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Abstract 

Confusion may benefit learning when it is resolved or partially resolved. Metacognitive strategies (MS) may help 

learners to resolve confusion when it occurs during learning and problem solving. This study examined the 

relationship between confusion and MS that students invoked in Betty’s Brain, a computer-based learning-by-

modeling environment where elementary and middle school students learn science by building causal models. 

Participants were sixth graders. Emotion data were collected from real-time observations by trained researchers. 

MS and task performance information were determined by analyzing the action logs. Pre- and post-tests were used 

to assess learning gain. The results revealed that the use of MS was a function of the students’ state of confusion. 

However, confusion resolution was not related to MS behavior, and MS did not moderate the effect of confusion on 

students’ task performance in Betty’s Brain and learning gain. 

 

Notes for Practice 

• Does confusion facilitate or hamper learning? That may depend on whether it is resolved or not, but it 
is not clear what factors influence confusion resolution.  

• This study examined the interplay between metacognitive strategies (MS) and confusion. It found that 
confusion was accompanied by self-regulated behavior, suggesting that creating situations that may 
evoke confusion for students may promote learning regulation. However, we could not establish that 
such situations would necessarily result in enhanced learning.  

• In order to use confusion to promote learning, instructors need to provide students with support to help 
them resolve confusion. This study found that the use of MS did not improve confusion resolution. 
Thus, providing students with only MS support may be insufficient to take the advantage of confusion. 
Students’ cognitive skills and motivation also need to be considered. 

• Confusion rarely occured naturally in this study. Even within the high-confusion group, on average, 
only 6.0% of emotion observations was confusion. Thus, instructors may need to create activities that 
spark students’ confusion if they want to use confusion to enhance learning, while also ensuring that 
there is sufficient support for confusion resolution.   
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1. Introduction 

Previous research has suggested that confusion may promote robust learning (Craig, Graesser, Sullins, & Gholson, 2004; 

D'Mello, Lehman, Pekrun, & Graesser, 2014; D'Mello & Graesser, 2014a). Whether confusion facilitates or hampers learning 

depends on whether it is resolved or not (D'Mello & Graesser, 2014b). If a computer-based learning environment (CBLE) can 

intentionally cause confusion among learners, and then provide scaffolding to promote confusion resolution, it may 

successfully promote deeper understanding of the material being learnt (Lehman & Graesser, 2014). The scaffolding should 

have the potential to help learners understand and invoke strategies to overcome the confusion. However, it is unclear what 

strategies support confusion resolution. 

Metacognitive strategies (MS) – strategies for monitoring and controlling cognitive processes (Pintrich, Smith, Garcia, & 

McKeachie, 1993) – are an essential component of self-regulated learning (e.g., Efklides, 2011) and a powerful predictor of 

academic performance (e.g., Ohtani & Hisasaka, 2018). Recent research has raised the possibility that MS may play an 

important role in confusion resolution (Di Leo, Muis, Singh, & Psaradellis, 2019; Muis, Psaradellis, Lajoie, Di Leo, & 

Chevrier, 2015), and researchers have also suggested promoting self-regulation strategies to help learners take advantage of 

their confused states in CBLEs to become better learners (Arguel, Lockyer, Kennedy, Lodge, & Pachman, 2019; Arguel, 

Lockyer, Lipp, Lodge, & Kennedy, 2017). However, to date, there is little direct evidence to show that self-regulation and 

metacognitive strategies can improve confusion resolution.  

The research presented in this paper aims to address the gap in the links between confusion and use of MS by examining 

whether confusion invokes changes in MS behavior, and how students go about performing confusion resolution when working 

with Betty’s Brain, an open-ended CBLE. This study indicates that confusion may induce strategic regulation of behavior, but 

the MS that students use may not be sufficient for confusion resolution. The rest of this section reviews studies about confusion 

and MS and discusses their potential relationship.  

1.1. Confusion during Learning 

1.1.1. What Causes Confusion?  

Confusion is an emotion that arises when learners have difficulties during knowledge acquisition and putting the knowledge 

to use (Pekrun & Stephens, 2012; Silvia, 2010). It has been widely observed across multiple learning environments (e.g., 

D'Mello, 2013; Rodrigo et al., 2008; Yang, Kraut, & Rose, 2016). According to Mandler’s interruption (discrepancy) theory 

(Mandler, 1990), confusion follows cognitive disequilibrium, which arises when there is a conflict between new information 

and an individual’s prior knowledge, or the individual’s current knowledge structure cannot assimilate the new information. 

This notion has been supported by a set of systematic studies (D'Mello et al., 2014; D'Mello & Graesser, 2014b; Lehman, 

D'Mello, & Graesser, 2012). These studies found that confusion occurred more often in conditions that could cause cognitive 

disequilibrium. Based on these findings, D'Mello and Graesser (2014a) hypothesized that confusion is the affective signature 

of cognitive disequilibrium. 

Pekrun and Stephens (2012) indicated that cognitive disequilibrium does not initially or inevitably trigger confusion. 

Learners initially experience surprise and curiosity when new information is incongruent with their knowledge. If this 

incongruity cannot be resolved, then confusion arises. If the incongruity seems to be impossible to resolve, frustration replaces 

confusion. Silvia (2010) surmised that events stemming from appraisals of high novelty and low comprehensibility lead to 

confusion, while events with appraisals of high novelty but high comprehensibility induce interest. Following Silvia’s claim, 

Muis, Chevrier, and Singh (2018) argued that confusion more likely follows surprise when the task is quite complicated. This 

notion was supported by recent studies (Chevrier, Muis, Trevors, Pekrun, & Sinatra, 2019; Munzar, Muis, Denton, & Losenno, 

2020). These studies found that the relative frequency of confusion was higher than curiosity when learners felt that information 

was novel and complex (Chevrier et al., 2019), and the transition from surprise to confusion was a function of complexity 

(Chevrier et al., 2019; Munzar et al., 2020). 

Learners’ characteristics have an impact on the extent of confusion they experience during learning. For example, students 

with higher learning motivation may experience more confusion (Lehman, D'Mello, & Graesser, 2013). Muis, Pekrun et al. 

(2015) found that beliefs about the complexity of knowledge and the source of knowing predicted students' confusion 

negatively during the process of learning climate change. Another study they conducted showed that students' task value and 

academic control (values and perception of control for learning general mathematics and for solving the specific mathematical 

problem) also negatively predicted students' confusion in the context of complex problem solving (Muis, Psaradellis et al., 

2015). The association between task value and confusion was mediated by the extent of cognitive disequilibrium (Munzar et 

al., 2020).  
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To summarize, discrepant information or novel and complex information causes cognitive disequilibrium. Cognitive 

disequilibrium leads to confusion if it cannot be resolved right away. The effects of the discrepant events on confusion may 

depend on learners’ characteristics. 

