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Abstract 

The feelings of difficulty and familiarity (FOD and FOF) are two types of metacognitive 

experiences. Both may influence student engagement and the application of metacognitive 

strategies, but these relationships are not well understood, in part because many studies have 

relied on self-report measures of behaviors that may not accurately reflect students’ actual 

behaviors. In this study, FOD and FOF were related to objective measures of off-task behaviors 

and metacognitive strategies. These measures were extracted from 88 sixth graders’ action logs 

within a computer-based learning environment known as Betty’s Brain. Pre- and post-tests were 

administered to assess learning. Results reveal that high-FOD students showed more off-task 

behaviors and fewer strategic behaviors than low-FOD students, particularly when this difference 

was measured in terms of the frequency (as opposed to proportion) of strategic behaviors. FOF 

was not associated with off-task behaviors and metacognitive strategies but emerged as a 

moderator in the relationship between FOD and learning gains. Low-FOD students learned more 

than high-FOD students in the low-FOF group, but such a difference was not found in the high-

FOF group. 

 

Keywords: feeling of difficulty, feeling of familiarity, metacognitive experience, metacognitive 

strategy, off-task behavior 
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1 Introduction 

Metacognitive strategies are important for effective learning in complex domains (Pintrich et al., 

1993), specifically those requiring complex monitoring and control activities (Azevedo & 

Aleven, 2013). As researchers have worked to understand the relationship between 

metacognitive strategies and learning (Ohtani & Hisasaka, 2018; Veenman et al., 1997), they 

have also sought to better understand metacognitive experiences that influence the use of 

metacognitive strategies (Flavell, 1979). In particular, researchers have identified the importance 

of two metacognitive experiences: the feeling of difficulty (FOD) and the feeling of familiarity 

(FOF) (Efklides et al., 1999; Garcia-Marques & Mackie, 2001; Malmberg et al., 2013; 

Whittlesea & Williams, 1998).  

Studies have found that FOD and FOF may be associated with how students approach 

learning tasks, including their engagement and their use of metacognitive strategies (Beckmann 

& Goode, 2014; Patall et al., 2018; Rellinger et al., 1995; Soemer et al., 2019). Most of these 

studies have assessed engagement and metacognitive strategies use via self-report instruments. 

Self-report tools are appropriate for measuring FOD and FOF because they are individuals’ 

subjective feelings. Students are aware of their feelings and use them to guide the regulation of 

learning (Efklides, 2006, 2009). However, self-report measures of behaviors are more 

problematic, with previous research showing that self-report behaviors may be poorly correlated 

with actual behaviors (Azevedo, 2015; Craig et al., 2020). Objective measures, such as those 

extracted from action logs in computer-based learning environments, may be more precise in 

capturing task-specific behaviors and strategies (Rovers et al., 2019).  

Moreover, previous studies have examined the links among FOD, FOF, and learning 

behaviors during such tasks as mathematics problem-solving (Efklides et al., 1999), information 
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searching (Liu et al., 2012), and informative text reading (Soemer et al., 2019). However, no 

study has investigated these relationships in a complex science learning task.  

The current study attempts to address these gaps by exploring the relationship between 

FOD, FOF, learning, and objective measures of strategic and off-task behaviors in learning about 

human thermoregulation within a computer-based learning environment, Betty’s Brain (Biswas 

et al., 2016). Specifically, we compare concrete behavioral measures, as extracted from students’ 

action logs in Betty’s Brain, to awareness of subjective states, including FOD and FOF. The rest 

of the introduction discusses the theoretical distinctions and associations among metacognitive 

experiences, strategies, and knowledge, reviews studies about FOF and FOD, and presents the 

research questions that underpin the current research. 

1.1 Metacognitive knowledge, strategies, and experience 

Metacognition includes three facets: metacognitive knowledge, metacognitive strategies, and 

metacognitive experiences (Efklides, 2008). Metacognitive knowledge primarily refers to 

declarative knowledge and beliefs about self, cognition, and past task-processing experiences. 

Metacognitive strategies refer to the procedural knowledge of how to regulate cognition. 

Examples are monitoring, control, and self-evaluation (Dent & Koenka, 2016). Finally, 

metacognitive experiences refer to experiences that we are consciously aware of while engaging 

in tasks. It takes the form of metacognitive feelings, metacognitive judgments, and online task-

specific knowledge. Metacognitive feelings, such as FOD and FOF, are the products of non-

analytic and nonconscious inferential processes (Efklides, 2006). They reflect how learners feel 

they are doing while engaging in the task. Online task-specific knowledge is the knowledge of 

the task that we are aware of in task processing. It is analytic. Metacognitive judgments are 
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judgments about learning, the demand of a task, the task solution, etc., which can be analytic or 

non-analytic.  

 Nelson and Narens’ (1990) two-level metacognitive system connects metacognitive 

knowledge, strategies, and experiences in a unified framework. This framework distinguishes 

between object-level processing, which describes cognition about the external world, and meta-

level processing, or cognition about cognition. The meta-level receives information about the 

object-level via a monitoring function and sends orders to regulate the object-level activities via 

a control function. The monitoring process uses metacognitive knowledge and triggers 

metacognitive experiences (Efklides, 2006). For example, if the meta-level detects an 

interruption in the object-level activities, learners may experience a feeling of difficulty. 

Learners then draw upon their metacognitive experiences and knowledge to activate the meta-

level control function (Efklides, 2008), which manifests as the application of cognitive skills and 

metacognitive strategies (Efklides, 2006).  

Recently, Efklides’ (2011) metacognitive and affective model of self-regulated learning 

(MASRL) provides an account for the impact of metacognitive experiences on the application of 

metacognitive strategies. In this model, cognitive, metacognitive, motivational, and affective 

factors interact during learning processes. During task processing, metacognitive experiences 

contribute to motivation and affect, which, in turn, modify the evaluation of prior decisions and 

drive behavior regulation. Metacognitive experiences may also influence the metacognitive 

strategy behaviors directly. Overall, as metacognitive experiences, FOD and FOF have 

meaningful theoretical relationships with learning behaviors.  



6 
 

1.2 Feeling of difficulty (FOD) 

FOD describes the subjective feeling that arises when a learner interacts with a task that they are 

unfamiliar with, that demands heavy working memory, or that involves events that are discrepant 

with their knowledge structure (Touroutoglou & Efklides, 2010). As such, it is a product of the 

interaction among individuals’ ability, self-concept, and the task (Efklides et al., 1998; Efklides 

& Tsiora, 2002).   

