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ABSTRACT 

Confusion has been shown to be prevalent during complex 

learning and has mixed effects on learning. Whether confusion 

facilitates or hampers learning may depend on whether it is 

resolved or not. Confusion resolution, behind which is the 

resolution of cognitive disequilibrium, requires learners to possess 

some skills, but it is unclear what these skills are. One possibility 

may be metacognitive strategies (MS), strategies for regulating 

cognition. This study examined the relationship between 

confusion and actions related to MS in Betty’s Brain, a computer-

based learning environment. The results revealed that MS 

behavior differed during and outside confusion. However, 

confusion resolution was not related to MS behavior, and MS did 

not moderate the effect of confusion on learning. 
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1 Introduction 

Previous research has suggested that confusion may promote 

robust learning (e.g., [1-3]). Whether confusion facilitates or 

hampers learning depends on whether it is resolved or not [3]. If a 

computer-based learning environment (CBLE) can intentionally 

confuse learners and provide scaffolding to promote confusion 

resolution, it may successfully promote deep learning [4]. The 

scaffolding should have the potential to induce learners’ use of 

strategies to resolve confusion. However, it is unclear what 

strategies are conducive to confusion resolution. 

Metacognitive strategies (MS) – strategies for monitoring and 

controlling cognitive processes [5] – are an essential component 

of self-regulated learning (e.g., [6]) and a powerful predictor of 

academic performance (e.g., [7]). Recent research has raised the 

possibility that MS might be necessary for confusion resolution 

[8, 9], and researchers also suggested promoting self-regulation 

strategies to help learners take advantage of confusion in CBLEs 

[10]. However, to date, there is little direct evidence to show that 

self-regulation or metacognitive strategies can improve the 

chances of confusion resolution.  

The research presented in this paper aims to address the gap in 

the relationship between confusion and MS by examining whether 

MS are associated with confusion and confusion resolution in the 

context of Betty’s Brain, an open-ended CBLE. The results 

suggest that the use of MS may not be sufficient for confusion 
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resolution. This finding has important implications for developing 

CBLEs that take advantage of confusion. In order to help learners 

to resolve confusion, CBLEs may need to consider both learners’ 

cognitive and motivational characteristics in addition to 

facilitating learners’ MS behavior.  

1.1 Confusion during Learning 

Confusion is an emotion related to knowledge [11, 12] and has 

been widely observed across various learning environments (e.g., 

[13-15]. According to Mandler’s interruption (discrepancy) theory 

[16], confusion follows cognitive disequilibrium, which arises 

when there is a conflict between new information and an 

individual’s prior knowledge, or the individual’s current 

knowledge structure cannot assimilate the new information. 

D'Mello and Graesser [17] hypothesized that confusion is the 

affective signature of cognitive disequilibrium based on a set of 

systematic studies [2, 3, 18]. These studies found that confusion 

occurred more often in conditions that could cause cognitive 

disequilibrium.  

Pekrun and Stephens [12] indicated that cognitive 

disequilibrium does not initially or inevitably trigger confusion. 

Learners initially experience surprise and curiosity when new 

information is incongruent with their knowledge. If this 

incongruity cannot be resolved, then confusion arises. If the 

incongruity seems to be impossible to dissolve, frustration 

replaces confusion.  

Silvia [11] supposed that events stemming from appraisals of 

high novelty and low comprehensibility lead to confusion, while 

events with appraisals of high novelty but high comprehensibility 

induce interest. Following Silvia’s claim, Muis, Chevrier, and 

Singh [19] argued that confusion more likely follows surprise 

when the task is quite complicated. This notion was supported by 

[20]. They found that the relative frequency of confusion was 

higher than curiosity when learners felt that information was 

novel and complex. 

To summarize, discrepant information or novel and complex 

information causes cognitive disequilibrium, which leads to 

confusion if it cannot be resolved right away. 

Effects of confusion on learning. The effects of confusion on 

learning are mixed. On the negative side, confusion has been 

associated with less frequent use of deep learning strategies and 

planning strategies [8, 9]. Uninterrupted confusion might become 

frustration [21], and this may cause students to feel lower levels of 

self-efficacy [22]. This, in turn, can lead to lower achievement [8] 

or even more serious disengagement, including dropping out of 

courses [13, 23].  