1.1.2. Effects of Confusion on Learning 

The effects of confusion on learning are mixed. On the negative side, confusion has been associated with less frequent use of 

deep processing strategies and planning strategies (Di Leo et al., 2019; Muis, Psaradellis et al., 2015). Uninterrupted confusion 

might lead to frustration (D'Mello & Graesser, 2012), and this may cause students to feel lower levels of self-efficacy (Caprara 

et al., 2008). This, in turn, can lead to lower achievement or even worse, disengagement, which may result in dropping out of 

courses (Yang et al., 2016).  

On the positive side, confusion may promote the use of MS (Di Leo et al., 2019; Muis, Pekrun et al., 2015) and benefits 

learning (D'Mello et al., 2014; D'Mello & Graesser, 2014b). D'Mello and Graesser (2014a) claimed that confusion “plays a 

prominent role in learning activities that are pitched at deeper levels of comprehension” (pp. 290). The extent to which learners 

can benefit from confusion may depend on both their skills and their motivation. For instance, one study found that students 

with higher cognitive ability and drive had higher learning gains resulting from confusion than their peers (Lehman & Graesser, 

2015). 

1.1.3. Confusion Resolution 

The mixed effects of confusion on learning may be related to its resolution. Poor learning outcomes may be partially due to 

persistent unresolved confusion (Bosch, D'Mello, & Mills, 2013; D'Mello & Graesser, 2014b). However, confusion need not 

be entirely resolved in order to be beneficial for learning; both completely and partially resolved confusion have been observed 

to predict learning gain (D'Mello & Graesser, 2014b). These results could help explain the conflicting impact of confusion on 

learning. When confusion is entirely or partially resolved, learning outcomes improve, but when confusion is entirely 

unresolved, learners are unable to modify their existing knowledge structure and assimilate the new information. Instead, they 

learn nothing, and may become frustrated (D'Mello & Graesser, 2012) and doubt their abilities (Caprara et al., 2008). This 

may be why prolonged confusion was negatively related to learning, while short-term confusion was positively related to 

learning (Liu, Pataranutaporn, Ocumpaugh, & Baker, 2013). Therefore, it is critical to understand how confusion can be 

resolved so that intervention and scaffolding can be designed and given to students who are likely to experience sustained 

confusion. 

While this paper discusses confusion resolution, it is important to clarify that confusion resolution does not mean that 

learners directly resolve their confusion. Instead, what learners tackle is the state of cognitive disequilibrium, which is the 

cause of the confusion (D'Mello et al., 2014; D'Mello & Graesser, 2014b). In other words, confusion resolution excludes 

situations where learners simply ignore their confusion and engage in the next task. D'Mello et al. (2014) indicate that confusion 

can be resolved if (1) learners have the knowledge and skills to resolve it, or (2) the learning environment provides scaffolding 

to help them resolve it. The first prerequisite is supported by findings in D'Mello and Graesser’s (2014b) study, where learners 

with higher ACT (a standardized college entrance test) scores were more likely to partially resolve their confusion in learning 

the functioning of everyday devices, such as an electric bell and a toaster. These prerequisites suggest that confusion resolution 

requires special skills, and simply attempting to resolve confusion without the necessary skills is insufficient to lead to its 

resolution (Lehman & Graesser, 2015).  

1.2. Metacognitive Strategies 

1.2.1. Metacognitive Strategies, Knowledge, and Experiences 

Metacognitive strategies (MS) refer to the deliberate use of cognitive skills to regulate cognition (Efklides, 2008). Generally, 

the components of MS include goal setting, planning, self-monitoring, self-control, and self-evaluation (Dent & Koenka, 2016). 

MS, metacognitive knowledge, and experiences are intercorrelated but distinct (Efklides, 2008). It is worth distinguishing the 

three facets of metacognition to avoid ambiguity. Metacognitive knowledge is declarative knowledge and belief about the 

world, such as tasks, goals, self, others, and cognitive processing and skills (Flavell, 1979). Metacognitive experiences are 

what a person feels about their thoughts or is aware of during task processing, such as the feeling of confidence and judgment 

of knowing (Efklides, 2006).  

1.2.2. Impact of MS on Learning 

Many studies have found the benefits of MS for learning. In an early literature review, MS was one of the most powerful 

predictors of academic performance (Wang, Haertel, & Walberg, 1990). Some subsequent studies did not find a strong 

association between MS and learning (e.g., Hargrove & Nietfeld, 2015; Muis, Pekrun et al., 2015), but a recent meta-analysis, 

which focused on studies in elementary and secondary school, indicated that the correlation between learning and MS differed 
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significantly (though not by a large magnitude) across specific components of MS, disciplines, grades and how learning and 

MS are measured (Dent & Koenka, 2016). For example, the average Pearson correlations between MS and learning were r = 

0.21, 0.23, 0.26, and 0.34 in math, English/language arts, science, and social studies, respectively. The results were replicated 

in another meta-analysis (Ohtani & Hisasaka, 2018), which also found that the relationship between MS and learning was 

moderated by disciplines, grades, and the measurement approach of MS. 

1.3. Confusion and Metacognitive Strategies 

Nelson and Narens’ (1990) two-level metacognitive system provides a helpful framework for understanding the relationship 

between cognitive disequilibrium and MS. The system is about overall cognitive processing. The two levels are the object-

level and the meta-level. Cognition about the external world is in the object-level, and monitoring and evaluating cognition is 

at the meta-level. The meta-level receives information from the object-level to monitor cognitive activities about the external 

world and send instructions to the object-level to control these cognitive activities. The controlling function of the meta-level 

manifests as the use of MS (Efklides, 2006). Under the two-level metacognitive system, learners need to activate MS to resolve 

confusion. When learners encounter discrepant information, cognitive disequilibrium may appear at the object-level. 

Information about the object-level flows to the meta-level, and the meta-level detects the inconsonant state at the object-level. 

To restore cognitive equilibrium, the meta-level must modify cognitive activities at the object-level through the controlling 

function. In other words, learners should behave according to MS so that they can integrate the discrepant information and 

their existing knowledge model. 

The metacognitive and affective model of self-regulated learning (MASRL; Efklides, 2011) is also useful for understanding 

the association between confusion and the use of MS. The MASRL model emphasizes the interactions of affect, motivation, 

and metacognition in self-regulated learning (SRL). Under this model, cognitive disequilibrium during task processing leads 

to affective reactions, such as surprise and confusion. At the same time, cognitive disequilibrium also contributes to 

metacognitive experiences, such as the feeling of difficulty and the estimate of effort and time. The metacognitive experiences 

and affective states, in turn, may trigger decisions about conducting MS behavior. In other words, cognitive disequilibrium 

may indirectly influence the use of MS. Therefore, it is reasonable to expect that learners change MS behavior when they are 

confused.    

