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ABSTRACT 
Education research has explored the role of students’ affective 
states in learning, but some evidence suggests that existing 
models may not fully capture the meaning or frequency of how 
students transition between different states. In this study we 
examine the patterns of educationally-relevant affective states 
within the context of Betty’s Brain, an open-ended, computer-
based learning system used to teach complex scientific processes. 
We examine three types of affective transitions based on 
similarity with the theorized D’Mello and Graesser model, 
transition between two affective states, and the sustained 
instances of certain states. We correlate of the frequency of these 
patterns with learning outcomes and our findings suggest that 
boredom is a powerful indicator of students’ knowledge, but not 

necessarily indicative of learning. We discuss our findings within 
the context of both research and theory on affect dynamics and 
the implications for pedagogical and system design.  
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instruction   • Applied computing~Computer-assisted 
instruction 
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1 INTRODUCTION 
The affective processes associated with learning are increasingly 
of interest to researchers who are trying to understand how 
students regulate their learning processes [7, 11, 34]. Many studies 
have examined how students transition between affective states 
while engaged in learning activities [1, 11, 23, 24, 27, 29, 32, 33], 
including several that compare these patterns to performance 
outcomes and learning gains [5, 11, 12, 14, 22]. Most studies have 
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focused on affective states that are thought to be educationally 
relevant [cf. 7, 30] including boredom (BOR), confusion (CON), 
engaged concentration (ENG; sometimes labeled flow), delight 
(DEL), frustration (FRU), and surprise. 

One of the more influential papers in this field, D’Mello and 
Graesser [11], hypothesized two main pathways that students 
follow when transitioning between affective states: one that 
encourages learning (the ENG-CON-DEL-ENG cycle) and one that 
inhibits it (the ENG-CON-FRU-BOR cycle). However, based on 
analyses of their data (calculating the likelihood of a transition 
from one affective state to another), they then proposed a more 
succinct model.  

Since this pioneering work, a substantial body of research has 
investigated these issues, many following the same 
methodological approach that analyzes the frequency of two-step 
transitions, (e.g., from confusion to frustration; denoted as CON-
FRU) rather than patterns involving multiple transitions (e.g., the 
ENG-CON-FRU-BOR cycle).  

The current study uses sensor-free, interaction-based 
detectors (e.g., [2]) previously developed for the Betty’s Brain [18] 
to explore the relationship between affective patterns and 
learning outcomes (measured using pre- and post-tests of content 
knowledge). Specifically, we compare the four-step patterns 
originally proposed in D’Mello and Graesser [11] to shorter 
patterns involving three steps, but only two affective states (e.g., 
BOR-BOR-CON). We then compare these results to patterns 
involving off-task behavior as well as to sustained instances of 
two affective states (boredom and delight) that appear repeatedly 
in statistically significant multi-state patterns. These results 
suggest that affective patterns in Betty’s Brain may more strongly 
reflect prior knowledge than learning, which has implications for 
the design of affective-driven interventions.  

2 PREVIOUS RESEARCH 
D’Mello and Graesser [11] investigated theoretically-

motivated affective cycles by studying the two-step transitions 
within them (i.e., ENG-CON, CON-DEL, DEL-ENG, CON-FRU, and 
FRU-BOR). After synthesizing this data, their revised theoretical 
model (shown in Figure 1) no longer included delight, but instead 
focused on transitions between engaged concentration, confusion, 
frustration, and boredom. 

 

 

Figure 1: D’Mello & Graesser’s [11] model of affect 
dynamics 

Other studies examine patterns of longer lengths. In Cognitive 
Tutor Algebra, Liu et al. [22] explored three-step affect transitions 
involving the presence or absence of confusion and frustration 
(e.g., CON-Not-CON or FRU-FRU-Not). In this study, patterns 
where all three steps were labeled with one of these affective 
states (e.g., CON-CON-CON or FRU-FRU-FRU) were negatively 
correlated with learning, but so was the absence of either emotion 
(i.e., Not-Not-Not).  

More recent work in affect dynamics [19] has looked at how 
the operationalization of these measurements may influence 
which transitions emerge as statistically significant, focusing on 
the implementation of D’Mello’s L—the metric introduced by 
D’Mello and colleagues [9, 11], to calculate the likelihood that a 
transition from one affective state to the next will occur, given the 
base rates observed for each. Previous analyses showed that the 
exclusion of self-transitions (e.g., CON-CON) when calculating 
D’Mello’s L can inflate the number of statistically significant 
transitions. However, even when this adjustment was made, not 
all hypothesized patterns were seen, either in Karumbaiah et al. 
[19] or in D’Mello and Graesser’s original paper [9]. 