On the positive side, confusion can promote students’ MS 

behavior [9, 24] and benefit learning [2, 3]. D'Mello and Graesser 

[17] claimed that confusion “plays a prominent role in learning 

activities that are pitched at deeper levels of comprehension” (pp. 

290). The extent to which learners can benefit from confusion 

may depend on both their skills and their motivation. For instance, 

one study found that students with higher cognitive ability and 

drive had higher learning gains resulting from confusion than their 

peers [25]. 

Confusion Resolution. The mixed effects of confusion on 

learning may be related to its resolution. Poor learning outcomes 

may be partially due to persistent unresolved confusion [17, 26]. 

However, confusion need not to be entirely resolved in order to be 

beneficial for learning; both completely and partially resolved 

confusion have been observed to predict learning gains [3]. 

These results could help explain the conflicting impact of 

confusion on learning. When confusion is entirely or partially 

resolved, learning outcomes improve, but when confusion is 

entirely unresolved, learners are unable to modify their existing 

knowledge structure and assimilate the new information. Instead, 

they learn nothing, become frustrated [21] and doubt their abilities 

[22] Therefore, it is critical to understand how confusion can be 

resolved so that intervention and scaffolding can be designed and 

given to students who are likely to experience sustained 

confusion. 

While this paper discusses confusion resolution, it is important 

to clarify that confusion resolution does not mean learners directly 

resolving their confusion. Rather, what they tackle is the cognitive 

disequilibrium, the cause of confusion [2, 3]. In other words, 

confusion resolution excludes situations where learners simply 

ignore their confusion and engage in the next task. 

D'Mello et al. [2] indicate that confusion can be resolved if (1) 

learners have the knowledge and skills to resolve it, or (2) the 

learning environment provides scaffolding to help them resolve it. 

The assumption of the first prerequisite was supported by another 

study [3], where those with higher ACT (a standardized college 

entrance test) scores were more likely to partially resolve their 

confusion in learning the functioning of everyday devices, such as 

the electric bell and the toaster. These prerequisites suggested that 

confusion resolution requires special skills, and a try at resolving 

confusion without the necessary skills is insufficient to lead to its 

resolution [27].   

1.2 Metacognitive Strategies 

Metacognitive strategies (MS), or metacognitive skills, are 

procedural knowledge of how, when, and why to regulate 

cognition [5, 28]. Generally, its components include goal setting, 

planning, self-monitoring, self-control, and self-evaluation [29]. 

Impact of MS on Learning. Many studies have found the 

benefits of MS for learning. In an early literature review, MS had 

been revealed to be one of the most powerful predictors of 

academic performance [30]. Some subsequent studies did not find 

a strong association between MS and learning (e.g., [24, 31]), but 

a recent meta-analysis, which focused on studies in elementary 

and secondary school, indicated that the correlation between  

learning and MS differed significantly across specific components 

of MS, disciplines, grades and how learning and MS are measured 

[29]. For example, the average Pearson product–moment 

correlations of the two variables were 0.21, 0.23, 0.26, and 0.34 in 

math, English/language arts, science, and social studies, 

respectively. The results were replicated in another meta-analysis 
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[7], which also found that the relationship between MS and 

learning was moderated by disciplines, grades, and the 

measurement approach of MS.    

1.3 Confusion and Metacognitive Strategy 

Nelson and Narens’ [32] two-level metacognitive system provides 

a helpful framework for understanding the relationship between 

cognitive disequilibrium and MS. It proposes the object-level, 

where cognition about the external world is, and the meta-level, 

where cognition about cognition is. The meta-level receives 

information from the object-level to monitor the cognitive 

activities and send instructions to the object-level to control 

cognitive activities. The controlling function of the meta-level 

manifests as the use of MS [28]. Under the two-level 

metacognitive system, learners need to activate MS to resolve 

confusion. When learners encounter discrepant information, this 

information flows from object-level to the meta-level, and the 

meta-level detects the inconsonant state in the object-level. To 

restore cognitive equilibrium, the meta-level must modify 

cognitive activities in the object-level through the controlling 

function. In other words, learners should behave according to MS 

so that they can integrate the discrepant information and their 

existing knowledge model. 