 FOD is associated with a range of phenomena in cognition around learning. Studies have 

used FOD as a subjective measure of cognitive load and found it related to mental effort 

appraisals, another subjective measure of cognitive load (Ayres, 2006; Schmeck et al., 2015). 

The latter refers to the amount of mental effort investment that learners reported in completing a 

task. FOD may drive effort investment, but if FOD is extremely high, learners may also avoid 

putting effort into the task (van Gog & Paas, 2008).  

Learners who report a higher FOD toward a task tend to exhibit lower situational interest 

(Fulmer & Tulis, 2013), more negative affective experiences (Fulmer & Tulis, 2013), lower 

perceived competency (Tulis & Fulmer, 2013), and less emotional and behavioral engagement 

with the task (Patall et al., 2018). By contrast, other studies have found that FOD is positively 

associated with strategy use during recall tasks (Rellinger et al., 1995) and mathematics problem 

solving (Efklides et al., 1999). The reason may be that FOD promotes effortful and analytic 

information processing (Alter et al., 2007) and triggers metacognitive control functions that 

result in the learner invoking cognitive and metacognitive strategies (Efklides, 2011).  

 Thus, higher FOD has been related to more disengagement in some studies (e.g., Fulmer 

& Tulis, 2013; Patall et al., 2018) but more application of learning strategies in others (e.g., 

Efklides et al., 1999; Rellinger et al., 1995). This raises the question of whether the relationship 
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between disengagement and strategy use is necessarily negative. Thus far, no study has 

investigated the associations among FOD, disengagement, and strategy use together. Moreover, 

the measurements of behaviors in most prior studies were self-reported (e.g., Patall et al., 2018), 

and they may be weakly related to actual disengagement and strategy use (Craig et al., 2020). It 

is, therefore, worth examining the associations between FOD and behavioral measures in 

learning. 

1.3 Feeling of familiarity (FOF) 

FOF arises when the current task is closely tied to previous experiences or when participants 

attribute the fluency on the current task to prior experiences (Efklides, 2006; Whittlesea, 1993). 

The current task can be an exact repetition or semantically related to prior tasks. FOF is not 

based on knowledge and distinct from the feeling of knowing (Efklides, 2009; Kinoshita, 1997), 

which is the probability reported by individuals that they cannot retrieve a piece of information 

now but will be able to do it later on. 

 Educators have suggested that learning material should be related to students’ prior 

experiences (Merrill, 2002; Rivet & Krajcik, 2008), and that FOF may induce situational interest 

in a given task (Alexander et al., 1994; Soppe et al., 2005). Empirically, FOF was associated 

with less mind wandering during reading activities (Soemer et al., 2019). In addition, English as 

a second language learners showed more behavioral and cognitive engagement on familiar oral 

narrative tasks than on unfamiliar tasks (Qiu & Lo, 2016).  

Still, prior experience is not always beneficial (Reder et al., 2007), and familiarity can 

cause interference. For example, Beckmann and Goode (2014) found that students in a 

semantically familiar context acquired less knowledge about abstract scientific principles and 

performed worse in a subsequent task than students in a less familiar context. Further analyses 
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found that the former held more a priori assumptions about the scientific principles than the 

latter, although they had no difference in prior knowledge. Students with more a priori 

assumptions tended to use less systematical exploration strategy during learning. The researchers 

concluded that students may form many a priori assumptions in a semantically familiar context 

but do not systematically test these assumptions during learning. 

 Likewise, Garcia-Marques and Mackie (2001) discussed what they call the familiarity-

stereotype effect, which refers to the phenomenon that FOF promotes non-analytic information 

processing, while unfamiliarity induces analytic processing. This finding aligns with research 

showing that FOF increases the feeling of knowing (Reder & Ritter, 1992; Schwartz & Metcalfe, 

1992), and when learners think they know something, they put less effort into studying it 

(Metcalfe, 2009). Indeed, Sockalingam and Schmidt’s (2013) work on problem-based learning 

found that unfamiliar problems stimulated the most questioning and reasoning behaviors.  

 To summarize, higher FOF has been related to less behavioral disengagement in some 

studies (Qiu & Lo, 2016; Soemer et al., 2019) but less analytic cognitive processing and strategy 

use in the others (Garcia-Marques & Mackie, 2001; Sockalingam & Schmidt, 2013). Again, 

these findings raise the question of whether disengagement is negatively related to strategy use. 

No study has investigated the associations among FOF, disengagement, and strategy use 

together. Moreover, the role of FOF in learning complex scientific phenomena is not yet 

understood (Beckmann & Goode, 2014). 

1.4 Current research 

Self-report measures of disengagement and metacognitive strategies have been related to FOD 

and FOF (Patall et al., 2018; Qiu & Lo, 2016). It is not clear that the same patterns will hold 

when behavioral measures of disengagement and metacognitive strategies are utilized, given the 
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differences between self-report and behavioral measures of these constructs (Craig et al., 2020). 

These relationships have also not yet been studied in the context of learning complex scientific 

phenomena. This study addresses these gaps in the context of learning human thermoregulation 

within a computer-based environment, Betty’s Brain (Biswas et al., 2016). Students’ action logs 

in Betty’s Brain can be used to extract behavioral measures of disengagement and metacognitive 

strategies. Therefore, the first two research questions are: what are the relationships among FOD, 

FOF, and off-task behaviors as an indicator of disengagement (RQ1) and the relationships 

among FOD, FOF, and metacognitive strategy behaviors (RQ2)?  

RQ2 explores the relationships between FOD, FOF, and two different measures of 

metacognition, namely the frequency of the various types of behaviors (RQ2.1) and the 

proportion of them that can be classified as metacognitive (RQ2.2). We consider both 

frequencies and proportions because they may have different associations with FOD and FOF. 

For example, previous research (Alter et al., 2007; Garcia-Marques & Mackie, 2001) has found 

that high FOD and low FOF may be related to effortful and analytic cognitive processing. 

Meanwhile, Evans and Stanovich (2013) suggest that analytic processing is slower than non-

analytic cognitive processing. If students with high FOD and low FOF have slower cognitive 

processing, we might expect them to execute fewer actions and metacognitive strategies (e.g. a 

lower frequency).  

Likewise, we consider the proportion of each behavior type that reflects metacognition.  

