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Abstract. Attention is key to effective learning, but mind wandering, a phenomenon in 
which attention shifts from task-related processing to task-unrelated thoughts, is perva-
sive across learning tasks. Therefore, intelligent learning environments should benefit 
from mechanisms to detect and respond to attentional lapses, such as mind wandering. 
As a step in this direction, we report the development and validation of the first student-
independent facial feature-based mind wandering detector. We collected training data in 
a lab study where participants self-reported when they caught themselves mind wander-
ing over the course of completing a 32.5 minute narrative film comprehension task. We 
used computer vision techniques to extract facial features and bodily movements from 
videos. Using supervised learning methods, we were able to detect a mind wandering 
with an F1 score of .390, which reflected a 31% improvement over a chance model. We 
discuss how our mind wandering detector can be used to adapt the learning experience, 
particularly for online learning contexts.  
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1 Introduction 

Consider a situation where you are enrolled in an online anthropology course. Every 
week, you are assigned a documentary film to watch and discuss in an online forum. 
Your forum posts are graded based on your demonstration of film comprehension and 
your ability to relate the subject matter to current cultural trends. While watching this 
week’s documentary on linguistics in early American society, you are initially engaged 
in the film. However, your thoughts inevitably begin to drift away from task-related 
thoughts to unrelated thoughts about your grocery shopping list for tonight’s dinner. 
Using your computer’s webcam, the online educational interface has been monitoring 
your facial expressions and detects that you are not attending to the content even though 
you appear to be looking at the screen. The interface pauses the video and asks you a 
question about the film’s content, which you answer incorrectly. Based on this, the 
interface provides an explanation to reinforce certain concepts that you were not attend-
ing to, before asking whether you would like to continue viewing the video. This reen-
gages your attention, leading to a deeper understanding of the course content, and con-
sequently a higher score in the course.  
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Educational interfaces that detect and respond to attentional states, such as the one 
described above, are on the horizon in the next 5-10 years [1]. Here, we focus on a 
specific form of inattention, known as mind wandering (MW). MW is a ubiquitous 
phenomenon where attention unintentionally shifts from task-related to task-unrelated 
thoughts. The widespread incidence of MW has been documented during a host of real-
world activities. In one highly-cited, large-scale study, MW was tracked in 5,000 indi-
viduals from 83 countries working in 86 occupations, using an iPhone app that 
prompted people to report their thoughts at random intervals throughout the day [2]. 
People reported MW for 46.9% of the prompts, which confirmed numerous lab studies 
on the pervasiveness of MW (e.g., [3]), which is estimated to occur approximately 20-
50% of the time, depending on the person, task, and the environmental context [2, 4].   

In addition to being frequent, MW is also detrimental to performance across a num-
ber of tasks, such as reading comprehension [5] and retention of lecture content [6]. In 
fact, a recent meta-analysis of 88 samples indicated a negative correlation between MW 
and performance across a variety of tasks [7], a correlation which increased in propor-
tion to task complexity. When compounded with its high frequency, MW can have se-
rious consequences on performance and productivity, particularly in learning environ-
ments where attention is key to learning and retaining material. Therefore, we believe 
that next-generation personalized learning technology could benefit from some mech-
anism to detect and address MW [1]. Of course, an interface must first detect MW be-
fore it can respond to it, which is the focus of this work. 

As reviewed below, previous work on MW detection, particularly in educational do-
mains, has mainly focused on reading tasks. Here, we focus on MW detection in the 
novel context narrative film comprehension. Further, for the first, time we consider 
automated detection of MW from facial features and bodily movements obtained from 
commercial-off-the-shelf (COTS) webcams.  

Related Work. Attention-aware education interfaces are not a new idea. Real-time 
analysis of eye gaze has been proposed as a way of monitoring and responding to at-
tention [1]. Considerable work has provided offline methodologies to model attention 
in educational domains; however, real-time attention detection and response systems 
are still in their infancy [1]. Most work has been limited to eye gaze analysis. We aim 
to expand work in the field through the use of automatically extracted facial features.   

Most of the work on MW detection has been done in the context of reading. These 
studies use a variety of features, such as eye-gaze [3, 8], reading times [5], and physio-
logical signals [9]. For example, Bixler and D’Mello  used eye gaze to detect both 
probe-caught [3] and self-caught reports [8] of MW during reading. Probe-caught MW 
reports required users to indicate if they were MW in response to auditory thought 
probes triggered at pseudo-random intervals during reading. Self-caught reports were 
obtained whenever users caught themselves MW. The authors achieved above-chance 
accuracies of 17% to 45% in detecting MW in a user-independent fashion. 