The metacognitive and affective model of self-regulated 

learning (MASRL; [6]) also informs the association between 

confusion and the use of MS. The MASRL model emphasizes the 

interactions of affect, motivation, and metacognition in self-

regulated learning (SRL). Under this model, cognitive 

disequilibrium during task processing leads to affective reactions, 

such as surprise and confusion. At the same time, cognitive 

disequilibrium also contributes to metacognitive experiences 

(ME), such as the feeling of difficulty and the estimate of effort 

and time. The ME and affective states, in turn, may trigger 

decisions about conducting MS behavior. In other words, 

cognitive disequilibrium may indirectly influence the use of MS. 

Therefore, it is reasonable to expect that learners change MS 

behavior when they are confused.    

Taking these theories together, the changes in MS behavior 

may co-occur with confusion because both follow cognitive 

disequilibrium. In order to make cognition return to the state of 

equilibrium, learners need to control cognitive activities via 

conducting MS. However, this notion needs further research to 

examine. 

1.4 Current Study 

The current study combines the observations of emotion and the 

action logs of students’ activities in a CBLE, Betty’s Brain, to 

answer three research questions examining the relationship 

between confusion and MS. As described above, confusion may 

be accompanied with changes in MS behavior. Besides, confusion 

is experienced as an unpleasant emotion [33] and may motivate 

learners to regulate their cognition to resolve it. This motivates the 

first research question (RQ1): Is the frequency of MS behaviors 

different when students are confused compared with when they 

are not confused? 

 

Figure 1. Screenshot of viewing quiz results and checking the chain of links Betty used to answer a quiz question. 
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The use of MS may be necessary for learners to restore 

cognition to an equilibrium state and resolve confusion. To study 

this hypothesis, the current study investigated the second question 

(RQ2): Is confusion resolution related to increases in MS 

behaviors? 

Confusion can benefit learning when it is resolved or partially 

resolved [3, 17]. If MS contribute to confusion resolution, the 

effect of confusion on learning may depend on students’ MS. For 

students experience the same level of confusion, those with high 

MS may learn better than those with low MS. Thus, the third 

research question (RQ3) asked: Can MS moderate the relationship 

between confusion and learning?  

2 Betty’s Brain 

Betty’s Brain is an open-ended CBLE [34]. Students learn about 

scientific phenomena, such as climate change, thermoregulation 

or river ecosystems, by teaching a virtual pedagogical agent 

named Betty. They achieve this by building a causal map of the 

scientific phenomenon, in which causal (cause-and-effect) 

relationships are represented by a set of concepts connected by 

directed causal links (see Figure 1). To build this map, students 

have access to hypermedia resource pages (Science Book in 

Figure 1) on relevant scientific concepts. Students can evaluate 

their causal modeling progress by asking Betty to take graded 

quizzes or by querying her on cause-and-effect questions related 

to what she has been taught so far. Betty’s quiz grades or her 

explanations to her answers can help the student keep track of her, 

and in turn their own progress. By looking at Betty’s correct and 

incorrect answers, students can identify problems in their causal 

map. They can then improve their understanding of the topic by 

correcting those problems on their causal map. 

While using Betty’s Brain, students’ activities can be grouped 

into six primary categories, including read (read a page in the 

resources), note (create, view or edit a note), edit (edit the causal 

map, including adding or deleting a concept, adding, deleting or 

modifying a causal link, marking a causal link as correct or 

incorrect), query (ask Betty a cause-and-effect question based on 

the concepts and links on her map so far), quiz (assess the state of 

the map by having Betty take a quiz), and explain (ask Betty to 

explain her answer to a cause-and-effect query or check the chain 

of links she used to answer a quiz question, in order to probe 

Betty’s reasoning).  

3 Methods 

3.1 Participants and Procedures 

The data in this study were collected from 93 sixth-grade students 

in an urban public school in Tennessee, during the 2016-2017 

school year. The study lasted seven school days. On day 1, 

students spent 30-45 minutes on completing a paper-based pre-test 

that assessed their knowledge of climate change and causal 

relationships. On day 2, they received a 30-minute training about 

how to use Betty’s Brain. In the next four days, they spent 45 to 

50 minutes per day teaching Betty about climate change by 

constructing the causal map. On the final day, students completed 

a post-test identical to the pre-test.  

