed that the concatenated classifier does not skew 
towards predicting one dataset better than the other, but rather 
predicts both models with comparable accuracy. 
Table 2 also shows precision and recall for each of the models. 
Across all models, recall was higher than precision, indicating a lot 
false positives. It is important to note the near chance-level recall 
and precision of the model trained on scientific reading data when 
applied to the narrative film data. The lack of improvement over 
chance for both recall and precision demonstrated the need to 
improve generalizability in both dimensions. Conversely, the cross-
trained narrative film model had lower precision, but good recall, 
resulting in an improved MW F1 score. 

4.2 Classifier Generalizability 
To address the negligible improvement over chance of the scientific 
text model when tested on the narrative film dataset, we repeated 
the training and testing using C4.5 as the classifier. The C4.5 
classifier was chosen because it generalized better when trained on 
the narrative film dataset than the Logitboost classifier generalized 
when trained on the scientific text dataset. The results are shown in 
Table 3, where we note no notable improvement over the previous 
Logitboost classifier in Table 2 (change from .267 to .287 when 
tested on the narrative film dataset). Therefore, the lack of evidence 
for generalizability for the scientific text model could be due to 
overfitting to the training set, rather than classifier selection. 

Table 3. Results (MW F1) for the C4.5 classifier for within- 
and cross- validation. 

Training Set Within  Cross 

Scientific Text 0.425 0.287 

Narrative Film 0.436 0.407 

Both 0.415 N/A 

4.3 Prediction Threshold Adjustment 
We further investigated the lack of generalizability of the scientific 
text model by considering the MW prediction rate. We compared 
the performance of both models on the narrative film dataset. Recall 
dropped considerably more than precision (Table 2; recall dropped 
from .775 to .284; precision decreased from .303 to .252). We 
hypothesized that recall decreased because of a difference in 
predicted MW rates (Table 4). In fact, the predicted MW rate in the 
narrative film data dropped from 64% to 28% when applying the 
scientific text model to the same data. This supported our 
hypothesis that the low recall was linked to lower predicted MW 
rates. Furthermore, 39% of the correctly classified instances (true 
positives and true negatives) were MW when applying the narrative 
film model to the narrative film data compared to 12% for the 
scientific text model applied to the same data. This demonstrated 
that the scientific text model was much more prone to missing MW 
instances, further supporting our hypothesis. 
To address this, we adjusted the predicted MW rate of the scientific 
text model when applied to the narrative film dataset. The classifier 
outputs a likelihood of MW and we previously considered instances 
with likelihoods greater than .5 as MW. We adjusted that prediction 
threshold from .1 to 1 in increments of .1 (Figure 4) to investigate 
how changes in predicted MW rate (higher for lower thresholds) 
effected recall, and thus MW F1. 



Table 4. Predicted MW Rates. 

Training Set Within Cross 

Scientific Text 38% 28% 

Narrative Film 64% 68% 

Both 52% N/A 
 

 
Figure 4. MW precision, recall, and F1 as the prediction 

threshold varies for the scientific text model applied to the 
narrative film dataset. 

We note that MW F1 score degrades at a threshold of .5. We 
adjusted the threshold to .3 and yielded the results shown in Table 
5. After adjusting the MW prediction threshold, both precision and 
recall of the narrative film data applied to the scientific text model 
showed comparable performance to the cross-trained narrative film 
model. It is important to note that the adjusted MW prediction 
threshold yielded a predicted MW rate of 76%, much higher than 
the MW rate of the dataset (25%). As with the generalized narrative 
film model, this reduced precision because the high predicted MW 
rate produced a large number of false positives. 

Table 5. Results for models with highest MW F1 (cross-
training results in parentheses). Cross-training results for the 
scientific text model reflect a MW prediction threshold of .3. 

Training Set Classifier MW F1 Precision Recall 

Scientific Text Logitboost .441 (.416) .376 (.276) .553 (.836) 

Narrative Film C4.5 .436 (.407) .303 (.278) .775 (.760) 

Both Logistic .424 .314 .655 

4.4 Feature Analysis 
We analyzed the facial features to further study generalizability by 
predicting MW with different subsets of the entire feature set. The 
C4.5 classifier was chosen for this feature analysis because of its 
consistency on both the scientific text model and concatenated 
dataset. Each subset consisted of the features (e.g., median, 
standard deviation) from one AU, or from face position, size, 
orientation, or motion. Since tolerance analysis was not used here, 
we only considered the minimum, maximum, median, and standard 
deviation aggregated features to prevent redundancy (e.g., between 
median and mean). For example, we used the minimum, maximum, 
median, and standard deviation feature values for AU5 (upper lid 
raiser) to predict MW. This approach was applied to the 20 AU 
subsets, as well as face position, size, orientation, and motion 
subsets. We generated the same cross-training configurations of in 
Section 4.1 (i.e., train on scientific text, test on narrative film, etc.). 