Betty’s Brain includes six behavioral categories (e.g., reading and taking quizzes), five of which 

were subclassified as metacognitive and not metacognitive. For example, reading behaviors were 

classified as metacognitive when they were coherent with quiz results preceding them because 

the coherence suggested that the student might intentionally seek relevant information to 
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improve their understanding based on the quiz result (see section 2.3.2). This allowed us to 

calculate the proportion of each behavioral category (e.g., reading) that was metacognitive for 

each student.    

Analytic cognitive processing allows learners to identify discrepancies between their 

progress and their learning goal and may trigger the application of metacognitive strategies to 

regulate cognition (Efklides, 2011). Such processing might lead to lower frequency of strategy 

use but a relatively high proportion of strategy use in Betty’s Brain, given that students’ time on 

Betty’s Brain was not strictly limited. Although students with high FOD may conduct 

metacognitive strategies less frequently than those with low FOD due to slow cognitive 

processing, the two groups’ proportions of metacognitive strategy behaviors may be close. 

Similarly, the low-FOF group’s proportion of metacognitive strategy behaviors may be close to 

the high-FOF group’s. Thus, we may expect no difference in the proportion of metacognitive 

strategy behaviors between the high- and low-FOD groups and between the high- and low-FOF 

groups, or that the differences are larger in the frequency than in the proportion. 

 More off-task behaviors and fewer metacognitive strategy behaviors may impair learning, 

and empirical studies have found associations among FOD, FOF, and task performance in 

mathematics (Efklides et al., 1998; Yang et al., 2019). Thus, the third research question is 

(RQ3): what are the relationships among FOD, FOF, and learning gains (operationalized as the 

change between pre- and post-test scores) in learning about complex scientific phenomena? 

It is worth noting that FOD and FOF are not mutually exclusive. For example, FOD may 

increase when the task is familiar but demands a heavy working memory load (Touroutoglou & 

Efklides, 2010). Consequently, FOD and FOF may interactively impact the learning process. 
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Thus, we test the interaction between FOD and FOF on learning behaviors (in RQ1 and RQ2) 

and learning gains (in RQ3). 

2 Methods 

2.1 Betty’s Brain 

Betty’s Brain is a computer-based learning environment where students learn about scientific 

phenomena such as climate change and thermoregulation (Biswas et al., 2016). It uses a 

learning-by-teaching approach: students learn science by teaching a virtual agent named Betty. 

Teaching consists of building a causal map about the scientific phenomenon in which causal 

relationships are represented by directed causal links among concepts (see Fig. 1). To build this 

map, students have access to hypermedia resource pages on relevant scientific concepts (Science 

Book in Fig. 1). Students can evaluate their causal map by having Betty answer questions. By 

looking at Betty’s correct and incorrect answers (see Fig. 1), students can identify problems in 

their causal map (e.g., incorrect links). They improve their understanding and fix the problems in 

the map by reading relevant resource pages and revising the incorrect links. 

There is a virtual pedagogical agent, Mr. Davis, who provides students with support for 

building the map. If the student is not making progress (e.g., “quiz score has not improved in the 

students’ last five attempts at updating their map”), Mr. Davis may prompt students to read 

resource pages containing information that could improve the causal map (e.g., “You should go 

and read the page on Heat Loss”). 

In this study, students learned about human thermoregulation—the human body’s 

processes when exposed to cold temperatures. Thermoregulation is a complex physiological 

phenomenon, and a basic understanding of it is essential for studying biology and biology-related 
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disciplines (Tansey & Johnson, 2015). The text about this topic in Betty’s Brain had 15 pages 

and 1974 words, covering 13 scientific concepts and 15 causal links. 

 

Fig. 1  

Screenshot of Viewing Quiz Results in Betty’s Brain 

Note. The upper right shows the quiz questions, answers, and grades. The fourth question, which 
was answered incorrectly, was selected, and the concepts and links that Betty used to answer this 
question were highlighted. 

2.2 Participants and procedures 

During the 2018-2019 school year, data were collected from 88 sixth graders from four 

classrooms in a southern US urban public school. The school served around 700 students in 

grades 5–8 and reported a student population that was 60% White, 25% Black, 9% Asian, and 

5% Hispanic. Around 8% were enrolled in the free and reduced-price lunch program. No 

demographic data were collected from individual students due to privacy issues.  
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The study lasted six school days, during which time students worked individually on 

laptops (but were often seated at tables of 4-5 students). On day 1, students spent 30–45 minutes 

completing a paper-based pre-test. On day 2, they received a 30-minute training about how to 

use Betty’s Brain. In the next three days, they spent around 30 minutes per day teaching Betty 

about thermoregulation by constructing the causal map. On the final day, students first 

completed a metacognitive experience questionnaire and a science anxiety questionnaire (not 

included in this study), and then, a post-test. The metacognitive experience questionnaire 

contained items that asked about students’ FOD and FOF toward the Betty’s Brain unit on 

thermoregulation (current unit) and a unit on climate change that was completed one month 

before the current study. As it had been one month after learning about climate change, FOD and 

FOF toward this unit might not be as accurate as students’ FOD and FOF toward the human 

thermoregulation unit. Thus, we did not analyze the associations among FOD, FOF, learning 

behaviors, and learning gains in the climate change unit. 

2.3 Measures 

2.3.1 Metacognitive experiences 

Based on Efklides’ (2002) work, two items were used to measure FOD and FOF. Research has 

shown that the one-item measures of metacognitive experiences were consistent over the course 

of solving a task in a computer-based learning environment (Dindar et al., 2020). The FOD item 

asked students to rate “how hard was the Betty’s Brain’s unit on thermoregulation”1. The choices 

included 1 = very easy, 2 = easy, 3 = neither, 4 = difficult, and 5 = very difficult. The FOF item 

 
1 Readers unfamiliar with Betty’s Brain may think the question is asking the difficulty of the concept of 
thermoregulation rather than the difficulty of learning thermoregulation. However, a Betty’s Brain unit mainly refers 
to the task of building a causal map for the unit rather than the unit’s resource book. We believe that students 
considered the Betty's Brain’s unit on thermoregulation in terms of this perspective because they had received 
training on Betty’s Brain and used the system for several days. 



14 
 

asked students to rate “how familiar were you with the science concepts in the thermoregulation 

unit”. The choices included 1 = very unfamiliar, 2 = unfamiliar, 3 = neither, 4 = familiar, and 5 

= very familiar. It is worth highlighting that metacognitive experiences are subjective 

experiences that students are aware of (Efklides, 2006, 2009). Thus, we argue that it is 

reasonable to assess students’ metacognitive experiences via self-report questionnaires.  