Despite their success, these studies have relied on specialized equipment to collect 
eye-gaze (Tobii TX300). The prohibitive cost or lack of accessibility of these sensors 
potentially limits wide-spread adoption outside the context of laboratory settings. To 
address this, some researchers have considered sensor-free MW detection. Reading 
times have been particular beneficial in this regard. In one study, reading times for 



individual words were tracked using a word-by-word self-paced reading paradigm [5]. 
Readers were considered to be MW if they spent too little or too much time on difficult 
sections of the text, as determined by predetermined thresholds on word length, sylla-
bles, and word familiarity. Despite success, an obvious limitation with the use of read-
ing time for MW detection is that such a detector is only applicable while reading.  

There has been limited work investigating detection of MW during video watching. 
Pham and Wang use heart rate to detect MW during videos for massively open online 
courses (MOOCs) with a 22% above-chance accuracy [10]. They detected heart rate by 
monitoring fingertip transparency using the back camera of an iPhone. While this 
method makes use of widely-owned equipment (an iPhone in this case), whether this 
method can be used on non-mobile devices is an open question.  

Mills et al. took a different approach to MW detection in narrative film viewing by 
using eye-gaze features [11]. They used global and local (context-dependent) features, 
as well as a combination of the two, to build models to detect MW. Their best models 
yielded a 29% improvement over chance when using only local features. This work 
demonstrates the feasibility of detecting MW during film viewing tasks. However, the 
prohibitive cost of the eye-gaze sensors potentially limit widespread adoption of their 
method for detecting MW. 

Contributions and Novelty1. This study reports the development and validation of 
the first student-independent facial feature-based MW detector during narrative film 
comprehension. Our work is novel in two respects. First, while previous work has fo-
cused on MW in the context of reading, we consider MW detection during narrative 
film comprehension. This is a challenging domain, because, compared to reading, 
where there are detectable patterns that might indicate attentional lapses, such unex-
pected reading times or failing to advance to the next screen, naturalistic film viewing 
is less interactive, which provides less context information for detecting MW.  

Nevertheless, we chose to study this domain because video-based courses, such as 
MOOCs, are very popular for a variety of students [6]. Although one previous study 
[10] focused on MW detection while students viewed MOOC-style videos, our present 
focus is on commercially-produced narrative films, such as historic documentaries, na-
ture films, and fantasy-drama films that might be assigned in history, sociology, and 
film appreciation courses, amongst others.  We focused on these types of films because 
professional filmmakers employ a host of cinematic devices to direct and engage viewer 
attention [4]. Furthermore, films contain both audio and visual content, which would 
presumably keep attention focused [4]. Despite these efforts to engage the viewer, MW 
still occurs quite frequently while students watch such films [4] (as well as with typical 
MOOC-style videos [10]), suggesting that tracking and responding to moments of MW 
during film viewing could improve online learning from these materials. 

Second, previous work has relied on specialized sensors for MW detection, thereby 
limiting scalability. This work represents the first attempt at a fully automated student-

 
1  A preliminary two-page version of this paper was presented as an Extended Abstract Poster 

at the 24th Conference on User Modeling, Adaptation and Personalization. The present paper 
describes the methods in more detail, updated results, and expanded analyses not included in 
the preliminary paper. 
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independent detection of MW using face videos recorded from COTS webcams. This 
also raises some challenges because unlike emotional states, where facial correlates 
have been investigated for decades and video-based automated affect detection is com-
mon [12], the facial correlates of MW have yet to be mapped out. It is also an open 
question if such correlates exist. For example, as Fig. 1 illustrates, facial expressions 
corresponding to MW reports (left) appear to be highly similar to when MW was not 
reported (right). Despite these challenges, if successful, our MW detector should be 
scalable (because it uses webcams) and more broadly applicable to additional contexts 
(because it does not rely on any features specific to a particular interaction context, like 
reading times or click-stream analyses). 

Our approach to MW detection entailed collecting videos and self-reports of MW 
while users watched a short film on a computer screen. We used a self-caught method 
to detect MW in order to avoid the disruptive effects of thought probes. We extracted 
facial features and bodily movements from the videos and used supervised classifica-
tion techniques to build models that identified when users were MW across short time 
windows. The models were constructed and validated in a student-independent fashion 
so that they would generalize to new students. 