3.2 Observations of Emotion 

While students were working on Betty’s Brain, two trained 

observers recorded their affective states via the Baker Rodrigo 

Ocumpaugh Monitoring Protocol (BROMP; [35]). The protocol 

was enforced by the Android App HART [36], which time stamps 

each observation. With the timestamps, the observations could be 

aligned with the log file of student actions in Betty’s Brain. 

The observers used a momentary time sampling method [37], 

where they coded students individually in a pre-determined order.  

This sampling method aims at obtaining a representative sample 

of emotions and behavior. The observers recorded both students’ 

emotions (i.e., boredom, confusion, delight, engaged 

concentration, and frustration) and behavior (i.e., on-task, on-task 

conversation, off-task), though the current study only considers 

the emotion observations. They recorded the first thing they saw 

and had up to 20 seconds to decide. The inter-rater reliability was 

good (Cohen’s Kappa > 0.60). The observations of confusion 

were 326, and there were 233, 157, 4182, and 251 observations of 

boredom, delight, engaged concentration, and frustration, 

respectively. On average, each student had 53 observations. 

3.3 Metacognitive Strategy 

We analyzed the action logs of students working on Betty’s Brain 

to measure MS behavior based on coherence analysis (CA) [38]. 

CA interprets learners' behavior according to the relationship 

between actions (e.g., read and edit). Two ordered actions, x and 

y, are interpreted as being coherent if the second action, y, utilizes 

information generated by the first action, x, because x supports y. 

For instance, in Figure 1, the quiz results could tell students the 

question about the causal relation of deforestation and carbon 

dioxide was answered incorrectly. After viewing these quiz 

results, if students read the resource pages that contained  

information about the correct relationship between the two 

concepts, the action of viewing quiz results supported the action 

of reading resource pages, and they were coherent. Although x 

and y need not be two consecutive actions, the time interval 

between them should be restricted to avoid coincidental 

connections. In line with prior work in Betty’s Brain (e.g., [38]), 

we set the restriction for the current study to 5 minutes.  

CA assumes that action coherence may act as evidences for 

metacognitive skills and task understanding [38]. Indeed, if a 

student shows two ordered actions that are coherent, it suggests 

they monitored previous cognitive processes (the first action, e.g., 

viewing quiz results), received the information generated by 

previous cognitive processes (the results of the first action, e.g., 

the link chain between deforestation and carbon dioxide was 

wrong), and regulated the later cognitive processes (the second 

action, e.g., reading resource pages about deforestation and 

carbon dioxide) based on the received information. Therefore, 
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performing coherent actions may suggest that a student engages in 

MS behavior. 

Five behavioral metrics were identified as measures of MS. 

Each metric was calculated as the frequency of a particular kind 

of action per minute so that these metrics were comparable across 

students, given that the total time of each student’s working on 

Betty’s Brain varied slightly. Except for the first metric, the other 

four were based on CA. 

1. Quizzing frequency: the number of times the student had 
Betty take a quiz, per minute. This variable reflects how 

often students evaluated Betty’s understanding, i.e., their 
own understanding. This metric is not based on CA, but 
taking tests is often thought as the self-monitoring strategy 
for evaluating current progress (e.g., [39]). For simplicity, we 
include this metric in our list of CA metrics. 

2. Frequency of coherent viewing: the number of viewing quiz 
results actions, per minute, that were coherent with later 
actions. This variable measures how often student collected 

assessment information that was used later. Coherent 
viewing might indicate self-monitoring behavior because 
information it generated supported subsequent actions. 

3. Frequency of coherent editing: the number of coherent map 
edits per minute. It measures how often students edited the 
concept map based on acquired information. Coherent 
editing might indicate self-control behavior because the 
editing action depended on the results of monitoring 
processes, i.e., the information generated by reading resource 

pages or viewing quiz results.  
4. Frequency of coherent reading: the number of coherent 

reading page actions per minute. This variable measures how 
often students intentionally sought relevant information to 
improve their understanding based on the quiz results. 
Coherent reading might represent self-control behavior 
because the page being read was contingent on the quiz 
results. 