Past research has primarily used four, five, seven, or ten response categories for FOD and 

FOF items (e.g., Efklides et al., 1999; Efklides, 2002; Fulmer & Tulis, 2013; Liu et al., 2012; 

Touroutoglou & Efklides, 2010; Tulis & Fulmer, 2013; Soemer et al., 2019). However, seven 

and ten-point scales were mainly used in samples of older students such as undergraduates (Liu 

et al., 2012; Touroutoglou & Efklides, 2010). Borgers et al. (2004) suggested that fewer response 

categories may be better when the participants are children. Offering four or five categories 

rather than more may reduce the cognitive load when participants respond to the item (Dillman 

et al., 2014). Thus, four or five categories may be appropriate for sixth graders. We chose a five-

point scale rather than a four-point scale to allow neutral responses if students felt that the task 

was neither difficult nor easy or neither familiar nor unfamiliar. 

Similar items measured FOD and FOF toward the climate change unit. Although we did 

not analyze the data in the climate change unit, the differences in FOD and FOF between the 

climate change and thermoregulation units may provide evidence about the validity of FOD and 

FOF measurements. Both units’ Flesch–Kincaid reading grade levels were 8.0, but students felt 

that the climate change unit was easier than the thermoregulation unit (t = 3.38, df = 87, Cohen’s 

d = 0.36, p = .001). They felt more familiar with the climate change unit than the 

thermoregulation unit (t = 11.71, df = 87, Cohen’s d = 1.26, p < .001). The differences match our 

expectations as climate change is a relatively popular science topic. Young people (aged 12-25) 
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are likely to know something about climate change and have interests and concerns about it 

(Corner et al., 2015). The concepts of climate change (e.g., carbon dioxide and greenhouse 

effect) may be more common than the concepts of human thermoregulation (e.g., cold detection 

and hypothalamus response) in modern media. Thus, the differences in FOD and FOF between 

the two units may provide evidence that the FOD and FOF items measured what they intended to 

measure, i.e., construct validity. 

2.3.2 Metacognitive strategies 

Metacognitive strategies were inferred using coherence analysis, a process that identifies 

coherent actions (Segedy et al., 2015). Coherent actions are two ordered actions where the first 

action generates information supporting the second action. For instance, in Fig. 1, the quiz results 

could inform students that the question about the causal relation between cold temperature and 

detection was answered incorrectly. After viewing these quiz results, if students read the 

resource pages that contains information about the relationship between the two concepts, the 

viewing and the reading actions are defined as coherent. The two actions need not be 

consecutive, but their time interval is restricted to avoid coincidental connections. Prior research 

in Betty’s Brain found that students usually use information within 5 minutes of encountering the 

information (Segedy, 2014). The proportion of actions not supported by prior actions within 5 

minutes was negatively related to map scores (the number of correct causal links minus the 

number of incorrect links), while the proportion of information that was used within 5 minutes 

was positively related to map scores and the change between pre-test and post-test scores 

(Segedy et al., 2015). Thus, we set the interval restriction for the current study to 5 minutes.  

To execute coherent actions, students must monitor previous cognitive activities and the 

information generated by previous activities (the first action and its results, e.g., viewing quiz 
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results generated the information that the link chain between cold temperature and detection was 

wrong). Then, they need to regulate the current behavior (the second action, e.g., reading 

resource pages about concepts involved in the link chain) based on the received information. 

Therefore, coherent actions may suggest the use of metacognitive strategies (Segedy et al., 2015; 

Authors, 2020). 

The Betty’s Brain system logs all of the actions a student perform along with the context 

in which they were performed. This makes it possible to evaluate whether a series of actions 

represents a coherent strategy or a more random approach. Previous work on Bettty’s Brain has 

operationalized coherence by evaluating actions in five minute time intervals (Authors, 2020), an 

approach that we follow here. Specifically, we used the log files to label five types of coherent 

actions:  

1. Coherent viewing: viewing quiz results that were semantically consistent with 

subsequent actions. This consistency suggests that students were monitoring (e.g., 

Dent & Koenka, 2016) the information they had collected and deliberately using it in 

subsequent actions (Authors, 2020).  

2. Coherent editing: making edits (additions, deletions, or other changes) to the causal 

map in a way that is consistent with content students had just seen in the virtual 

textbook or in one of the quizzes. This suggests that students were using control 

strategies (e.g., Dent & Koenka, 2016) to edit the concept map in accordance with the 

information they had just acquired (Authors, 2020). 

3. Coherent reading: reading a resource page that reflects feedback (either the quiz 

results or the comments from Mr. Davis) that the student has just received (Biswas et 
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al., 2016). This suggests the student intentionally (e.g., with control) sought relevant 

information to improve their understanding based on the quiz result (Authors, 2020). 

4. Coherent marking: marking (an annotation feature in the causal map) in a way that 

reflects recent quiz results. This suggests that the student understood what links on 

their map were correct or incorrect and annotated them accordingly. Coherent 

marking might represent constructive monitoring behaviors because the marking 

action translates quiz results into systematic checking of the causal maps (Authors, 

2020). 

5. Coherent feedback: receiving feedback from Mr. Davis that is consistent with 

subsequent reading actions. In other words, the student received a prompt and then 

read the resource it suggested. This variable assessed whether students took 

advantage of the feedback from the learning environment and might reflect control 

behaviors. 

 Non-coherent actions also occur in Betty’s Brain, and may be effective or ineffective. For 

example, consider a non-coherent reading action that occurs when a student reads a resource 

page that does not contain information useful for improving the causal map. Prior to this reading 

action, the causal links of this page had already been correctly added to the causal map. The 

reason that the student does this reading action may be: (1) they fail to regulate behaviors based 

on the current progress and unnecessarily (perhaps haphazardly) read this page, or (2) they feel 

they do not understand the content of this page thoroughly and reread the page to reinforce their 

knowledge. The first reason suggests an ineffective strategy, but the second reason may suggest a 

more effective strategy, such as the monitoring (they were aware of insufficient understanding) 
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and control strategy (they decided to reread the page). We could not distinguish these reasons 

based on the action log, so we did not analyze the efficacy of non-coherent actions. 