Taking these theories together, changes in MS behavior may co-occur with confusion because both follow cognitive 

disequilibrium. In order to make cognition return to the state of equilibrium, learners need to control cognitive activities by 

invoking MS. However, the interplay between confusion and MS needs to be further researched. 

1.4. Current Study 

The current study combined the observations of emotion and the action logs of students' activities in a CBLE, Betty's Brain, 

to answer four research questions examining the relationship between confusion and MS. As described above, confusion may 

be accompanied by changes in MS behavior. Additionally, confusion is experienced as an unpleasant emotion (Baker, D'Mello, 

Rodrigo, & Graesser, 2010) and may motivate learners to regulate their cognition to resolve it. This motivated the first research 

question (RQ1): Is the frequency of MS behaviors different when students are confused compared with when they are not 

confused? 

The use of MS may be necessary for learners to restore cognition to an equilibrium state and resolve confusion. To study 

this hypothesis, the current study investigated the second question (RQ2): Is confusion resolution related to increases in the 

use of MS? 

Confusion can benefit learning when it is resolved or partially resolved (D'Mello & Graesser, 2014b; Lehman & Graesser, 

2014). If MS contributes to confusion resolution, the effect of confusion on learning may depend on students' abilities to apply 

MS. For students experiencing the same level of confusion, those who use more MS may have better task performance within 

the Betty’s Brain environment and pre-post learning gain than those who use MS less often. Thus, the third and fourth research 

question asked: (RQ3) Do MS moderate the relationship between confusion and task performance? (RQ4) Do MS moderate 

the relationship between confusion and learning gain?  

2. Betty’s Brain 

Betty’s Brain is an open-ended CBLE (Biswas, Segedy, & Bunchongchit, 2016; Leelawong & Biswas, 2008). Students learn 

about scientific phenomena, such as climate change, thermoregulation, or river ecosystems, by teaching a virtual pedagogical 

agent, named Betty. Students teach Betty by building a causal map of the scientific phenomenon, in which a causal (cause-

and-effect) relationship is represented by a pair of concepts that are connected by a directed causal link (see Figure 1). To build 

this map, students have access to hypermedia resource pages (Science Book in Figure 1) on relevant scientific concepts. 

Students can evaluate their causal modeling progress by asking Betty to take quizzes that are graded by a mentor agent, Mr. 
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Davis, or by querying Betty with cause-and-effect questions related to what she has been taught so far. Betty's quiz grades 

(correct and incorrect answers), along with her explanations for her answers to specific questions, can help the student keep 

track of her progress, and, in turn, their own progress. In more detail, looking at Betty's correct and incorrect answers, students 

can identify problems (e.g., incorrect links or missing links) in their causal map. They can then improve their understanding 

of the topic by re-reading the science book and tracking the explanations Betty provides to correct their perceived problems 

with their causal map.  

While using Betty’s Brain, students’ activities can be grouped into six primary categories: (1) read (read a page in the 

resources), (2) take notes (create, view or edit a note), (3) edit (edit the causal map, including adding or deleting a concept, 

adding, deleting or modifying a causal link, marking a causal link as correct or incorrect), (4) query (ask Betty a cause-and-

effect question based on the concepts and links on her map so far), (5) quiz (assess the state of the map by having Betty take a 

quiz), and (6) explain (ask Betty to explain her answer to a cause-and-effect query or check the chain of links she used to 

answer a quiz question, in order to probe Betty’s reasoning).  

In the current study,  students learned about climate change by building a causal map to teach Betty. The expert map (a 

map with all correct causal links) on this topic contained 22 scientific concepts and 27 causal links. For details about this topic, 

see (Kinnebrew, Segedy, & Biswas, 2017; pp. 147).  

3. Methods 

3.1. Participants and Procedures 

This study, run in the 2016-2017 school year, included 93 sixth-grade students from four classrooms in an urban public school 

in Tennessee. There were four classrooms with 23 to 24 students in each classroom. Four or five students were seated in a 

table, but they worked individually on separate laptops. Overall, the school had 700 students in grades 5-8. Within this school, 

around 40% of the students were from underrepresented minorities, and around 8% of the students enrolled in the free and 

reduced lunch program. The study lasted seven school days. On day 1, students spent 30-45 minutes on completing a paper-

based pre-test that assessed their knowledge of climate change and causal relationships. On day 2, they received a 30-minute 

training about how to use Betty's Brain. In the next four days, they spent 45 to 50 minutes per day constructing the causal map 

to teach Betty. On the final day, students completed a post-test identical to the pre-test. 

Figure 1. Screenshot of viewing quiz results and checking the chain of links Betty used to answer a quiz question. 
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3.2. Observations of Emotion 

While students were working on Betty’s Brain, two trained observers recorded their affective states via the Baker Rodrigo 

Ocumpaugh Monitoring Protocol (BROMP; Ocumpaugh, Baker, & Rodrigo, 2015), which uses holistic observations that 

consider the context of students actions, behaviors, speech, and facial/bodily expressions, in line with how Planalp, 

DeFrancisco, and Rutherford (1996) describes the process humans normally use to identify affective states. That is, rather than 

relying exclusively on whether or not a student’s eyebrows undergo specific actions when they are confused (as scowls can 

also indicate engaged concentration), coders pay attention to both facial expressions and the ways in which the student is 

interacting with their environment. This technique, which contextualizes a constellation of features rather than relying on a 

fixed set of facial expressions to determine student affect, is also in line with research by Cowen et al. (2019). The protocol 

was enforced by the Android App HART (Ocumpaugh et al., 2015), which adds a timestamp to each observation recorded. 

With the timestamps, the observations could be aligned with students' action logs in Betty's Brain environment. 

The observers used a momentary time sampling method (Meany Daboul, Roscoe, Bourret, & Ahearn, 2007), where they 

coded students individually in a pre-determined order. This sampling method is intended to result in a representative sample 

of emotions and behavior. The observers recorded both students’ emotions (i.e., boredom, confusion, delight, engaged 

concentration, and frustration) and behavior (i.e., on-task, on-task conversation, off-task), though the current study only 

considers the emotion observations. Observers recorded the first emotion and behavior they saw and had up to 20 seconds to 

decide the students’ affective state. At the beginning of the study, the first observer trained the second observer in using 

BROMP. Once the second observers had been trained, both observers coded the same students at the same time to calculate 

inter-rater reliability and validate their coding. The inter-rater reliability was acceptable (Cohen’s Kappa > 0.60). Following 

the training period, both observers coded separately to maximize the number of observations that could be collected during the 

study. There were 326 recorded observations of confusion; observations of boredom, delight, engaged concentration, and 

frustration numbered 233, 157, 4182, and 251, respectively. On average, 53 observations were made for each student. 