5. Frequency of coherent marking: the number of coherent 
actions of marking (i.e. labeling) a link on the concept map, 
per minute. In addition to marking these links as “correct” or 
“maybe wrong”, students can also delete these marks. This 
variable reflects how often, based on the quiz results, 
students understood what links on their map were correct or 
possibly incorrect, and annotated them accordingly. Coherent 
marking might represent self-control behavior because the 

marking action depended on the quiz results. It might also 
indicate the use of self-monitoring strategy because the mark 
could remind students of which parts of their understanding 
were incorrect, correct, or uncertain. 

 In line with prior research on Betty’s Brain (e.g., [38]), we 

excluded some actions that were too short, including coherent 

viewing (quiz results) that were less than 2 seconds and  coherent 

reading (resource pages) actions that were less than 10 seconds. 

These actions were discarded because they are likely to indicate 

only shallow engagement with that part of the system. For 

example, short reading actions may indicate that students are just 

browsing through the resource pages quickly without reading the 

text.   

3.4 Knowledge tests 

The pre-test and post-test were identical in both questions and 

forms. The test assessed students' knowledge of climate change 

and causal relationships. It contained multiple-choice questions 

and short-answer questions. The answer to each short-answer 

question consisted of a fixed number of successive steps. Students 

could get maximum scores of 7 points and 9 points for the 

multiple-choice questions and the short-answer questions, 

respectively, and a total maximum score of 16 points. 

3.5 Analyses 

RQ1. CA metrics derived from the action logs generated within 

the duration of an emotion were regarded as measures of MS 

behavior during this emotion. Although the field observations 

were conducted using a 20-second time window, we analyzed the 

data with a window including 30 seconds before and 30 seconds 

after the observation of the emotion, based on prior research that 

found the average duration of emotions during learning is 

approximately 30 seconds [21, 40] and because it is impossible to 

know whether an observation was collected closer to the 

beginning or the end of a learner’s emotion. For this study, CA 

metrics were calculated for 326 observations of confusion and 

4,823 observations of other emotions.  

The Shapiro-Wilk test indicated that the distribution of the CA 

metrics was skewed (p < 0.001 for all metrics). Therefore, the 

Wilcoxon test was used to compare CA metrics during confusion 

and outside confusion (during other emotions). The Benjamini-

Hochberg correction (FDR) was applied to adjust the p-value and 

control for false discovery rate. 

RQ2. If confusion is resolved, or the cognitive disequilibrium 

is resolved, the learner’s affective state is expected to transit to 

engaged concentration [21, 40] or delight. Otherwise, confusion 

continues, and persistent confusion can lead to frustration or 

boredom [21, 40]. Liu and colleagues [41] also found that 

prolonged confusion was negatively related to learning, while 

short-term confusion was positively related to learning. Therefore, 

if an observation of confusion is followed by an observation of 

engaged concentration or delight (“confusion → engaged 

concentration/delight”), this confusion may be resolved. In 

contrast, if an observation of confusion is followed by an 

observation of confusion, frustration, or boredom (“confusion → 

confusion/frustration/boredom”), this confusion may be 

unresolved.  

The current study refers to a pair of successive emotion 

observations for the same student as an affect sequence, which we 

categorize based on valance. Specifically, positive affect 

sequences referred to “confusion → engaged 

concentration/delight”, while negative affect sequences referred to 

“confusion → confusion/frustration/boredom”. The affect 

sequences whose intervals were longer than 3 minutes were 

discarded because students might experience another affective 

state between two successive observations of affective states if the 

interval between the two observations was too long (e.g., [21, 

40]). Three minutes was used as the cut-off value because it 

corresponded to the average gap between one observation and the 
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next one. 1  In order to answer RQ2, the Wilcoxon test was 

conducted to compare CA metrics during confusion in positive 

affect sequences and negative affect sequences. The Benjamini-

Hochberg correction was applied. 

RQ3. The five CA metrics were calculated for each student 

across their whole action logs. Principal component analysis 

(PCA) with varimax rotation was applied to extract a factor from 

the five CA metrics. This factor was used as an overall indicator 

of MS. Multicollinearity was tested to examine whether the five 

metrics were suitable for PCA. Table 1 displays the correlation 

matrix. Seven of the ten Pearson product–moment correlations 

were greater than 0.4. Bartlett’s test of sphericity indicated that 

sufficient correlations existed among the CA metrics (χ2 / df = 

18.80, p < 0.001).  

 

Table 1. Correlations among coherence analysis metrics. 