For each kind of coherent action, we calculated two measures: the frequency (number) 

per minute and the proportion (i.e., the ratio of the number of coherent reading actions to the 

number of reading actions).  We excluded actions that were too brief, including viewing (quiz 

results) actions shorter than 2 seconds and reading (resource pages) actions less than 10 seconds 

(no matter if these actions were coherent or not). These actions were unlikely to reflect the use of 

a metacognitive strategy (Segedy et al., 2015). For example, a very short time on viewing quiz 

results might indicate that students just skimmed the quiz results without analyzing the link’s 

correctness.  

2.3.3 Off-task behavior 

We defined off-task behaviors as cases where, within a period at least 5 minutes long, students 

did none of the following actions: (1) stay in a resource page for at least 30 seconds, (2) stay in a 

quiz result for at least 30 seconds, (3) edit a link, or (4) mark a link in Betty’s Brain. Off-task 

behaviors also included cases where students stayed in a page or quiz result for more than 10 

minutes, substantially longer than the time needed to read a page or interpret a quiz result 

carefully. We calculated the proportion of time on these behaviors as a measure of off-task 

behavior: the ratio of the time on these behaviors to the total time on Betty’s Brain (including the 

off-task time). This metric was negatively related to the performance in Betty’s Brain in prior 

research (r = -.46; Segedy et al., 2015). The proportion of off-task time has also been used as an 

indicator of behavioral disengagement in other learning environments (Godwin et al., 2021; 

Henrie et al., 2015). 
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2.3.4 Knowledge tests 

The pre- and post-tests assessed students’ knowledge of human thermoregulation and causal 

relationships. They were identical both in form and content. The test contained four causal 

reasoning items, eight multiple-choice items, and four short-answer items. A causal reasoning 

item consisted of a causal map, where abstract concepts (i.e., concepts were named X, Y, etc.) 

were connected unidirectionally, and a question about the map (e.g., If X decreases, what will 

happen to concept Y?). Each question had four choices: Y will (1) increase, (2) decrease, (3) not 

be affected, (4) depend on which causal relations are stronger. Multiple-choice items tested 

students’ knowledge of the thermoregulation domain, and each had four choices. Students got 

one point if they answered a causal reasoning or multiple-choice item correctly. Short-answer 

items asked students to explain the human body’s responses to cold temperatures based on their 

understanding of the causal relations among concepts in the domain. The correct answer to each 

item contained three to five successive causal links between a relevant set of concepts. A student 

got one point if their answers had one link the same or close to a link in the correct answer. The 

maximum possible test score was 27. Coefficient alpha was 0.60 and 0.80 for the pre- and post-

tests, respectively. Coefficient alpha was a little lower in the pre-test because some items were 

answered correctly by only a few students, causing low variances in these item scores and low 

correlations between these item scores and the overall pre-test score. In the post-test, more 

students gave correct answers to these questions, indicating learning. Thus, these questions were 

kept in both the pre- and post-tests. 

2.4 Analyses 

The distributions of FOD and FOF were skewed (see Table 1). For FOD, there were few very 

easy, easy, or neither responses. For FOF, there were few very familiar, familiar, and neither 
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responses. Treating these variables as continuous might therefore lead to biased results. Thus, we 

divided students’ ratings for each variable into two categories: high-FOD (ratings of difficult and 

very difficult) and low-FOD (ratings of neither, easy, and very easy), as well as high-FOF 

(ratings of neither, familiar, and very familiar) and low-FOF (ratings of unfamiliar and very 

unfamiliar). This division was based on the meaning of the rating options and the consideration 

of as much size balance across groups as possible. Putting neither and easy or unfamiliar options 

together did not mean that the neither option had the same valence for students as the easy and 

unfamiliar options. Instead, it emphasized that the students who selected difficult options 

perceived the task as more difficult than those selecting neither and easy options, and that 

students who selected neither and familiar options perceived the task as more familiar than the 

students selecting unfamiliar options. The division generated four groups: high-FOD and high-

FOF (N = 10), high-FOD and low-FOF (N = 49), low-FOD and high-FOF (N = 15), as well as 

low-FOD and low-FOF (N = 14).  

Table 1  

The Distribution of FOD and FOF 

FOD/FOF Very unfamiliar Unfamiliar Neither Familiar Very familiar 

Very easy 1 1 1 0 0 

Easy 2 5 2 2 2 

Neither 2 3 3 4 1 

Difficult 15 16 3 2 0 

Very difficult 14 4 3 1 1 

 
The normality and homogeneity assumptions of most of the response variables, such as 

the frequency of coherent actions, were violated, and groups were unbalanced in size. Thus, we 

used non-parametric tests to examine the associations among FOD, FOF and the other variables. 
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Specifically, to examine the associations between FOD, FOF, and the proportion of off-task time 

(RQ1), we conducted a robust two-way ANOVA with 10% trimmed means (a robust measure of 

means that ignores the top and bottom 10% of data; Wilcox, 2011). The robust test is satisfactory 

even when normality and homoscedasticity assumptions are violated (Wilcox, 2011). The robust 

ANOVA produces a χ2-distributed test statistic, Q. The p-value is calculated by comparing Q 

with an adjusted significance criterion (i.e., α value), so the degrees of freedom (df) are not 

reported (Mair & Wilcox, 2020). The robust ANOVA was implemented within the WRS2 

package in R (Mair & Wilcox, 2020). 

To examine the association between FOD, FOF, and coherent actions (RQ2.1 and 

RQ2.2), we conducted a robust two-way ANOVA with 10% trimmed means for each coherent 

metric. We used the Benjamini-Hochberg correction to control the false discovery rate (FDR) 

across multiple tests. This correction adjusts the α value rather than the p-value, so we only 

marked a result  as statistically significant if its p-value was lower than the adjusted α value (the 

initial α was 0.05). We computed the partial omega squared statistics (!!")  since this metric is 

recommended for the comparison of effects across analyses with the same design (Lakens, 

2013). It is an estimate of the proportion of response variables’ variances accounted for by 

predictors. A rule of thumb for its interpretation is that .01 ~ .06, .06 ~ .14, and greater than .14 

correspond to small, medium, and large effects, respectively (Field, 2013). 

To examine the associations between FOD, FOF, and test scores (RQ3), we conducted a 

three-way, rank-based repeated ANOVA with the R package nparLD2 (Noguchi et al., 2012). 