To rank the subsets of features on generalizability, we examined 
MW F1 scores when testing on the alternative dataset only. For 
example, using the AU9 (nose wrinkle) subset, we investigated 
MW F1 value of scientific text model applied to the narrative film 
dataset and the narrative film model applied to the scientific text 
dataset. Table 4 shows these results only for features that achieved 
a MW F1 of greater than .250 (chance) on all dimensions (within 
dataset validation and cross-training). We selected features for 
further analysis if their MW F1 was greater than .300 for both cross-
training results. This value of .300 was used to filter out features 
that performed well on the within-dataset validation, but fell short 
on cross training. It also ensured that a feature performed better 
than chance on both cross-trained results (i.e., train on narrative 
film and test on scientific text, and vice versa), rather than only 
generalizing to one dataset. Using this criterion, only AU23 and 
AU26 showed notable improvement over chance. 

We used the C4.5 classifier to generate the same models in Table 2 
(train/test scientific text, train scientific text/test narrative film, etc.) 
using only the features from AU23 and AU26 (Table 7). None of 
these models (scientific text, narrative film, or concatenated) 
achieved a MW F1 as high as those in Table 2, which used a 
combination of tolerance analysis and RELIEF-F to select features. 
This suggested that, while AU23 and AU26 might individually 
predict MW, when used together, their prediction power might be 
limited, compared to other feature selection techniques.  

Table 6. MW F1 score for within-data set validation with 
cross-data set scores (in parentheses). 

 Training Set 
Facial Feature Scientific Text Narrative Film 
AU4 (brow lowerer) .378 (.278) .398 (.395) 
AU6 (cheek raiser) .369 (.259) .361 (.321) 
AU9 (nose wrinkler) .300 (.268) .392 (.303) 
AU14 (dimpler) .303 (.267) .383 (.376) 
AU23 (lip tightener) .334 (.333) .363 (.317) 
AU26 (jaw drop) .414 (.321) .365 (.357) 
Face Height (size) .322 (.256) .339 (.289) 
Face X (position) .404 (.316) .382 (.282) 

  
Table 7. Results for models when only using the C4.5 classifier 

on AU23 and AU26. 

Training Set Classifier MW F1 Precision Recall 

Scientific Text C4.5 .383 (.272) .255 (.206) .764 (.404) 

Narrative Film C4.5 .397 (.257) .333 (.235) .491 (.284) 

Both C4.5 .368 .271 .575 

5. ANALYSIS 
We developed automated detectors of MW using video-based 
features in the contexts of narrative film viewing and scientific 
reading. The generalizability of these models was dependent on 
corpora on which the model was trained and the rate at which the 
model predicts MW. In this section, we discuss our main findings 
and applications of this work. We also discuss limitations and 
future work. 

5.1 Main Findings 
We expanded on previous MW detection work through cross-
context modeling. We trained three models on three datasets 