 1 2 3 4 

1. Quizzing -    

2. Coherent viewing 0.53 -   

3. Coherent editing  0.39 0.57 -  

4. Coherent reading 0.66 0.69 0.6 - 

5. Coherent marking 0.20 0.55 0.25 0.41 

 

The Kaiser-Meyer-Olkin (KMO) overall statistic was 0.76, 

indicating that a high proportion of variance in the CA metrics 

might be caused by underlying factors, and all single KMO values 

were greater than 0.5 (Table 2). Cronbach’s alpha for these 

metrics was 0.83, indicating that the internal consistency of the 

CA metrics was good. Overall, the results suggested that these 

metrics were suitable for PCA. Table 2 displays the results of 

PCA. 

 

Table 2. The results of the principal component analysis. 

M (SD) MSA Loading R2 

Quizzing 0.75 0.73 54% 

Coherent viewing 0.78 0.88 77% 

Coherent editing  0.80 0.74 55% 

Coherent reading 0.76 0.89 79% 

Coherent marking 0.69 0.59 35% 

Total explained variance  60% 

 

1 The gap varies because the time that observers needed to decide an observation was 

not constant. For example, if one student showed apparent confusion (e.g., 

scrunching up the nose and forehead and pursing lips), observers might only need 5 

seconds to conclude that this student's emotion was confusion; in another observation 

where this student might just purse lips slightly, observers might need 15 seconds to 

make a decision.  

Students’ confusion scores were calculated as the ratio of the 

number of confusion observations to the total number of affect 

observations. Students were divided into high and low confusion 

groups, based on whether their confusion scores were higher or 

lower than the median, as well as high and low MS groups, based 

on whether their MS scores were higher or lower than the median. 

Data from ten students were discarded because of missing either 

their pre-test or post-test scores. Finally, there were 23 in the 

high-MS and high-confusion group, 20 in the high-MS and low-

confusion group, 18 in the low-MS and high-confusion group, and 

22 in the low-MS and low-confusion group.  

The Shapiro-Wilk test indicated that the distribution of test 

scores was skewed (p = 0.007), and thus, a three-way non-

parametric mixed ANOVA was conducted to answer research 

question 3. The test time was the within-subject factor, and 

confusion and MS were the between-subject factors. The analysis 

was implemented within the nparLD package in R [42]. 

4 Results 

4.1 Is the Frequency of MS Behavior Different 

during and outside the Duration of Confusion? 

Table 3 shows the results of the Wilcoxon test. The frequencies of 

coherent reading and viewing were higher during confusion than 

when students were in other affective states. This result indicates 

that the information that students collected while they were 

confused was more likely to be used to support later actions. 

Similarly, they were more likely to read pages based on quiz 

results. There were no statistically significant differences for quiz-

taking actions, coherent map editing actions, and coherent link 

marking actions. These results suggest that learners changed their 

use of MS when confused. 

 

Table 3. Coherence analysis metrics during and outside 

confusion. 

M (SD) During Outside Cohen’s d 

Quizzing 0.13 (0.37) 0.16 (0.41) 0.08 

Coherent viewing 0.52 (1.11) 0.26 (0.71) 0.19*** 

Coherent editing 0.26 (0.56) 0.32 (0.67) 0.10 

Coherent reading 0.38 (0.66) 0.26 (0.54) 0.20** 

Coherent marking 0.05 (0.28) 0.04 (0.36) 0.01 

Note. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

4.2 Is Confusion Resolution Related to Increases 

in MS Behaviors? 

Table 4 displays the results of the Wilcoxon test. There was no 

difference in the frequency of CA metrics during confusion in 

negative and positive affect sequences (adjusted p > 0.2 for all 

metrics). 
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Table 4. Coherence analysis metrics in negative and positive 

affect sequences. 

M (SD) 
Negative  

(N = 26) 

Positive  

(N = 63) 

Quizzing 0.23 (0.43) 0.08 (0.27) 

Coherent editing  0.35 (0.56) 0.25 (0.59) 

Coherent reading 0.19 (0.40) 0.32 (0.69) 

Coherent marking 0.04 (0.19) 0.05 (0.37) 

Coherent viewing 0.65 (1.32) 0.59 (1.50) 

4.3 Can MS Moderate the Relationship between 

Confusion and Learning? 