Test time (pre and post) was the within-subject factor, and FOD and FOF were between-subject 

factors yielding four groups (high/low FOD × high/low FOF). The repeated ANOVA produces 

 
2 We did not use the WRS2 package because it did not offer the three-way repeated ANOVA.  
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an ANOVA-type statistic (ATS), which can be approximated by the F distribution with an 

infinity df in the denominator (Brunner & Puri, 2001). The nparLD package also generates the 

relative treatment effect, and an increase/decrease in this effect between test time represents an 

increase/decrease in the test scores.    

3 Results 

Table 2 displays the means, standard deviations, and Kendall’s Tau correlations among raw 

variables in this study. FOD was negatively correlated with FOF. Neither were correlated with 

the proportion of off-task time. FOD was negatively correlated with four coherence metrics, 

while FOF was only positively correlated with the proportion of coherent viewing. FOD and 

FOF were not correlated with pre-test scores, and we, therefore, did not use pre-test scores as a 

covariate when examining the relationships among FOD, FOF, off-task behaviors, and coherent 

metrics. 
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 Table 2  
Descriptive statistics and Kendall’s Tau correlations among raw variables 

Note. a: F. Co. edits, the frequency of coherent edits per minute. b: P. Co. edits, the proportion of coherent edits. * p < α adjusted by 
the Benjamini-Hochberg correction. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. FOD  - 
              

2. FOF  -.30* - 
             

3. Off-task behavior .09 .03 - 
            

4. F. Co. edits a -.19 .06 -.36* - 
           

5. F. Co. marking -.21* .01 -.06 .30* - 
          

6. F. Co. viewing -.26* .10 -.20 .51* .46* - 
         

7. F. Co. read -.15 -.03 -.25* .33* .16 .32* - 
        

8. F. Co. feedback -.24* .07 -.27* .50* .31* .46* .39* - 
       

9. P. Co. edits b -.10 .03 -.12 .33* .12 .23* .38* .31* - 
      

10. P. Co. marking -.08 -.08 .04 .19 .35* .38* .13 .18 .06 - 
     

11. P. Co. viewing -.22* .21* -.19 .30* .10 .32* .28* .27* .08 .01 - 
    

12. P. Co. read -.19 .03 -.15 .30* .26* .38* .33* .42* .10 .32* .31* - 
   

13. P. Co. feedback -.16 .03 -.12 .19 .20 .24* .32* .57* .28* .11 .13 .24* - 
  

14. Pre-test .03 -.10 -.20 .19 .20 .14 .03 .19 -.02 .08 .08 .10 .07 - 
 

15. Post-test -.14 .05 -.22* .40* .36* .28* .13 .33* .16 .24 .11 .21 .20 .34* - 

Mean 3.72 2.09 .08 .38 .05 .41 .23 .07 .80 .73 .60 .77 .37 4.84 8.34 

SD 1.11 1.16 .13 .25 .05 .30 .13 .06 .17 .34 .19 .18 .21 2.03 3.78 
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3.1 Off-task behavior 

Fig. 2 displays different groups’ proportions of off-task time. The robust ANOVA reveals a main 

effect of FOD (Q = 6.55, !!"= .05, p = .03). High-FOD students showed a greater proportion of 

off-task time than low-FOD students. There was neither a main effect of FOF (Q = 1.25, 

!!"= .00, p = .28) nor an interaction between FOD and FOF (Q = 0.33, !!"= .00, p = .55). 

 

Fig. 2  

The Proportion of Off-Task Time in Different Groups 

Note. Rhombuses represent the trimmed means. FOD: feeling of difficulty. FOF: feeling of 

familiarity. 

3.2 Coherent actions 

Fig. 3 and 4 display the frequency and proportion of various coherent actions. Overall, low-FOD 

groups showed greater frequency and proportion of coherent actions than high-FOD groups, but 

the differences between high-FOF and low-FOF groups were not consistent. The results of the 

robust ANOVA matched the figures, which were displayed in Table 3. A main effect of FOD 
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was found on all measures of coherent actions (Q = 4.60 ~ 11.63, p < adjusted α), except the 

proportion of coherent edits (Q = 1.11, p = .30). There was no effect of FOF (Q < 2.6, p > 

adjusted α) or interaction between FOD and FOF (Q <= 4.71, p > adjusted α) on any coherent 

metrics.  

Fig. 3  

The Frequency of Coherent Actions Per Minute in Different Groups 

Note. Rhombuses represent the trimmed means. FOD: feeling of difficulty. FOF: feeling of 

familiarity. 
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Fig. 4  

The Proportion of Coherent Actions in Different Groups 

Note. Rhombuses represent the trimmed means. FOD: feeling of difficulty. FOF: feeling of 

familiarity. 

 

For coherent edits, viewing, read, and feedback, the effect sizes of FOF on the frequency 

metric were greater than on the proportion metric. Such differences reached 0.11 for coherent 

edits and 0.14 for coherent feedback. Moreover, there was a statistically significant difference in 

the frequency of coherent edits between high-FOD and low-FOD students but no difference in 

the proportion of coherent edits. The !!" of FOF and the interaction was negligible or small on 

all coherent metrics and was not statistically significant. 

 

Table 3  
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The robust ANOVA results on the frequency and proportion of coherent actions 

Measures 
FOD FOF interaction 

Q !!" Q !!" Q !!" 

Coherent edits 
Frequency 6.39 .12* 1.54 .00 4.71 .04 

Proportion 1.11 .00 0.06 .00 0.15 .00 

Coherent marking 
Frequency 5.80 .04* 1.42 .00 0.18 .00 

Proportion 7.33 .04* 1.04 .00 1.07 .00 

Coherent viewing 
Frequency 11.63 .12* 1.09 .00 2.85 .02 

Proportion 4.60 .09* 2.60 .01 1.03 .00 

Coherent read 
Frequency 7.64 .07* 0.74 .00 0.36 .00 

Proportion 7.72 .05* 0.65 .00 0.02 .00 

Coherent feedback 
Frequency 12.93 .17* 0.84 .01 0.00 .00 

Proportion 6.39 .03* 0.37 .00 0.81 .00 

Note. * p < adjusted α.  

3.3 Learning 

Table 4 displays the means and standard deviations of test scores and their ranks. In all groups, 

students scored higher in the post-test than in the pre-test. The non-parametric repeated ANOVA 

revealed a main effect of test time (FATS,1,∞ = 108.71, p < .001) and a three-way interaction 

between FOD, FOF, and test time (FATS,1,∞ = 5.58, p = .02). The main effects of FOD and FOF, 

as well as all two-way interactions, were not statistically significant (FATS,1,∞ < 1.40, p > .24). 

