Nigel Bosch

in press

D'Mello, S. K., Bosch, N., & Chen, H. (in press). Multimodal, multisensory affect detection. In S. Oviatt, B. Schuller, P. Cohen, D. Sonntag, G. Potamianos, & A. Krüger (Eds.), The Handbook of Multimodal-Multisensor Interfaces. ACM Books/Morgan Claypool.

2017

Bosch, N., & D'Mello, S. (2017). The affective experience of novice computer programmers. International Journal of Artificial Intelligence in Education, 27 (1), 181-206.
[PDF]

Bosch, N., & Paquette, L. (2017). Unsupervised deep autoencoders for feature extraction with educational data. Deep Learning with Educational Data Workshop at the 10th International Conference on Educational Data Mining.
[PDF] [code]

D'Mello, S. K., Mills, C., Bixler, R., & Bosch, N. (2017). Zone out no more: Mitigating mind wandering during computerized reading. In X. Hu, T. Barnes, A. Hershkovitz, & L. Paquette (Eds.), Proceedings of the 10th International Conference on Educational Data Mining (EDM 2017) (pp. 8-15). International Educational Data Mining Society.
[PDF]

Hutt, S., Mills, C., Bosch, N., Krasich, K., Brockmole, J., & D'Mello, S. K. (2017). Out of the fr-"eye"-ing pan: Towards gaze-based models of attention during learning with technology in the classroom. Proceedings of the 2017 Conference on User Modeling, Adaptation, and Personalization (UMAP 2017) (pp. 94-103). New York, NY: ACM.
[PDF] [Best Student Paper Award]

Kahn, S., Suendermann-Oeft, D., Evanini, K., Williamson, D. M., Paris, S., Qian, Y., Huang, Y., Bosch, N., D'Mello, S. K., Loukina, A., & Davis, L. (2017). MAP: Multimodal assessment platform for interactive communication competency. In S. Shehata, & J. P. Tan (Eds.), Practitioner Track Proceedings of the 7th International Learning Analytics & Knowledge Conference (LAK17) (pp. 6-12). SoLAR.
[PDF]

Monkaresi, H., Bosch, N., Calvo, R. A., & D'Mello, S. K. (2017). Automated detection of engagement using video-based estimation of facial expressions and heart rate. IEEE Transactions on Affective Computing, 8 (1), 15-28.
[PDF]

Stewart, A., Bosch, N., Chen, H., Donnelly, P. J., & D'Mello, S. K. (2017). Face forward: Detecting mind wandering from video during narrative film comprehension. In E. André, R. S. Baker, X. Hu, M. M. T. Rodrigo, & B. du Boulay (Eds.), Proceedings of the 18th International Conference on Artificial Intelligence in Education (AIED 2017) (pp. 359-370). Berlin Heidelberg: Springer.
[PDF]

Stewart, A., Bosch, N., & D'Mello, S. K. (2017). Generalizability of face-based mind wandering detection across task contexts. In X. Hu, T. Barnes, A. Hershkovitz, & L. Paquette (Eds.), Proceedings of the 10th International Conference on Educational Data Mining (EDM 2017) (pp. 88-95). International Educational Data Mining Society.
[PDF] [Best Student Paper Award]

2016

Bosch, N. (2016). Detecting student engagement: Human versus machine. Proceedings of the 2016 Conference on User Modeling, Adaptation, and Personalization (UMAP 2016) (pp. 317-320). New York, NY: ACM.
[PDF]

Bosch, N., D'Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2016). Detecting student emotions in computer-enabled classrooms. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016) (pp. 4125-4129). Menlo Park, CA: AAAI Press.
[PDF]

Bosch, N., D'Mello, S. K., Ocumpaugh, J., Baker, R. S., & Shute, V. (2016). Using video to automatically detect learner affect in computer-enabled classrooms. ACM Transactions on Interactive Intelligent Systems (TiiS), 6 (2).
[PDF]

D'Mello, S. K., Kopp, K., Bixler, R., & Bosch, N. (2016). Attending to attention: Detecting and combating mind wandering during computerized reading. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 1661-1669). New York, NY: ACM.
[PDF] [poster]

Dillon, J., Bosch, N., Chetlur, M., Wanigasekara, N., Ambrose, G. A., Sengupta, B., & D'Mello, S. K. (2016). Student emotion, co-occurrence, and dropout in a MOOC context. In T. Barnes, M. Chi, & M. Feng (Eds.), Proceedings of the 9th International Conference on Educational Data Mining (EDM 2016) (pp. 353-357). International Educational Data Mining Society.
[PDF]

Stewart, A., Bosch, N., Chen, H., Donnelly, P. J., & D'Mello, S. K. (2016). Where's your mind at? Video-based mind wandering detection during film viewing. Proceedings of the 2016 Conference on User Modeling, Adaptation, and Personalization (UMAP 2016) (pp. 295-296). New York, NY: ACM.
[PDF] [poster]

2015

Bosch, N. (2015). Multimodal affect detection in the wild: Accuracy, availability, and generalizability. Proceedings of the 17th International Conference on Multimodal Interaction (ICMI 2015 doctoral consortium) (pp. 645-649). New York, NY: ACM.
[PDF]