2 Data Collection 

Participants were 65 undergrad-
uate students from a medium-
sized private Midwestern uni-
versity and 43 undergraduate 
students from a large public uni-
versity in the Southern United 
States. Of the 108 participants, 
66% were female and their aver-
age age was 20.1 years.  Participants were compensated with course credit. Data from 
one participant was discarded due to equipment failure. 

Participants viewed the narrative film “The Red Balloon” (1956), a 32.5-minute 
French-language film (with English subtitles). The film has a musical score but only 
sparse dialogue. This short fantasy film depicts the story of a young Parisian boy who 
finds a red helium balloon and quickly discovers it has a mind of its own as it follows 
him wherever he goes. This film was selected because of the low likelihood that partic-
ipants had previously seen it, and because it has been used in other film comprehension 
studies [4]. Participants’ faces were recorded while they watched the film with a low-
cost ($30) consumer-grade webcam (Logitech C270).  

Participants were instructed to report MW throughout the film by pressing labeled 
keys on the keyboard. Specifically, participants were asked to report a task-unrelated 
thought if they were “thinking about anything else besides the movie.”  Participants 
were explicitly instructed to report a task-related interference if they were “thinking 
about the task itself but not the actual content of the movie.” A small beep sounded to 
register their response, but film play was not interrupted.   

 
Fig. 1.   Video frame of participant corresponding to 
the presence (left) and absence (right) of MW reports.  

 



It is important to emphasize a couple of points on the self-caught method used to 
track MW. First, we chose to have participants self-report when they caught themselves 
MW instead of the more traditional probing method [3] because the probe method has 
the potential to interrupt the comprehension process (i.e., when participants are not MW 
and report “no” to the probes) [13]. This is particularly problematic as participants did 
not have control over the film presentation (i.e., no pausing or rewinding capabilities 
were available). Additionally, self-caught reports, as opposed to probe-caught reports, 
are likely to occur at the end of a MW episode when the student became aware that they 
were not attending to the task at hand. It is unclear, however, if a probe-caught report 
takes place at the onset or end of MW, or somewhere in between. Furthermore, although 
the method relies on self-reports, there is no clear alternative because MW is an internal 
phenomenon. Nevertheless, self-reported MW has been linked to predictable patterns 
in eye-gaze [14] and task performance [7], providing validity for this approach.  

We obtained a total of 845 MW reports from the 108 participants. In this initial work, 
we do not distinguish between the two types of MW, instead merging the task-unrelated 
thoughts and the task-related interferences, both of which represent thoughts independ-
ent of the content of the film. 

3 Machine Learning 

Creating Instances of MW. MW reports were sparsely distributed throughout the 32.5 
minute video. Our first task was to create data instances corresponding to short win-
dows of time preceding MW reports. To ensure that we captured participants’ faces 
while MW and not the act of reporting MW itself (i.e., the preparation and execution 
of the key press), we added a 3-second offset before each MW self-report. From ob-
serving participant videos, this appeared to be sufficient time to prevent detection of 
the key press. We chose not to use larger offsets because it is not known how long MW 
lasts and we aimed to avoid removing data from windows where the participant was 
MW prior to the report. 

The next task was to extract instances corresponding to Not MW while ensuring a 
gap between the MW and Not MW instances to account for the fact that we do not 
know precisely when MW begins. 

The procedure for creating instances was as follows: 

1. Add a 3-second offset before the self-caught MW report to account for movement 
due to reporting. 

2. Partition the video between consecutive MW reports into (t1 – t0) / S segments, where 
t0 and t1 are the timestamps of consecutive MW reports and S is the segment size. 
The segment immediately preceding the MW report at t1 is a MW segment. All other 
segments between t0 and t1 are Not MW segments. 

3. Extract features from a window of data of size w, where w < S, at the end of each 
segment generated in the previous step. The remaining time (S – w seconds) in the 
segment is the gap that is not analyzed. 
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In this study, we chose a 55 second segment length as it resulted in a MW rate of 
approximately 20% to 25%, which was consistent with previous research [3]. We ex-
plored various windows sizes within the 55-second segment (Section 4). The procedure 

described above is de-
picted in Fig. 2 using a 
45-second windows as 
an example.  

We generated a total 
of 3,370 segments in 
all. We excluded any 
instances in which the 
participants’ face was 
occluded, yielding less 
than one second of data 

for the time window. Extreme head pose or position, occlusions from hand-to-face ges-
tures, and rapid movements were common causes of face registration errors.  We also 
experimented with various window sizes. The number of instances (after removing in-
stances with too little valid data) varied as a function of window size (from 2,476 for 
10 second windows to 2,734 for 45 second windows). Larger window sizes contained 
more instances because there was a higher probability that the face was registered for 
at least one second. MW rates were quite similar across window sizes although there 
was a slight increase for the longer windows (from .204 for 10 second windows to .221 
for 45 second windows). 