 Fig. 5 depicts the change in relative treatment effects from the pre-test to the post-test, 

which represented learning gains. Within the high-FOF group, there was no difference in both 

pre-test and post-test scores between high-FOD and low-FOD students. Within the low-FOF 

group, high-FOD and low-FOD students also had no difference in the pre-test scores, but a 

statistically significant difference appeared in the post-test scores. To further investigate the 

three-way interaction, we conducted a two-way non-parametric repeated ANOVA (FOD × time) 
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within each FOF group. The results showed that there was an interaction between time and FOD 

within the low-FOF group (FATS,1,∞ = 6.27, p = .01) but not in the high-FOF group (FATS,1,∞ = 

1.03, p = .31). Thus, within the high-FOF group, learning gains were the same across FOD 

ratings, but within the low-FOF group, low-FOD students learned more than those with high-

FOD. 

Table 4  

The Original Test Scores and Their Ranks 

Mean (SD) 
Test scores Ranks 

Pre Post Pre Post 

High-FOD  high-FOF 4.20 (1.55) 9.10 (4.94) 49.45 (28.07) 113.6 (39.39) 

High-FOD  low-FOF 4.73 (1.91) 7.41 (3.22) 60.80 (38.63) 100.23 (43.39) 

Low-FOD  high-FOF 5.17 (2.62) 8.90 (4.36) 66.43 (46.93) 110.70 (60.30) 

Low-FOD  low-FOF 4.93 (2.03) 9.93 (3.58) 60.79 (37.98) 129.36 (33.97) 

  

Fig. 5  

The Relative Treatment Effect on Test Scores with 95% Confidence Intervals 

Note. FOD: feeling of difficulty. FOF: feeling of familiarity. 
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4 Discussion 

This study found that FOD was related to various aspects of the learning process, including off-

task behaviors, coherent actions, and learning gains. FOF was not related to off-task behaviors 

and coherent actions, but it moderated the association between FOD and learning gains. In the 

low-FOF group, students with high-FOD learned less than the low-FOD students, but this pattern 

did not repeat within the high-FOF group. 

 The high-FOD group engaged in more off-task behaviors and fewer coherent actions. 

This result is in line with prior research, where participants read fewer content pages in a 

difficult information searching task than in an easy task (Liu et al., 2012). FOD is associated 

with disfluency and may be related to more analytic but slower task processing (Touroutoglou & 

Efklides, 2010). Thus, high-FOD students might need more time for analyzing collected 

information and executing coherent actions than low-FOD students. Moreover, FOD indicates 

cognitive load (Ayres, 2006); when perceived cognitive load is overwhelming, learners may 

exert little or no effort (Feldon et al., 2019). Due to exerting little effort, high-FOD students 

might engage in more off-task behaviors than low-FOD students.  

 High-FOD students also had a lower proportion of coherent actions than low-FOD 

students. The reason for this relationship may be that FOD is associated with cognitive skills and 

self-concept (Efklides, 2006), which may impact the application of strategy to regulate learning 

(Efklides, 2011). However, the difference in the proportion of coherent action was smaller than 

in the frequency of coherent actions. The inconsistent differences between the proportion and 

frequency of coherent actions may be explained by the notion that FOD may trigger analytic 

cognitive processing (Alter et al., 2007; Efklides, 2009). Although the analytic processing is 

slow, it may alert learners to the discrepancy between progress and goals and trigger the 
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application of metacognitive strategies to regulate learning (Efklides, 2011). Therefore, for high-

FOD students, experiencing FOD might mitigate the disadvantage in applying metacognitive 

strategies caused by factors such as low cognitive skills and self-concept. Nevertheless, the 

results of this study can only serve as indirect and weak evidence for the claim that FOD may 

trigger learners’ self-regulation (Efklides, 2009), which requires further examination.  

 In our results, FOF was not related to the proportion of off-task time and coherent action 

measures. The finding is inconsistent with prior research (Soemer et al., 2019; Qiu & Lo, 2016). 

One possible reason is related to the specificity of the FOF measurement. In the current research, 

the learning material was about human thermoregulation and contained 1,974 words and 13 

scientific concepts. The FOF item asked students’ general familiarity with human 

thermoregulation rather than the 13 concepts. By contrast, in Soemer et al.’s (2019) study, the 

learning material was also text about science, but it was much shorter (426 words) and focused 

on a more limited biological system, the human lung. In Qiu and Lo’s study (2016), English 

learners completed oral narrative tasks within minutes. Examples of task topics were finding a 

lost item and a job. FOF in Soemer et al.’s and Qiu and Lo’s studies was specifically toward the 

task rather than a more general concept, thus, the measurement of FOF may be more specific in 

these studies than in the current research. Learners in the current research might recall 

experiences related to human thermoregulation but not the 13 concepts in mind when they 

reported FOF. When learners with high FOF actually started the task, they found that they did 

not know the learning content. In this case, the familiarity-stereotyping effect would not appear 

because the familiarity-stereotype did not fit the context (Garcia-Marques et al., 2016). This 

possibility is consistent with the dissociation between FOF and pre-test scores in the current 

study (see Table 2). Consequently, high-FOF students might put effort into studying and adopt 
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more analytic processing like their low-FOF counterparts. It is worth noting that the lack of 

association between FOF and test scores does not mean that the measure of FOF was nonreliable. 

FOF is the product of a non-analytic inferential process and based on experiences rather than 

knowledge (Whittlesea, 1993).  

The inconsistent findings raise the question about how the overall FOF toward a task is 

related to FOF toward subtasks, as well as how they are differentially related to learning 

behaviors and gains. For instance, in Betty’s Brain, further research may examine the association 

between FOF toward single concepts and the overall FOF as well as the difference between the 

average FOF toward single concepts and the overall FOF. Answers to these questions may 

inform us about how FOF toward subtasks influence the formation of the overall FOF and how 

to choose the FOF measurement. Moreover, the difference in the associations between various 

FOF and learning is also critical because of practical implications. If only FOF specific toward 

the material can facilitate learning, teachers may need to demonstrate the link between learning 

material and students’ experiences as concretely as possible. 