3.3. Metacognitive Strategies 

We analyzed the action logs of students working on Betty’s Brain to measure MS behavior based on coherence analysis (CA; 

Segedy, Kinnebrew, & Biswas, 2015). CA interprets learners' behavior according to the relationship between actions (e.g., 

read and edit). Two ordered actions, x and y, are interpreted as being coherent if the second action, y, utilizes information 

generated by the first action, x, i.e., x supports y. For instance, in Figure 1, the quiz results inform the student that the quiz 

question about the relation between deforestation and carbon dioxide was answered incorrectly. After viewing these quiz 

results, if students read the resource pages that contain information about the relationship between the two concepts, the action 

of viewing quiz results supports the action of reading that resource page, and, therefore, these two actions are labeled as 

coherent. X and y need not be consecutive actions but they have to occur within a pre-determined time interval. The time 

interval is chosen with the assumption that students are going to remember the information generated by action x when they 

execute action y. The choice of the interval is somewhat arbitrary, but in line with prior work on Betty's Brain (e.g., Segedy et 

al., 2015), we set the interval length for the current study to 5 minutes.  

Prior work hypthesizes that action coherence is an indicator of task understanding and the use of metacognitive strategies 

(Kinnebrew et al., 2017). Indeed, if a student performs two ordered actions that are coherent, it suggests they monitored 

previous cognitive processes (the first action, e.g., viewing quiz results), showed awareness by paying attention to the 

information generated by previous cognitive processes (the results of the first action, e.g., the link chain between deforestation 

and carbon dioxide was wrong), and regulated the later cognitive processes (the second action, e.g., reading resource pages 

about deforestation and carbon dioxide) based on the previously generated information. Therefore, performing coherent actions 

may suggest the use of MS by the student. 

Five behavioral metrics were identified as measures of MS. Each metric was calculated as the frequency of a particular 

kind of action per minute so that these metrics were comparable across students, given that the total time of each student’s 

working on Betty’s Brain varied (for example, some students finished their map building task earlier than the others). Metric 

1, Quizzing frequency can be linked to metacognitive monitoring, i.e., how students are progressing in their causal modeling 

task. Metrics 2-5 are directly based on CA. Incoherent actions (INC) that do not satisfy the four CA metrics were also examined 

in the analysis for RQ1 and defined here. We do not assume that the INC metrics represent suboptimal or bad strategies. Rather, 

they were mainly used to enhance our understanding of the differences in the use of MS when students were confused and not 

confused. Thus, INC metrics were not used in the analyses for RQs 2 to 4. The five CA metrics are: 

1. Quizzing frequency: the number of times the student had Betty take a quiz, per minute. This variable reflected 

how often students evaluated the accuracy of the map they created to teach Betty, and was a reflection of their 

checking progress about their own understanding of climate change. This metric was not directly a CA measure, 

but, as discussed, taking quizzes relates to self-monitoring strategies, where students are evaluating their current 
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progress (e.g., Cicchinelli et al., 2018). Since self-monitoring is a metacognitive process, we included this metric 

in our list of CA metrics.  

2. Frequency of coherent viewing: the number of viewing quiz results actions, per minute, that were coherent with 

later actions. This variable measured how often students used the quiz results to influence further actions. For 

example, a quiz view would be coherent if the student marked all of the links associated with a correct answer to 

a quiz question as correct. Coherent viewing might indicate self-monitoring behavior because the information 

generated was used by the student in subsequent actions.  

The frequency of incoherent viewing is the number of viewing quiz result actions per minute that do not support 

later actions within the specified time window. For instance, in the Figure 1 example, the viewing quiz results 

action would be coherent if a student did one or more of the following actions after viewing the quiz results: (1) 

read the resource pages that contained information about the relationship between deforestation and carbon 

dioxide, (2) edited the links between the two concepts, and (3) deleted the link because they assumed it was 

incorrect, or they marked it as maybe wrong. In contrast, if the student did none of these actions, the viewing 

action would be incoherent. 

3. Frequency of coherent editing: the number of coherent map edits per minute. It measured how often students 

edited the concept map (adding, deleting, or revising causal links) based on acquired information. This acquired 

information could come from reading the resource pages, or from quiz viewing actions. In other words, coherent 

editing might indicate informed map generation and refinement behavior.  

The frequency of incoherent editing is the number of map edits per minute that are not based on quiz results or 

reading text related to the edited links. For example, in the Figure 1 example, after viewing the quiz results, if a 

student edited links between deforestation and carbon dioxide, this edit would be coherent. In contrast, if the 

student edited links between vehicle use and carbon dioxide, this edit would be incoherent because the quiz results 

indicated that the link between vehicle use and carbon dioxide was correct. It should be noted that a coherent edit 

is not necessarily correct, and an incoherent edit is not necessarily incorrect. 

4. Frequency of coherent reading: the number of coherent reading page actions per minute. This variable measured 

how often students intentionally sought relevant information to improve their understanding based on the quiz 

results. If the quiz results suggested some links were wrong, the coherent reading meant that pages being read 

contained information about the wrong links. If the quiz results showed all links were correct, the page being read 

contained information about new links not in the current causal map. Coherent reading might represent self-

control behavior because the page being read was contingent on the quiz results.  

The frequency of incoherent reading is the number of reading actions, per minute, not based on quiz results. For 

example, in the Figure 1, after viewing the quiz results, if a student read the resource pages that contained 

information about the relationship between deforestation and carbon dioxide that reading action would be 

coherent. By contrast, if the student read resource pages that did not contain any information about concepts in 

the links indicated by the quiz results as incorrect or possibly incorrect, the reading action would be incoherent.  

5. Frequency of coherent marking: the number of coherent actions of marking (i.e., labeling) a link on the concept 

map, per minute. In addition to marking these links as “correct” or “maybe wrong”, students could also delete 

these marks. This variable reflected how often, based on the quiz results, students understood what links on their 

map were correct or possibly incorrect, and annotated them accordingly. Coherent marking again represent 

constructive monitoring behavior because the marking action tranlates quiz results into systematic checking of 

the causal maps. The mark could remind students of which parts of their understanding were incorrect, correct, or 

uncertain.  

The frequency of incoherent marking is the number of marking actions per minute that is not based on quiz results. 

For instance, in the Figure 1 example, after viewing the quiz results, if a student mark links between deforestation 

and carbon dioxide as “may be wrong”, the marking action would be coherent. In contrast, if the student mark 

any link between the two concepts as “correct”, the marking action would be incoherent. 

 

Internally, the Betty’s Brain system keeps a record of the resources pages that contain information about each of the causal 

links required to build the correct map. This information is used to eastablish links between quiz questions, the causal links 

required to answer a particular quiz question, and and the corresponding resource pages that are relevant for each of the links. 

This information helps us compute the coherence of reading resource pages, editing causal links, and marking links with 

respect to prior actions a student has performed. The IDs of prior actions (every action is assigned a unique ID in Betty’s Brain) 

that are coherent with the current action are also recorded. Based on these IDs, we distinguished coherent and incoherent 

viewing of quiz results actions. 
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In line with prior research on Betty’s Brain (e.g., Segedy et al., 2015), we excluded some actions that were too brief, 

including viewing (quiz results) actions that were less than 2 seconds long, and reading (resource pages) actions that were less 

than 10 seconds long. These actions were discarded because they were likely to indicate only shallow engagement with that 

part of the system. For example, short reading actions might indicate that students were just flipping through the resource 

pages quickly without reading the content. 