Feature Extraction and Selection. We used FACET [15], a commercialized ver-
sion of the CERT computer vision software for facial feature extraction. FACET pro-
vides likelihood estimates of the presence of 19 action units (AUs; specifically 1, 2, 4, 
5, 6 ,7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, and 28 [16]) as well as head pose 
(orientation), face position (horizontal and vertical within the frame), and face size (a 
proxy for distance to camera). Features were created by aggregating FACET estimates 
in a window of time leading up to each MW or Not MW instance using maximum, 
median, and standard deviation for aggregation. In all, there were 75 facial features (3 
aggregation functions × [19 AUs + 3 head pose orientation axes + 2 face position co-
ordinates + face size]). 

We also computed gross body movement present in the videos using a validated 
motion estimation algorithm [17]. Body movement was calculated by measuring the 
proportion of pixels in each video frame that differed by a threshold from a continu-
ously updated estimate of the background image generated from the four previous 
frames. We used the maximum, median, and standard deviation of gross body move-
ment within each window, similar to the method used to compute FACET features. 

In all, we extracted 78 features (75 facial features + 3 body movement features). We 
treated outliers, defined as values greater than three standard deviations away from the 
mean, with Winsorization, a common outlier handling technique [18]. This technique 
replaces outliers with the closest non-outlier value, allowing the retention of instances 
with outliers rather than discarding the entire instance. 

 
Fig. 2. Example of window segmentation approach, using a 45- 
second widow sizes. Features are extracted from the dark grey 
(Not MW) and light grey (MW) windows. 

 



We used tolerance analysis to eliminate features with high multicollinearity (vari-
ance inflation factor > 5) [19], after which 59 features remained. This was followed by 
RELIEF-F [20] feature selection (on the training data only) to rank features. Feature 
selection was performed using nested cross-validation on training data only. In partic-
ular, we ran 5 iterations of feature selection within each leave-one-participant-out cross-
validation fold (discussed below), using data from a random 67% of students within the 
training set in each iteration. We retained a proportion of the highest ranked features 
(with rankings averaged across folds) for use in the models (proportions ranging from 
.05 to 1.0 were tested). 

Classifier Selection and Validation. Informed by preliminary experiments, we se-
lected nine classifiers for more tests (Naïve Bayes, Support Vector Machines, Simple 
Logistic Regression, LogitBoost, Random Forest, C4.5 trees, Stochastic Gradient De-
scent, Classification via Regression, and Bayes Net) using the WEKA toolkit [21].  

We evaluated the performance of our classifiers using leave-one-participant-out 
cross-validation. This process runs multiple iterations of each classifier in which, for 
each fold, the instances pertaining to a single participant are added to the test set and 
the training set is comprised of the instances for the other participants. This process is 
repeated for each participant, and the classifications of all folds are weighted equally to 
produce the overall result. This cross-validation approach ensures that in each fold, data 
from the same participant is in the training set or testing set but never both, thereby 
improving generalization to new participants.  

We considered the F1 score for the MW class as our key accuracy measure as MW 
is the minority class of interest (compared to Not MW). Further, F1 strikes a balance 
between precision and recall, and is less susceptible to skew from class imbalance 
(which is present in the current dataset) than simply measuring recognition rate. 

4 Analyses and Results 

Varying Window Size. We experimented with window sizes from 10 through 45 sec-
onds in intervals of 5 seconds to empirically identify the window size that yielded the 
highest MW F1. For the support vector machine (SVM) classifier (the most effective 
classifier – see below), there was a slight trend in performance of MW F1 score in favor 
of larger window size (from .355 for 10-second windows to .390 for 45-second win-
dows).. Therefore, all subsequent results focus on the 45-second window size.  

Overall Classification Results. The results for the highest MW F1 model were 
achieved with an SVM classifier using sequential minimal optimization (SMO) [22] on 
a data set with 45-second windows where the SMOTE technique [23] was used (on 
training data only). This model classified 45.1% of the instances as MW. We compared 
it to a chance (baseline) model that also assigned MW to 45.1% of all instances, but did 
so randomly. This process was repeated for 1,000 iterations and precision and recall 
were averaged across iterations. This chance-level method yielded a precision of .221 
(i.e. the same as the MW base rate) and recall of .451 (i.e. the same as the predicted 
MW rate). We believe this chance model to offer a more appropriate comparison than 
a simple minority baseline that assigns MW to all instances, because a minority baseline 
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would results in an inflated recall (MW precision = .221, MW recall = 1, MW F1 = 
.362). Additionally, a majority class baseline would result in a MW F1 of 0, which is 
trivial to surpass. 