Table 5 displays the pre-test and post-test scores of different 

groups. For participants with low MS, the difference between pre-

test and post-test scores was greater in the low-confusion group 

(Cohen’s d = 1.03) than in the high-confusion group (Cohen’s d = 

0.88). In contrast, among the high-MS group, this difference was 

smaller in the low-confusion group (Cohen’s d = 0.99) than in the 

high-confusion group (Cohen’s d = 1.22). However, the non-

parametric mixed ANOVA only revealed a marginally significant 

interaction among time, confusion, and MS (F = 3.11, p = 0.078).  

The main effects of time and MS were significant (F = 98.18 and 

F = 16.47, respectively; both p < 0.001). Students performed 

better in the post-test than in the pre-test, and students with high 

MS had greater test scores than the low-MS group. The main 

effect of confusion was not significant (F = 1.89, p = 0.169). No 

significant interaction was found between time and MS (F = 1.51, 

p < 0.22), time and confusion (F = 2.53, p = 0.11), as well as MS 

and confusion (F = 0.00, p = 0.950). 

 

Table 5. The pre-test and post-test scores. 

MS Confusion 
M (SD) 

 d 
Pre-test Post-test 

Low 
Low 5.84 (2.56) 8.23 (3.19) 1.03 

High 4.97 (3.00) 7.31 (2.41) 0.88 

High 
Low 8.18 (2.67) 10.28 (2.5) 0.99 

High 6.46 (3.12) 10.41 (3.42) 1.22 

5 Discussion 

Confusion can benefit learning when it is partially or entirely 

resolved (e.g., [3]). To resolve confusion, learners need necessary 

knowledge and skills or need to receive scaffolding or support 

from the environment [2]. What skills may contribute to confusion 

resolution is unclear. This study examined the relationship 

between MS and confusion in the context of Betty’s Brain.  

5.1 MS and Confusion 

Results for RQ 1 showed that the use of MS differed depending 

on whether the student was experiencing confusion. The results 

were in line with the MASRL model [6], which hypothesizes that 

cognitive disequilibrium indirectly impacts the use of MS via 

triggering affective reactions and metacognitive experience. 

Specifically, this study found that two MS strategies, coherent 

reading and coherent viewing were more common among students 

when they were confused.  

Both behaviors may serve to help learners to find the 

discrepant information, which is the cause of cognitive 

disequilibrium [16]. For example, in this study, the correct link 

between vehicle use and carbon dioxide is “vehicle use increases 

fossil fuel use, which in turn increases carbon dioxide”. Students 

might think vehicle use could directly increase carbon dioxide and 

miss the mediator, fossil fuel use, and thus, they would add a link 

of “vehicle use increases carbon dioxide”. When the quiz result 

indicated the link was wrong, they might feel confused. This 

unpleasant emotion might drive them to investigate why the link 

was wrong, and thus they would look for and read the resource 

pages demonstrating the relationship between the vehicle use and 

carbon dioxide. 

5.2 MS and Confusion Resolution  

RQ 2 investigated the relationship between confusion resolution 

and MS at a fine grain-size, i.e., whether there is more MS 

behavior during resolved confusion than during unresolved 

confusion?  Results showed that the frequency of MS behavior 

was not significantly different during the confusion followed by 

engaged concentration or delight (i.e., resolved confusion) and 

during the confusion followed by confusion, frustration, or 

boredom (i.e., unresolved confusion). This suggests that MS 

behavior may not be sufficient for resolving the cognitive 

disequilibrium that underlies confusion. However, it may also 

possible that, in some cases, students were cycling to a positive 

affect like engaged concentration or delight because they were 

shifting their focus to other scientific concepts and causal 

relations between these concepts that were less confusing, without 

resolving the cognitive disequilibrium. Results for RQ 1 suggests 

that MS may help learners find the discrepant information, for 

example, the resource page containing information about the 

wrong link. However, in order to successfully integrate the 

information into their mental model, students needed to interpret it 

correctly, and this task might rely on their reading skills.  

5.3 MS, Confusion Resolution, and Learning 

RQ 3 examined confusion resolution and MS at a coarser 

granularity. The significant main effect of test time indicated that 

students’ understanding of the thermoregulation increased after 

using Betty’s Brain. This learning was not associated with MS 

and confusion because the interactions between test time and MS, 

as well as test time and confusion, were not significant. 