3.4. Task performance 

The indicator of task performance in Betty’s Brain was the final causal map score. It was the difference between the number 

of correct causal links and incorrect causal links in the student’s final map. The correct causal links were those that appeared 

in an expert map on the climate change topic (students could not see this map). 

3.5. Knowledge tests 

Learning gain was measured by the pre-test and post-test. These tests were identical in both questions and forms. The test 

assessed students' knowledge of the science topic, climate change and their causal reasoning abilities. It contained multiple-

choice questions and short-answer questions. The appendix displays an example of the multiple question and the short-answer 

question. The answer to each short-answer question consisted of a fixed number of successive causal links from an expert-

defined map. Students could score a maximum of 7 points and 9 points for the multiple-choice questions and the short-answer 

questions, respectively. The total maximum score attainable was 16 points.  

3.6. Analyses 

3.6.1. Analyses for RQ1 

An emotion observation matched a subset of the action logs in Betty's Brain after aliging observation data with the action logs. 

CA metrics derived from the action logs within the duration of an emotion were regarded as measures of MS behavior during 

this emotion. Although the field observations for emotion recording were conducted using a 20-second time window, we 

analyzed the data with a window that included 30 seconds before and 30 seconds after the observation of the emotion. This 

was based on prior research that found the average duration of emotions during learning is approximately 30 seconds (D'Mello 

& Graesser, 2012), and because it is impossible to know whether an observation was collected closer to the beginning or the 

end of a learner’s emotion. For this study, CA and INC metrics were calculated for 326 observations of confusion and 4,823 

observations of other emotions.  

The Shapiro-Wilk test indicated that the normality assumption for the CA and INC metrics was violated (p < 0.001 for all 

metrics). Therefore, the robust independent t-test with 10% trimmed means (a robust measure of means that ignores the top 

and bottom 10% of data; Wilcox, 2011) was performed to compare CA and INC metrics during confusion and other affective 

states. The robust test is satisfactory even when normality and homoscedasticity assumptions are violated (Wilcox, 2011). The 

Benjamini-Hochberg correction was applied to control for false discovery rate (FDR). This correction adjusts the α value rather 

than the p value, so we only marked a result significant if its p value was lower than its adjusted α value. The explanatory 

measure of effect size ξ (i.e., “xi”), a robust version of Cohen’s d, was estimated (Wilcox & Tian, 2011). A rule of thumb for 

ξ is that values of 0.10, 0.30, and 0.50 correspond to small, medium, and large effect sizes  R (Mair & Wilcox, 2020). The 

analysis was implemented within the WRS2 package in R (Mair & Wilcox, 2020). 

3.6.2. Analyses for RQ2 

If confusion, i.e., the cognitive disequilibrium is resolved, the learner’s affective state is expected to transition to engaged 

concentration (D'Mello & Graesser, 2012; Liu et al., 2013) or delight. Otherwise, confusion continues, and persistent confusion 

can lead to frustration or boredom (Botelho et al., 2018; D'Mello & Graesser, 2012). Prolonged confusion is negatively related 

to learning (Liu et al., 2013). Therefore, if an observation of confusion is followed by an observation of engaged concentration 

or delight (“confusion → engaged concentration/delight”), this may represent confusion that was resolved. In contrast, if an 

observation of confusion is followed by an observation of confusion, frustration, or boredom (“confusion → 

confusion/frustration/ boredom”), this may represent confusion that was unresolved.  

The current study refered to a pair of successive affect observations for the same student as an affect sequence, which we 

categorized based on valence. Specifically, positive affect sequences refered to “confusion → engaged concentration/delight”, 

while negative affect sequences refered to “confusion → confusion/frustration/boredom”. The affect sequences whose intervals 

were longer than 3 minutes were discarded because students might experience another affective state between two successive 

observations of affective states if the interval between the two observations was too long (e.g., Botelho et al., 2018; D'Mello 

& Graesser, 2012). Three minutes was used as the cut-off value because it corresponded to the average gap between one 
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observation and the next one1. In order to answer RQ2, the robust t-test with 10% trimmed means was applied to compare CA 

metrics during confusion in positive affect sequences and negative affect sequences. As in RQ1, we applied the Benjamini-

Hochberg FDR correction. 

3.6.3. Analyses for RQ3 and RQ4 

The five CA metrics were calculated for each student across their entire action logs. Principal component analysis (PCA) with 

varimax rotation was applied to extract a factor from the five CA metrics, and the factor score was used as an overall indicator 

of MS. Multicollinearity was tested to examine whether the five metrics were suitable for PCA. Table 1 displays the correlation 

matrix. Seven of the ten Pearson product-moment correlations were greater than 0.4. Bartlett's test of sphericity indicated that 

sufficient correlations existed among the CA metrics (χ2 / df = 18.80, p < 0.001). 

Table 1. Correlations among coherence analysis metrics. 

 1 2 3 4 

1. Quizzing -    

2. Coherent viewing 0.53 -   

3. Coherent editing  0.39 0.57 -  

4. Coherent reading 0.66 0.69 0.6 - 

5. Coherent marking 0.20 0.55 0.25 0.41 

 

The Kaiser-Meyer-Olkin (KMO) overall statistic was 0.76, indicating that a high proportion of variance in the CA metrics 

might be caused by underlying factors, and all single KMO values were greater than 0.5 (Table 2). Cronbach’s alpha for these 

metrics was 0.83, indicating that the internal consistency of the CA metrics was good. Overall, the results suggested that these 

metrics were suitable for PCA. Table 2 displays the results of PCA. 

Table 2. The results of the principal component analysis. 

M (SD) MSA Loading R2 

Quizzing 0.75 0.73 54% 

Coherent viewing 0.78 0.88 77% 

Coherent editing  0.80 0.74 55% 

Coherent reading 0.76 0.89 79% 

Coherent marking 0.69 0.59 35% 

Total explained variance  60% 

 

Students’ confusion scores were calculated as the ratio of the number of confusion observations to the total number of 

affect observations. Students were divided into high and low confusion groups, based on whether their confusion scores were 

higher or lower than the median, as well as high and low MS groups, based on whether their MS scores were higher or lower 

than the median. Data from ten students were discarded because of missing either their pre-test or post-test scores. Finally, 

there were 23 in the high-MS and high-confusion group, 20 in the high-MS and low-confusion group, 18 in the low-MS and 

high-confusion group, and 22 in the low-MS and low-confusion group.  