Table 1 shows the results of the SVM classifier compared to the chance model. The 
key metrics are the precision, recall, and F1 of the MW class. For completeness, we also 
provide results for Not MW class and a weighted average of the two (Overall). 

Table 1. Results of the SVM classifier with chance values in parentheses 

 Precision Recall F1MW 
MW  .290 (.221) .593 (.451) .390 (.297) 
Not MW .836 (.779) .589 (.549) .691 (.644) 
Weighted Overall .715 (.656) .590 (.527) .624 (.567) 

 
The key result is that the SVM model detected MW at rates that were substantially 

(31%) greater than the chance model. The SVM model’s recall was also double its pre-
cision. The model has a similar proportion of hits (.593) and correct rejections (.589). 
Similarly, we note the model makes the same proportions of misses (.407) and false 
positive (.411) errors. However, the effect of false positives are exemplified as the 
model predicts a much higher rate of MW (.451) than the true rate (.221). 

Analysis of MW Threshold. SVMs provide an estimate of the model’s confidence 
(on a 0 to 1 scale) that an instance reflects MW. This estimate needs to be converted 
into a binary decision. In the aforementioned results, any instance that exceeded a con-
fidence of .500 was classified as MW.  To determine the optimal threshold that would 
result in the highest MW F1, we adjusted the threshold in increments of .100 and com-
puted resultant F1 scores for MW and Not 
MW classes (Fig. 3). We note that the MW 
and Not MW curves in Fig. 3 intersect at a 
threshold of .370, yielding an approximate 
equal F1 scores of .380. However, the MW 
F1 score, which is our primary metric of in-
terest, peaked at a threshold of .500, which 
suggests that the default threshold was ap-
propriate for this task. 

Feature Analysis. We examined the fea-
tures used in the SVM model, focusing on 
the nine features most commonly selected 
by the RELIEF-F procedure as described in 
Section 3. Features were analyzed using Cohen’s d, which measures the effect size of 
the difference of each feature across MW and Not MW instances divided by the pooled 
standard deviation [24]. Positive d-values for a feature indicate an increase in the value 
of that feature for MW compared to Not MW. We note that  effect sizes for most of the 
features were in the small (d = .200) to medium (d = .500) range [24], suggesting that 
no one feature dominated, but a combination of features was needed for MW detection.  

 
Fig. 3. F1 scores for MW and Not MW 
across classification thresholds. 

 



With respect to specific features, the median of the face's vertical position (d = .354) 
and size in the screen (d = .272) were quite predictive of MW. These two features sug-
gest the participant was higher in the frame and closer to the screen. This could be due 
to participants dozing off and nodding their head when they were MW (based on ex-
amination of videos). With the exception of the median of AU7 (lid tightener, d = .169) 
and AU28 (lip suck, d = .010), there was less activity in facial features, such as the 
median of AU5 (upper eye lid raiser, d = -.305), AU10 (upper lip raiser, d = -.193), 
AU17 (chin raiser, d = -.224), and AU18 (lip puckerer, d = -.131), and the max value 
AU9 (nose wrinkle, d = -.203). This indicates that participants adopted more neutral 
facial expressions when MW, ostensibly because they were not reacting to the unfold-
ing film as thoughts were concentrated inwards. 

5 General Discussion 

Main Findings. We expanded on previous MW research through our novel use of facial 
expressions and body movements to detect MW. We were able to detect MW with an 
F1 score of .390, a notable 31% improvement over a chance-level model, which yielded 
an F1 score of .297. Although we showed that the default threshold of .500 resulted the 
highest MW F1, our model had higher recall (.593) than precision (.290), which sug-
gests that it over predicts MW (i.e., more false positives). We should also note that it is 
possible that the self-reports underestimate the MW rate, either because participants 
choose not to report MW or because they are unaware that they are MW. Perhaps the 
truth lies somewhere between the self-reports and computer-estimates of MW. 