(scientific text, narrative film, and a dataset concatenated from the 
two). We found each of these models (trained and tested on the 
same corpus) performed at a notable 23% to 25% improvement 
over chance. This demonstrated the feasibility of detecting MW on 
individual corpora. However, recall was greater than precision, 
indicating prediction of false positives. This should be considered 
when implementing MW detectors in educational environments 
where excessive prediction of student MW could be demotivating. 
We investigated generalizability of the single-dataset models (i.e. 
scientific text or narrative film) by applying the model to the dataset 
on which it was not trained. The model trained on the narrative film 
dataset maintained performance when applied to the scientific text 
dataset (Table 2), providing some evidence for generalizability, but 
this performance was boosted by high recall (and comparatively 
low precision). Precision and recall (and thus MW F1) were near 
chance-level when the model trained on the scientific text dataset 
was applied to the narrative film dataset, suggesting that the model 
might overfit to the scientific text training set.   
We attempted to address this problem by applying the C4.5 
classifier, as it comparatively generalized well when trained on the 
narrative film dataset. MW F1 score for the scientific text classifier 
applied to the narrative film data again negligibly increased. This 
suggested that the training data (only scientific text) used was not 
appropriate for model generalization. This idea is supported by the 
performance of the narrative film model on the scientific text data 
(although detection of false positives is a limitation) and the notable 
improvement over chance (22% to 23%) for the concatenated 
dataset. The performance of both models suggested that there were 
discernable similarities between MW instances across the two 
datasets, which can be detected using our techniques. 
In addition to training data, we also found that predicted MW rate 
effected model generalizability. We adjusted MW predictions 
according to a sliding threshold for the narrative film predictions 
obtained from the scientific text model. We found that relaxing the 
criteria for classifying an instance as MW (i.e. adjusting the 
likelihood prediction threshold from .5 to .3) yielded results 
comparable to the cross-trained narrative film model. However, this 
approach to increasing recall should be used with caution as it leads 
to increased likelihood of false positives. Perhaps in a real-time 
MW intervention scenario, a more balanced approach could be 
taken where the MW likelihood prediction is used to determine if a 
MW intervention is triggered (e.g., if the detector determines there 
is a 40% likelihood the student is MW, then there is a 40% chance 
a MW intervention is triggered). 
We detected MW using individual feature subsets to ascertain 
whether certain face-based features (i.e. AUs, head orientation, 
position, size, and motion) generalize. We found two feature 
subsets (AU23 – lip tightener and AU26 – jaw drop) that showed a 
MW F1 of at least .300 on both cross-trained models. It is notable 
that when looking at the generalizability of these features, they did 
not individually achieve MW F1 scores as high as the best 
performing models in Table 2. This demonstrated the need for 
multiple features to work together to detect MW, rather than relying 
on a single feature. Furthermore, this showed that our method of 
feature selection (tolerance analysis and selecting a proportion of 
features using RELIEFF) was important to model performance. 

5.2 Applications 
The present findings are applicable to educational user interfaces 
that involve reading or film comprehension. Monitoring and 
responding to MW could greatly improve student performance on 
these tasks. Films and instructional texts play a major role in 

learning (both in the classroom and online). For example, films can 
give historical background on a time period being discussed in 
literature classes and instructional texts can supplement lecture 
content through textbooks or technical articles. Due to the 
relationship between MW and low task performance, user 
interfaces that detect and respond to MW in contexts where 
attention is key (i.e. education) would help students remain focused 
on their learning. 
These findings are particularly promising for implementation in 
massively open online courses (MOOCs). Our method for detecting 
MW exclusively uses COTS webcams. These webcams are 
ubiquitous in today’s computers and mobile devices; thus our work 
would integrate into a variety of learning environments without 
extra cost. Such a video-based detector of MW could feasibly 
respond to student MW through suggesting a student revisit text or 
video content, asking a reengaging question, or advising the student 
to take a break. 

5.3 Limitations and Future Work 
While we demonstrated techniques for modeling generalizability 
across task contexts, our work has a few limitations. First, precision 
is moderate, even on our best models. High predicted MW rates 
lead to high recall, but also more false positives. In this work, we 
chose to accept this tradeoff, with the goal of generalizability in 
mind. However, raising precision, while maintaining recall is key 
to task-generalizable MW detectors being successful in educational 
environments. Since MW is the minority class (25% of all 
instances), investigating skew-insensitive classifiers, such as 
Hellinger Distance Decision Trees [10], could improve precision.  
Additionally, this work focuses exclusively on generalizability 
from the perspective of task context (viewing a narrative film vs. 
reading a scientific text). Claims of generalizability could be 
strengthened through MW detection across environments. Both the 
narrative film and scientific reading datasets were collected in a 
controlled lab setting. MW detection in the field, such as computer-
enabled classrooms or the personal workstations of MOOC users, 
should be considered prior to implementation in such 
environments. Furthermore, student generalizability should be 
further examined. In this work, we detect MW in a student-
independent way. However, participants were all of similar age and 
enrolled in college. Future work could examine the generalizability 
of our method for detecting MW in non-college-aged students, such 
as elementary students in a computer-enabled classroom or non-
traditional students enrolled in distance learning courses. 

5.4 Concluding Remarks 
In this work, we showed evidence that generalizable detectors of 
MW can be created using video-based features. The corpora used 
to train models of MW and predicted MW rates both play a role in 
the model’s ability to generalize and should be considered as work 
on cross-context MW generalization advances. This work advances 
the field of attention-aware interfaces [12] by demonstrating the 
feasibility of modeling MW across the educational contexts of 
reading a scientific text and viewing a narrative film. Our approach 
to detecting MW is the first step towards building interfaces that 
detect MW across multiple educational activities. 
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