 We expected that low-FOD students would learn better than high-FOD students, but this 

was only true in the low-FOF group. This result may be explained by the mere-exposure effect, 

which refers to the phenomenon that people tend to rate repeated stimuli likable because of 

familiarity (Hansen & Wänke, 2009). FOD was negatively associated with joy (Tornare et al., 

2015) and situational interest, and positive affect decreased more among students with high-FOD 

than those with low-FOD over the task process (Fulmer & Tulis, 2013). Within the high-FOF 

group, the mere-exposure effect might mitigate the undesirable association between affect and 

FOD by maintaining student interest and positive affect, and thus, lead to no learning difference 

between low-FOD and high-FOD students.  
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4.1 Implications 

This study’s results suggest that FOD may have extensive impacts on learning, including off-task 

and strategic behaviors and learning gains. However, these results do not imply that teachers 

should avoid difficult material. The scientific topic of human thermoregulation in this study was 

challenging for sixth graders: 67% of students rated it as difficult or very difficult. Medium 

difficulty material, by contrast, may motivate students (Lupo et al., 2019). Moreover, instead of 

avoiding difficult material, it is crucial to provide cognitive and metacognitive scaffolding to 

students because such support may mitigate students’ FOD toward challenging material 

(Efklides, 2006). For example, guiding students to set realistic goals may decrease FOD (Guthrie 

et al., 2013). In Betty’s Brain, this may be achieved by supporting students in decomposing the 

map building task into small subtasks. 

 This study’s findings support the notion that learning material should be linked to 

students’ prior experiences (Rivet & Krajcik, 2008). FOF was not related to any learning 

behavior metric, but it moderated the relationship between FOD and learning gains. In cases 

where students lack relevant experiences, teachers may use educational technologies, such as 

computer-based simulations (D’Angelo et al., 2014; Winn et al., 2006), to familiarize students 

with the topic before studying the exact content. Nevertheless, some unfamiliarity can be helpful. 

For instance, unfamiliarity may suppress heuristic and non-analytic information processing via 

eliminating the familiarity-stereotype effect (Garcia-Marques & Mackie, 2001) and trigger 

advanced cognitive activities, such as questioning and reasoning (Sockalingam & Schmidt, 

2013). Thus, students’ prior experiences and FOF need to be carefully considered while 

designing learning tasks. 
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 Overall, this study highlights the role of metacognitive experiences in the learning 

process. Metacognitive knowledge and strategies have been receiving considerable attention, but 

metacognitive experiences are relatively underexplored. Although this study only investigated 

the association between metacognitive experiences and behaviors, these experiences also interact 

with affect and motivation (Efklides, 2009). Examining the interactions among metacognitive 

experiences, behaviors, affect, and motivation will generate a comprehensive understanding of 

metacognitive experiences in learning.   

4.2 Limitation and further research 

FOF and FOD were retrospective in this study. Thus, no causal effect between them and learning 

behaviors can be concluded from the data available. Further studies may, for instance, present 

tasks with different difficulty levels to the same individuals and measure both prospective and 

retrospective FOD toward each task. At the student-level, testing the associations between 

prospective FOD and learning behaviors examines whether FOD influences learning behaviors. 

At the task-level, whether individuals apply metacognitive strategies differently when FOD 

differs provides understanding about the within-students variability in the application of 

metacognitive strategies across different FOD levels (also see Malmberg et al., 2016). 

We operationalized metacognitive strategy use by analyzing the coherence of student 

actions within Betty’s Brain. This definition is conceptually reasonable, since prior studies have 

found meaningful links between coherent actions, learning, and affect (Segedy et al., 2015; 

Authors, 2020), but it is worth further investigating the reliability and validity of such definition 

by triangulating our findings with other methods. For example, future research could use well-

established frameworks to collect and code think-aloud data in terms of SRL strategies (Azevedo 

& Cromley, 2004). In particular, we could use this method to investigate what SRL strategies 
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students’ report (via think-aloud) when they execute coherent actions. Understanding the links 

between coherent actions and SRL strategies may allow finer-grained analyses and enrich the 

theory of micro-level SRL process (Molenaar, 2014). Moreover, interviews targeted on coherent 

actions may be conducted in situ to reveal what students are thinking when they execute coherent 

actions. Thus far, coherence analyses have been limited to Betty’s Brain and CTSiM, a 

computer-based environment for learning scientific phenomena, computational concepts and 

practices (Zhang et al., 2021). The extent to which this approach applies to other contexts, such 

as intelligent tutoring systems and educational games, awaits further investigation.  

It may be valuable to measure metacognitive experiences at different time points over the 

course of learning and examine their dynamic association with behaviors. Results from such 

analyses may enrich micro-level self-regulated learning theories (Molenaar, 2014). Researchers 

may measure metacognitive experiences via the daily diary approach or momentary time 

sampling (Gunthert & Wenze, 2012; Meany Daboul et al., 2007), depending on the length of the 

task and the granularity of interest. Since having students report metacognitive experiences 

frequently may intervene learning, a less invasive approach will be helpful. For instance, FOD is 

associated with some verbal and nonverbal indicators, such as utterance denoting inability to 

solve the task and frowning (Efklides, 2016). Researchers may collect these data and apply 

machine learning to build automatic detectors of metacognitive experiences (see, for instance, 

Ching-En, 2018).  

 In the current study, FOD and FOF were each measured by one item with five options. 

This one-item measurement has been used in most prior studies about metacognitive experiences 

(e.g., Dindar et al., 2020; Efklides, 2002), but it lowers reliability and limits the range of FOD 

and FOF to five values. Such a small range might cause failure in identifying the optimal FOD, 
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which is analogous to the optimal task difficulty (Malmberg et al., 2013), and optimal FOF. At 

the optimal level, the benefits of FOD and FOF may be maximized, while their undesirable 

effects may be minimized. Further research may explore the optimal metacognitive experiences 

by capturing these constructs in a fine-grained fashion.  

5 Conclusion 

This study investigated the role of FOD and FOF in learning a complex scientific phenomenon, 

human thermoregulation, within a computer-based environment. It found that students with high 

FOD demonstrated more off-task behaviors and less strategic behaviors than those with low 

FOD. However, the difference between the two groups was larger in terms of the frequency of 

strategic behaviors than its proportion. FOF was related to neither off-task behaviors nor 

strategic behaviors, but it moderated the association between FOD and learning. In the low-FOF 

group, students with low FOD learned more than those with high FOD, but this effect did not 

exist in the high-FOF group. 
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