However, a marginally significant interaction among test time, 

confusion, and MS was found. For the low-MS group, students 

experiencing high confusion had less learning gains than those 

experiencing low confusion.  On the contrary, for high-MS group, 

students experiencing high confusion had greater learning gains 

than those experiencing low confusion. The different effects of 

confusion on learning between high and low MS groups imply 

that confusion resolution may be associated with MS. Students 
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with high MS might be likely to resolve confusion, while students 

with low MS might be unable to resolve confusion. Resolved 

confusion can benefit learning [2, 3], but unresolved confusion 

negatively influences learning [17, 26]. Thus, within the low-MS 

group, confusion might hamper learning, while within the high-

MS group, confusion might facilitate learning.   

Nevertheless, the interaction among time, confusion and MS 

was small and only marginally statistically significant. Several 

reasons might explain this result. Firstly, MS may not be 

sufficient for resolving the cognitive disequilibrium underlying 

confusion. As mentioned in 5.2, some cognitive skills may be 

necessary.  

Moreover, in terms of self-regulated learning (SRL), 

motivation may also be necessary for confusion resolution 

because it plays a critical role in the regulation of emotion and 

behavior [6, 43]). This may also partially explain why prior 

studies did not find a treatment effect for MS scaffolding on 

learning in Betty’s Brain (e.g., [44]). Future work should examine 

comprehensive motivational, cognitive, and metacognitive data to 

deeply investigate how these factors influence the resolution 

process of confusion. 

Moreover, confusion did not frequently occur in the current 

study. Even within the high confusion group, the average 

proportion of confusion in the affect observations was only 6.0%. 

The interaction between confusion and time was also not 

significant, indicating that confusion generally might not benefit 

learning in this study. Therefore, even though MS might 

contribute to confusion resolution, their interaction did not exist in 

this study. It is worth noting that in most prior studies that found 

the positive effect of confusion, confusion was induced 

intentionally with discrepant information (e.g., [2, 3, 18]). In 

contrast, confusion appeared naturally in this study. Therefore, the 

discrepancy of new information encountered by students might 

not be as strong as in that earlier work. Most confused states 

might not reach the zone of optimal confusion, where the positive 

effect of confusion occurs [2, 10]. Thus, in further research about 

confusion resolution, it may be more effective to trigger confusion 

purposely rather than letting it occur naturally. Nevertheless, if a 

finding can only be obtained through intentionally triggered 

confusion, it raises questions about the generality and scope of the 

phenomenon.   

Another reason for our relative weak results may be that the 

proficiency of sixth graders’ MS in this study was not strong 

enough for resolving confusion. The metacognitive skills of 

children at this age are still developing [45]. Muis et al. [8] also 

suggested that pupils might not the possess necessary skills for 

confusion resolution. 

5.4 Implications 

The association between confusion and the change of MS 

behavior implies that cognitive disequilibrium may not only 

contribute to metacognitive experience [28] and confusion [16] 

but also indirectly influence the use of MS. This provided 

evidence for some assumptions of MASRL model [6] because, 

according to this model, the cognitive interruption can trigger 

metacognitive experience and affective reaction, which in turn 

motivate bottom-up self-regulation of behavior and emotions. The 

bottom-up self-regulation contrasts with top-down self-regulation, 

which is driven by the goal and plan that learners set based on 

person characteristics such as competency, self-concept, and 

beliefs concerning learning.   

Researchers have suggested taking advantage of confusion in 

CBLEs by providing self-regulation strategy support [10]. 

However, this study indicates that MS alone may be not sufficient 

for confusion resolution. Therefore, if researchers want to 

promote deep learning via strategy scaffolding for confusion 

resolution, both cognitive and motivational factors should be 

considered. If learners lack necessary cognitive skills and intrinsic 

or extrinsic motivation, strategic scaffolding may fall.   

6 Conclusion 

This study examined the relationship between confusion and 

metacognitive strategies. The results showed that changes in MS 

behavior co-occur with confusion, but that confusion resolution 

was not related to MS behavior. Furthermore, MS did not 

moderate the effect of confusion on learning. These results 

demonstrate that MS may be a prerequisite but not sufficient for 

confusion resolution. 
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