The normality assumptions for the final map scores and the test scores were violated (the p-values from the Shapiro-Wilk 

test were 0.001 and 0.006, respectively). Thus, a robust 2-way ANOVA with 10% trimmed means (using the WRS2 package 

in R; Mair & Wilcox, 2020) was conducted to examine the relationship among MS, confusion, and the map scores. The robust 

 

 
1 The gap varies because the time that observers needed to decide an observation was not constant. For example, if one student 

showed apparent confusion (e.g., scrunching up the nose and forehead and pursing lips), observers might only need 5 seconds 

to conclude that this student's emotion was confusion; in another observation where this student might just purse lips slightly, 

observers might need 15 seconds to make a decision. Classroom events might also cause pauses in observation. 
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ANOVA produces a χ2-distributed test statistic, Q. The p-value is calculated by comparing Q with an adjusted critical value, 

so the degrees of freedom are not reported (Mair & Wilcox, 2020). A three-way non-parametric repeated ANOVA (using the 

nparLD package in R; Noguchi, Gel, Brunner, & Konietschke, 2012) was conducted to test the relationships among MS, 

confusion, and the test scores. For the repeated ANOVA, the test time was the within-subject factor, and confusion and MS 

were between-subject factors. The non-parametric repeated ANOVA produces an ANOVA-type statistic (ATS), which can be 

approximated by the F distribution (Brunner & Puri, 2001). 

4. 4. Results 

4.1. RQ1: Is the Frequency of MS Behavior Different during and outside the Duration of Confusion? 

Table 3 shows the results of the robust t-test. The frequencies of coherent viewing were higher during confusion than during 

other affective states. This indicates that the information that students collected while they were confused was more likely to 

be used to support later actions. Students did not decrease the frequency of incoherent viewing when they were confused.  

Coherent editing was the same when students were confused and not confused. However, they did less incoherent editing 

during confusion. In other words, when students were confused, they were less likely to edit a causal link without collecting 

any (new) information about this link. Both the frequencies of coherent and incoherent reading were higher when students 

were confused than not confused. This indicates that students might simply read more text when they were confused. 

There were no statistically significant differences for quiz-taking actions, coherent and incoherent link marking actions. 

Overall, these results suggest that learners changed their use of MS when confused, primarily doing more reading and using 

the information from quiz results more frequently. 

Table 3. Coherence analysis metrics during and outside confusion. 

M (SD) During Outside ξ 

Quizzing 0.13 (0.37) 0.16 (0.41) 0.06 

Coherent viewing 0.52 (1.11) 0.26 (0.71) 0.25* 

Incoherent viewing 0.33 (0.94) 0.24 (0.70) 0.07 

Coherent editing 0.26 (0.56) 0.32 (0.67) 0.06 

Incoherent editing 0.05 (0.22) 0.12 (0.47) 0.12* 

Coherent reading 0.38 (0.66) 0.26 (0.54) 0.14* 

Incoherent reading 0.23 (0.94) 0.04 (0.92) 0.11* 

Coherent marking 0.05 (0.28) 0.04 (0.36) 0.05 

Incoherent marking 0.06 (0.31) 0.08 (0.42) 0.05 

   Note. *p < adjusted α. 

4.2. RQ2: Is Confusion Resolution Related to Increases in MS Behaviors? 

Table 4 displays the results of the robust t-test. There was no difference in the frequency of CA metrics during confusion in 

negative and positive affect sequences (p > adjusted α for all metrics). Recall that an observation of confusion might be resolved 

confusion if it was followed by observations of positive affect, and unresolved confusion if followed by observations of 

negative affect. Thus, the result indicates that confusion resolution may not be related to more MS behavior.  

Table 4. Coherence analysis metrics in negative and positive affect sequences. 

M (SD) Negative (N = 26) Positive (N = 63) ξ 

Quizzing 0.23 (0.43) 0.08 (0.27) 0.29 

Coherent editing  0.35 (0.56) 0.25 (0.59) 0.18 

Coherent reading 0.19 (0.40) 0.32 (0.69) 0.07 

Coherent marking 0.04 (0.19) 0.05 (0.37) 0.19 

Coherent viewing 0.65 (1.32) 0.59 (1.50) 0.15 



 

 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - 

NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 
11 

4.3. RQ3: Do MS Moderate the Relationship between Confusion and Task Performance? 

Table 5 displays different groups’ final map scores. The high-MS group’s average map scores were more than twice as high 

as the low-MS group’s. Within the high-MS group, students with high confusion had higher map scores than those with low 

confusion. In contrast, this difference was reverse within the low-MS group. Nevertheless, the robust ANOVA showed that 

there was not an interaction effect between confusion and MS (Q = 0.08, p = 0.766), and the main effect of confusion was also 

not significant (Q = 0.08, p = 0.776). The main effect of MS was significant (Q = 37.23, p = 0.001). 

Table 5. Final map scores. 

M (SD) Low Confusion High Confusion 

Low MS 7.40 (8.30) 6.20 (7.65) 

High MS 16.05 (8.94) 17.75 (5.89) 

4.4. RQ4: Do MS Moderate the Relationship between Confusion and Learning Gain? 

Table 6 displays the pre-test and post-test scores. In all groups, students generally got better scores in the post-test than in the 

pre-test, and the effect size was large (ξ >= 0.5). ξ was greater in the high-confusion group than in the low-confusion group, 

for both the high-MS group and the low-MS group. However, the difference in pre-post gain between the low-confusion and 

high-confusion groups was larger for students with high-MS (difference in ξ was 0.21) than for low-MS students (difference 

in ξ was 0.09). This finding suggested that MS might moderate the effect of confusion on learning. Indeed, the three-way non-

parametric repeated ANOVA revealed a marginally significant interaction among time, confusion, and MS (ATS = 3.11, p = 

0.078). To determine whether the interaction between confusion and time was different within different MS groups, we 

conducted a two-way non-parametric repeated ANOVA (confusion × time) within each MS group. The results showed that 

there was an interaction between time and confusion within the high-MS group (ATS = 6.14, p = 0.013) but not in the low-MS 

group (ATS = 0.09, p = 0.762). Nevertheless, it should be noted that the moderation effect of MS on the relationship between 

confusion and learning was only marginally significant and small. 

The three-way repeated ANOVA showed that the main effects of time and MS were significant (ATS = 98.18 and ATS = 

16.47, respectively; both p < 0.001). Students performed better on the post-test than in the pre-test, and students with high MS 

had higher test scores than the low-MS group. The main effect of confusion was not significant (ATS = 1.89, p = 0.169). No 

significant interaction was found between time and MS (ATS = 1.51, p = 0.218), time and confusion (ATS = 2.53, p = 0.112), 

as well as MS and confusion (ATS = 0.00, p = 0.950). 

Table 6. The pre-test and post-test scores. 