Bosch, N., Chen, H., Baker, R., Shute, V., & D'Mello, S. (2015). Accuracy vs. availability heuristic in multimodal affect detection in the wild. Proceedings of the 17th International Conference on Multimodal Interaction (ICMI 2015) (pp. 267-274). New York, NY: ACM.
[PDF] [poster]

Bosch, N., D'Mello, S., Baker, R., Ocumpaugh, J., & Shute, V. J. (2015). Temporal generalizability of face-based affect detection in noisy classroom environments. In C. Conati, N. T. Heffernan, A. Mitrovic, & M. Felisa Verdejo (Eds.), Proceedings of the 17th International Conference on Artificial Intelligence in Education (AIED 2015) (pp. 44-53). Berlin Heidelberg: Springer-Verlag.
[PDF] [Best Paper Award]

Bosch, N., D'Mello, S., Baker, R., Ocumpaugh, J., Shute, V. J., Ventura, M., Wang, L., & Zhao, W. (2015). Automatic detection of learning-centered affective states in the wild. Proceedings of the 2015 International Conference on Intelligent User Interfaces (IUI 2015) (pp. 379-388). New York, NY: ACM.
[PDF] [Honorable mention for the Best Paper Award]

Chen, Y., Bosch, N., & D'Mello, S. (2015). Video-based affect detection in noninteractive learning environments. In C. Romero, M. Pechenizkiy, J. Boticario, & O. Santos (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM 2015) (pp. 440-443). International Educational Data Mining Society.
[PDF]

Kai, S., Paquette, L., Baker, R., Bosch, N., D'Mello, S., Ocumpaugh, J., Shute, V. J., & Ventura, M. (2015). Comparison of face-based and interaction-based affect detectors in physics playground. In C. Romero, M. Pechenizkiy, J. Boticario, & O. Santos (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM 2015) (pp. 77-84). International Educational Data Mining Society.
[PDF] [Best Student Paper Award]

Mills, C., D'Mello, S., Bosch, N., & Olney, A. (2015). Mind wandering during learning with an intelligent tutoring system. In C. Conati, N. T. Heffernan, A. Mitrovic, & M. Felisa Verdejo (Eds.), Proceedings of the 17th International Conference on Artificial Intelligence in Education (AIED 2015) (pp. 267-276). Berlin Heidelberg: Springer-Verlag.
[PDF]

Shute, V. J., D'Mello, S., Baker, R., Cho, K., Bosch, N., Ocumpaugh, J., Ventura, M., & Almeda, V. (2015). Modeling how incoming knowledge, persistence, affective states, and in-game progress influence student learning from an educational game. Computers & Education, 86, 224-235.
[PDF]

2014

Bosch, N., Chen, Y., & D'Mello, S. (2014). It's written on your face: Detecting affective states from facial expressions while learning computer programming. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems (ITS 2014) (pp. 39-44). Switzerland: Springer International Publishing.
[PDF]

Bosch, N., & D'Mello, S. (2014). It takes two: Momentary co-occurrence of affective states during computerized learning. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems (ITS 2014) (pp. 638-639). Switzerland: Springer International Publishing.
[PDF] [poster]

Bosch, N., & D'Mello, S. (2014). Co-occurring affective states in automated computer programming education. In E. Walker, & C. K. Looi (Eds.), Proceedings of the Workshop on AI-supported Education for Computer Science (AIEDCS) at the 12th International Conference on Intelligent Tutoring Systems (pp. 21-30).
[PDF]

Mills, C., Bosch, N., Graesser, A., & D'Mello, S. (2014). To quit or not to quit: Predicting future behavioral disengagement from reading patterns. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems (ITS 2014) (pp. 19-28). Switzerland: Springer International Publishing.
[PDF]

Rodeghero, P., McMillan, C., McBurney, P. W., Bosch, N., & D'Mello, S. (2014). Improving automated source code summarization via an eye-tracking study of programmers. Proceedings of the 36th International Conference on Software Engineering (ICSE 2014) (pp. 390-401). New York, NY: ACM.
[PDF] [ACM Distinguished Paper award]

2013

Bosch, N., & D'Mello, S. (2013). Programming with your heart on your sleeve: Analyzing the affective states of computer programming students. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th International Conference on Artificial Intelligence in Education (AIED 2013) (pp. 908-911). Berlin Heidelberg: Springer-Verlag.
[PDF]

Bosch, N., & D'Mello, S. (2013). Sequential patterns of affective states of novice programmers. In E. Walker, & C. K. Looi (Eds.), Proceedings of the First Workshop on AI-supported Education for Computer Science (AIEDCS 2013) (pp. 1-10).
[PDF]

Bosch, N., D'Mello, S., & Mills, C. (2013). What emotions do novices experience during their first computer programming learning session?. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th International Conference on Artificial Intelligence in Education (AIED 2013) (pp. 11-20). Berlin Heidelberg: Springer-Verlag.
[PDF]

Mills, C., D'Mello, S., Lehman, B., Bosch, N., Strain, A., & Graesser, A. (2013). What makes learning fun? Exploring the influence of choice and difficulty on mind wandering and engagement during learning. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th International Conference on Artificial Intelligence in Education (AIED 2013) (pp. 71-80). Berlin Heidelberg: Springer-Verlag.
[PDF]