Our model, shown in Table 1 achieved a 31% improvement over a chance classifier. 
As a point of comparison, Mills et. al. [11] achieved a comparable accuracy of 29% 
over chance. Note that both chance-level classifiers were computed using the same 
measure of chance (Section 4) and the method for partitioning data into MW and Not 
MW instances (Section 3) was similar, thus providing a basis for comparison. While 
the accuracy of models in both works is moderate, the improvement over chance 
demonstrates the feasibility of detecting MW from either eye gaze or facial features. 
However, Mills et. al. used research-grade eye trackers, which might prohibit wide-
spread use of their method, particularly in online educational interfaces where students 
provide their own equipment. Additionally, their best models used content-dependent 
features, which might not easily generalize to new stimuli.  Thus, our results are signif-
icant in that we were able to obtain results similar to the previous state of the art on this 
dataset, but by using a more scalable (and presumably generalizable) modality. 

Generalizability was a key design constraint that guided a number of our decisions. 
First, we used COTS webcams to afford eventual deployment of our models at scale, 
thereby allowing us to test generalizability in more diverse contexts. We also restricted 
ourselves to facial features and bodily movements that were independent of the specific 
content being displayed on the screen, suggesting that the models should generalize to 
additional films and perhaps even other interaction contexts. Further, our models were 
validated in a student-independent manner, which increases our models’ ability to gen-
eralize to new students. We have even more confidence in the generalization of our 
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models as our data was collected from two universities with very different demographic 
characteristics. Taken together, these results increase our confidence that the models 
will generalize more broadly, though this claim requires further empirical validation. 

Finally, given the paucity of research, it was unclear if MW manifests via facial 
expressions. It was therefore quite possible that our entire research endeavor would fail. 
Fortunately, our findings do indicate that there appear to be generalizable patterns be-
tween facial-expressions and MW. Specifically, we found that MW was characterized 
by vertical head movement and more neutral facial expressions.   

Applications. The present findings are applicable to any user interface that involves 
viewing and comprehending videos. Monitoring MW in this context could greatly in-
form commercial or educational film makers as to how their films can be improved to 
better sustain viewers’ attention. Segments of film with high rates of detected MW can 
be edited to better engage viewers.  

Media, such as films and recordings of lectures, play a major role in online learning, 
so our MW detector, which only uses a webcam, can be quite beneficial in that context. 
One strategy is to assess comprehension of content associated with periods of high MW 
(as noted by the detector) by asking the student to answer a multiple-choice question or 
to self-explain the content. Both interleaved questions [25] and self-explanations [26] 
have been shown to be effective at focusing attention. Students who answer incorrectly 
will be encouraged to review the material associated with the questions and self-expla-
nation prompts, and can optionally answer follow-up questions, thereby giving them 
multiple opportunities to correct comprehension deficits attributed to MW. 

Our work also has applications in contexts apart from viewing videos. MW has been 
widely studied during reading using a variety of sensors [3, 8, 9, 14] but not facial 
features. Facial feature data could supplement existing features to improve MW detec-
tion. This also raises the possibility of multimodal MW detection. 

Limitations and Future Work. There are a number of limitations with this study. 
First, our model had a MW F1 of .390. Although it outperformed a chance model, this 
performance is moderate at best. The precision was also much lower than the recall, 
suggesting that caution should be taken when integrating the model into interfaces that 
sense and respond to MW. In future work, we will aim to improve precision by expand-
ing the feature set and considering skew-sensitive classification methods.  

Another limitation of this study is the self-report method which requires users to be 
mindful of when MW occurs and to respond accurately and honestly. Previous studies 
have validated the self-report method [7, 14], however, it is possible that some partici-
pants may not report MW accurately or honestly. One possibility would be to comple-
ment self-reports with observer annotations. However, this assumes that observers can 
identify when a person is MW, a question that we are investigating in our research. 

Finally, although we provided some evidence of generalizability to new users, to 
further boost our claims of generalizability, data should be collected from more diverse 
populations apart from undergraduate students. It should also be collected more real-
world environments, rather than the lab-setup used here. Generalizability could also be 
enhanced by studying video-based MW detection in other contexts such as playing in-
teractive games, to better understand how the models generalize to other tasks. Training 
models on data from multiple domains is also likely to yield more general models. 



Concluding Remarks. The ubiquity of webcams has opened up the possibility of 
advancing research in attentional state estimation, thereby enabling an entirely new 
generation of attention-aware interfaces, particularly in education. As a step in this di-
rection, we demonstrated the feasibility of using facial features extracted from webcam 
video to record MW during a narrative film comprehension task. The next step is to 
close the loop by intervening when MW is detected. 
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