 MS Confusion 
M (SD) 

ξ 
Pre-test Post-test 

Low 
Low 5.84 (2.56) 8.23 (3.19) 0.50** 

High 4.97 (3.00) 7.31 (2.41) 0.59*** 

High 
Low 8.18 (2.67) 10.28 (2.5) 0.50*** 

High 6.46 (3.12) 10.41 (3.42) 0.71*** 

          Note. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

5. Discussion 

Confusion can benefit learning when it is partially or entirely resolved (e.g., D'Mello & Graesser, 2014b). To resolve confusion, 

learners need necessary knowledge and learning strategies or support from the environment (D'Mello et al., 2014). What 

specific strategies may contribute to confusion resolution is unclear. To address this gap, the current study examined the 

relationship between a set of metacognitive strategies (MS) and confusion in the context of Betty’s Brain.  

5.1. MS and Confusion 

Results for RQ1 showed that the use of MS differed depending on whether the student was experiencing confusion. 

Specifically, this study found that coherent quiz-results viewing, coherent, and incoherent reading were more common among 

students when they were confused, and incoherent editing was less frequent when they were confused. It is understandable 
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that coherent viewing and reading were more frequent during confusion. Both might serve to help learners to find the discrepant 

information, which is the cause of cognitive disequilibrium (Mandler, 1990). For example, in this study, the correct link 

between vehicle use and carbon dioxide is "vehicle use increases fossil fuel use, which in turn increases carbon dioxide". 

Students might think vehicle use could directly increase carbon dioxide and miss the intermediate concept, fossil fuel use, and 

thus, they would add a link of "vehicle use increases carbon dioxide". When the quiz result indicated the link was wrong, they 

might feel confused. This unpleasant emotion might drive them to investigate why the link was wrong, and thus they would 

look for and read the resource pages to discover the relationship between vehicle use and carbon dioxide. A decrease in 

incoherent edits during confusion is also reasonable. Cognitive disequilibrium may induce more effortful and analytic cognitive 

processing (Efklides, 2011). Thus, when students were confused, they might be more cautious and stop adding, deleting, or 

revising causal links without attempting to gain more understanding of the links by reading the resources. 

One surprising finding is that incoherent reading increased when students were confused. This result seems to contradict 

with the MASRL model, which asserts that cognitive disequilibrium indirectly facilitates the deliberate use of MS via 

triggering affective reactions and metacognitive experiences (Efklides, 2011). However, if we put together the changes in 

coherent reading and viewing as well as incoherent reading and edits, an interesting pattern emerges: when confused, students 

read more text and decrease edits in the causal map. As an unpleasant emotion (Baker et al., 2010), confusion might motivate 

students to find an explanation for the discrepant information that caused their cognitive disequilibrium (Vogl, Pekrun, 

Murayama, Loderer, & Schubert, 2019; Vogl, Pekrun, Murayama, & Loderer, 2019). If students were confused by the quiz 

results, they read resource pages related to the quiz results (increase in coherent reading and quiz-results viewing). If they were 

confused by the text about a causal link in a resource page, they might read other resource pages that did or did not contain 

information about the causal link but explain the scientific concepts in the link or related links (we treated the latter as an 

increase in incoherent reading). As they needed time to search for the explanation, they would not edit links on the causal map 

until they collected information that helped them with the editing tasks (decrease in incoherent edits). In summary, this behavior 

pattern during confusion might not be an efficient strategy in terms of the time spent on reading additional pages, but it may 

be an indication of trying to get more holistic knowledge on the science topic. It certainly is more constructive behavior than 

the trial-and-errot edits that some students perform. Therefore, in line with the MASRL model (Efklides, 2011), these results 

suggest that interruption in cognitive processing may drive learners to regulate their behavior, in this case to gain more 

knowledge.  

5.2. MS and Confusion Resolution  

RQ2 investigated the relationship between confusion resolution and MS at a fine grain-size, i.e., whether there is more MS 

behavior during resolved confusion than during unresolved confusion. The confusion followed by engaged concentration or 

delight might represent resolved confusion, while the confusion followed by confusion, frustration, or boredom might be 

unresolved (D'Mello & Graesser, 2012). Results showed no significant difference between the frequencies of MS behavior 

within the confusion followed by engaged concentration or delight and within the confusion followed by confusion, frustration, 

or boredom. This suggests that MS behavior may not be sufficient for resolving the cognitive disequilibrium that underlies 

confusion. However, it may also be possible that, in some cases, students were cycling to engaged concentration because they 

were shifting their focus to other scientific concepts and causal relations between these concepts that were less confusing, 

rather than resolving the cognitive disequilibrium. We cannot verify this hypothesis in our current research, but prior research 

has found that students might move on without handling confusion (Munzar et al., 2020). 

 Results for RQ1 suggest that MS may help learners to find the discrepant information, for example, the resource page 

containing information about the wrong link. However, in order to successfully integrate the information into their mental 

model, students needed to interpret it correctly, and this task might rely on their reading skills, such as the ability to read and 

understand the text, to translate information into the causal format, and to focus on the specific content related to the causal 

link on the page (Segedy, Biswas, & Sulcer, 2014). 

5.3. MS, Confusion Resolution, and Learning 

RQ3 and RQ4 examined confusion resolution and MS at a coarser granularity. Both the main effects of MS on final map scores 

and test scores were significant. This is in line with prior research, where students with high map scores did more coherent 

actions than those with low map scores (Segedy et al., 2014). The significant main effect of test time on test scores indicates 

that students' understanding of climate change increased after using Betty's Brain. The interaction between test time and MS 

was not significant, so the improvement on understanding was not associated with MS. The improvement on understanding 

was also not related to confusion because the interactions between test time and confusion was not significant. 

However, we found a marginally significant interaction among test time, confusion, and MS. Further analyses showed that 

the difference in pre-post gain between the low- and high-confusion groups was significant within the high-MS group but not 
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significant in the low-MS group. This different effects of confusion on learning between high- and low-MS groups suggest 

that confusion resolution may be associated with MS. Students with high MS might be likely to resolve confusion, while 

students with low MS might be unable to resolve confusion. Resolved confusion can benefit learning (D'Mello et al., 2014; 

D'Mello & Graesser, 2014b). Thus, the high-MS group benefited more from confusion than the low-MS group because the 

former might resolve more confusion than the latter.  

Nevertheless, the interaction effect on test scores among time, confusion, and MS was small and only marginally 

statistically significant. In addition, the interaction effect on the map scores between confusion and MS was not significant. 

Several reasons might explain these results. First, MS may not be sufficient for resolving the cognitive disequilibrium 

underlying confusion. Additional cognitive skills may be necessary (Segedy, 2014). Moreover, in terms of self-regulated 

learning (SRL), motivation may also be necessary for confusion resolution because it plays a critical role in the regulation of 

emotion and behavior (Azevedo, Behnagh, Duffy, Harley, & Trevors, 2012; Efklides, 2011). This may also partially explain 

why prior studies did not find a treatment effect for MS scaffolding on learning in Betty’s Brain (e.g., Kinnebrew, Segedy, & 

Biswas, 2014). Future work should examine comprehensive motivational, cognitive, and metacognitive data to deeply 

investigate how these factors influence the process of confusion resolution. 

Moreover, confusion did not frequently occur in the current study. Even within the high-confusion group, the average 

proportion of confusion in the affect observations was only 6.0%. The low frequency of confusion might limit the accumulative 

effect of confusion resolution. Even if a single confusion resolution benefited learning, the overall effect of confusion on the 

learning gain might be small and difficult to be revealed. Indeed, the interaction between confusion and time on test scores 

was not significant, indicating that confusion did not facilitate learning in this study. Therefore, even though MS might 

contribute to confusion resolution, their interaction effect on learning was marginal.  

It is worth noting that in most prior studies that found the positive effect of confusion, confusion was induced intentionally 

with discrepant information (e.g., D'Mello et al., 2014; D'Mello & Graesser, 2014b; Lehman et al., 2012). In contrast, confusion 

appeared naturally in this study. Therefore, the discrepancy of new information encountered by students might not be as strong 

as in that earlier work. In addition, it is reasonable to expect that studies which intentionally spark confusion will have 

substantially more confusion then studies where confusion only occurs naturally. Most confused states might not reach the 

zone of optimal confusion, where the positive effect of confusion occurs (Arguel et al., 2019; D'Mello et al., 2014). Thus, in 

further research about confusion resolution, it may be more efficient to trigger confusion purposely rather than letting it occur 

naturally, to increase both its frequency and intensity. Nevertheless, if a finding can only be obtained through intentionally 

triggered confusion, it raises questions about the generality and scope of the phenomenon. 

Another reason for our relatively weak results may be that the proficiency of sixth graders' MS in this study was not strong 

enough for resolving confusion. Muis, Psaradellis et al. (2015) hypothesized that younger students might not posses the 

necessary strategies for confusion resolution. Older elementary school children's and even high school children's MS are still 

developing (van der Stel & Veenman, 2014). For example, without receiving an intervention, sixth and seventh graders' 

judgment about their comprehension of texts did not relate to testing performance, and they had difficulty in selecting the 

appropriate material for restudy (de Bruin, Thiede, Camp, & Redford, 2011).  

5.4. Implications 

The association between confusion and the change of MS behavior implies that cognitive disequilibrium may not only lead to 

metacognitive experience (Efklides, 2011) and confusion (Mandler, 1990) but also indirectly induce the regulation of behavior. 

This provided evidence for some assumptions of MASRL model (Efklides, 2011) because, according to this model, the 

cognitive interruption can trigger metacognitive experience and affective reaction, which in turn motivate bottom-up self-

regulation of behavior and emotions. Bottom-up self-regulation contrasts with top-down self-regulation, which is driven by 

the goal and plan that learners set based on personal characteristics such as competency, self-concept, and beliefs concerning 

learning. Given that it is confusion that is measured in this study rather than cognitive disequilibrium, we cannot make any 

strong statement about the role of cognitive disequilibrium in bottom-up self-regulation. However, whether cognitive 

disequilibrium drives bottom-up self-regulation is an interesting question and worthy of further study. 

Confusion occurred naturally in this study, and its occurrence was infrequent. The lack of frequent occurrences might limit 

the benefits of confusion resolution and may explain why there was no association between confusion and learning gain in our 

findings. Some of the previous findings discussed above suggest that it is useful to induce confusion in learners if they are 

experiencing an extended period without confusion. Timely and effective confusion inducement has three requirements. The 

first one is accurate detection of confusion (Calvo & D'Mello, 2010). An accurate affect detector makes it possible to determine 

when the desired condition is met – the student has not been confused for a considerable amount of time. In this case, our 

current automated detection of confusion in Betty’s Brain remains imperfect (Jiang et al., 2018). It is possible that our current 
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finding may lead to better affect detection in this environment -- we have learned that students did more reading actions when 

confused, suggesting that information searching behavior may be useful in improving a confusion detector. 

A second requirement is a sense of how much time without confusion is too much time without confusion. There has been 

some research into the dynamics or half-life of affect (e.g. Botelho et al., 2018) and some work into the different learning 

outcomes associated with different durations of confusion (Liu et al., 2013). Replicating this work in the context of Betty’s 

Brain may make it possible to know when the time has arrived to induce confusion. 

A third requirement is effective scaffolding for confusion resolution. Without such support, some students may not be able 

to resolve the triggered confusion, and a persistent confused state may evolve into frustration and boredom and harm learning 

rather than benefiting learning (Botelho et al., 2018; D'Mello & Graesser, 2012). Researchers have suggested taking advantage 

of confusion in CBLEs by providing self-regulation strategy support (Arguel et al., 2017, 2019). This study indicates that MS 

alone may not be sufficient for confusion resolution. Cognitive and motivational factors should also be considered.  For 

example, suppose students are confused about what to do next in Betty's Brain. In this case, the system delivers an MS prompt 

such as "think of what part of the map you are trying to build, perform a directed search of resource pages that talk about the 

relevant concepts, and read the text". If a student remains confused when they read resource pages, the system could deliver 

cognitive scaffolding like "recall the concepts whose relationships you want to know, pay attention to the verbs and modifiers 

connecting them, and take notes when necessary". If students are confused and become disengaged, using motivational support 

to reengage them may be useful before delivering the MS and cognitive prompts. It is worth noting, however, that such a highly 

scaffolded learning design may not be beneficial for high-ability students because these students typically perform better in 

less-structured instructional environments (Cooper, 1993).  

6. Conclusion 

This study examined the relationship between confusion and metacognitive strategies. The results showed that changes in MS 

behavior co-occur with confusion, but that confusion resolution was not related to MS behavior. Furthermore, MS did not 

moderate the effect of confusion on task performance and learning. These results demonstrate that MS may be a prerequisite 

but is not sufficient for confusion resolution. 
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Appendix 

An example of the multiple-choice question: 

Question: Light from the sun comes to the earth and its energy is absorbed by the atmosphere. What is the relation between 

this absorbed light energy and heat energy absorbed by the earth?  

a. Absorbed light energy increases the amount of absorbed heat energy.  

b. Absorbed light energy decreases the amount of absorbed heat energy.  

c. Absorbed light energy does not change the amount of absorbed heat energy.  

d. Absorbed light energy is not related to absorbed heat energy. 

(Correct answer is a.) 

An example of the short answer question:  

Question: We know that deforestation (cutting down a large number of trees) increases the earth’s absorbed heat energy. 

Explain, step-by-step, how deforestation increases the earth’s absorbed heat energy.  

Step 1:  Deforestation reduces the number of trees on the earth, so more deforestation would decrease vegetation. 

https://dx.doi.org/10.1177/0013164493053003024
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Step 2:  When vegetation decreases,      

Step 3:         