Moreover, the use of D’Mello’s L, as currently defined, limits 
research to investigations of two-step patterns. Using an 
expanded list of affective patterns and longer sequences allows for 
the discovery of meaningful affective experiences while 
accounting for the varying lengths of emergence of different 
states. 

3 Betty’s Brain 
Betty’s Brain is an open-ended, computer-based learning system 
that uses a learning-by-teaching paradigm to teach complex 
scientific processes [21]. Betty’s Brain asks students to teach a 
virtual agent (Betty) about scientific phenomena (e.g., climate 
change, ecosystems, thermoregulation) by constructing concept 
maps that demonstrate the causal relationships involved (see 
Figure 2.) 

The learning process required by Betty’s Brain necessitates 
high levels of self-regulation. As students construct their map, 
they must navigate through multiple hypermedia information 
sources where they can read about a variety of subthemes. They 
choose how often to test Betty’s knowledge, and they may elect 
to interact with a virtual mentor agent (an experienced teacher 
named Mr. Davis) if they are having trouble teaching Betty. 
Because of these design factors, strong self-regulated learning 
behaviors are crucial for succeeding within Betty’s Brain. 
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Figure 2: Screenshot showing the construction of a concept 
map (right) being used to teach the student agent (Betty, top 
left), with help from the mentor-agent (Mr. Davis, bottom 
left). 
 
These pedagogical agents provide a social framework for the 
gradual internalization of effective learning behaviors [e.g., 29, 
35], and an emphasis on self-regulatory feedback that has been 
demonstrated to improve these behaviors among students who 
use Betty’s Brain [21]. However, to date, less work has been done 
on how students’ affective states may be playing a role in this 
process. 

 

4 Methods 

4.1 Study Design 
This study uses data from 93 sixth graders who used Betty’s Brain 
during the 2016-2017 school year during their science classes in 
an urban public school in Tennessee. Data were collected over the 
course of seven school days. On the first day of the study, students 
completed a 30-45-minute paper-based pre-test that measured 
knowledge of scientific concepts and causal relationships. On day 
2, students participated in a 30-minute training session that 
familiarized them with the learning goals and user interface of the 
software. Following the pre-test and training, students used the 
Betty’s Brain software on days 2 through 6, for approximately 45-
50 minutes each session, using concept maps to teach Betty about 
the causal relationships involved in the process of climate change. 
On day 7, students completed a post-test that was identical to the 
pre-test, in order to assess changes in knowledge based on 
working with Betty’s Brain for the week. 

4.2 BROMP Observations & Detectors 
Students’ affect was assessed using a model-based approach that 

employed the Baker Rodrigo Ocumpaugh Monitoring Protocol 
(BROMP) [26]. These were developed using established methods 

and that have been previously published.   

 

4.2.1 BROMP Observations. The Baker Rodrigo Ocumpaugh 
Monitoring Protocol (BROMP) is a method for conducting 
Quantitative Field Observations (QFOs) of student behavior and 
affect [26]. BROMP is primarily used to develop sensor-free 
detectors [3], but has been used for other purposes as well (e.g., 
[2]).  

Within BROMP, students are observed using a momentary 
time sampling method [25], where students are repeatedly coded 
individually, in a predetermined order. This sampling method is 
designed to achieve a representative sample of behavior and affect 
among the students while reducing the tendency to focus on more 
extreme events. Both affect and behavior are recorded separately, 
but simultaneously, in each observation. Typical coding 
categories include boredom, confusion, engaged concentration, 
delight, and frustration (for affective states) and on task, on task-
conversation, and off-task (for behaviors).  
4.2.2 BROMP-based Detectors. BROMP-based detectors have 
now been developed for over a dozen intelligent tutoring systems. 
In this process, codes generated by BROMP-certified observers are 
matched to student log files, and then machine-learning 
techniques are used to generate classifiers for each affective state 
or behavioral category based on the students’ interactions with 
the log files (e.g., [2]). 

The detectors used in this study were previously developed for 
Bettys Brain by Jiang et al. [18]. These detectors, generated using 
either logistic or step regression, were evaluated using A′. Their 
performance under 10-fold student-level cross-validation using 
AUC ROC (summarized in Table 1).  
 
Table 1: Affect and behavior detector performance [18]  

Affect/Behavior AUC ROC 

Boredom 0.682 

Confusion 0.568 

Delight 0.570 

Engaged Concentration 0.624 

Frustration 0.634 

Off-Task Behavior 0.725 

 
For the purposes of this study, which focuses on affective 

transitions, only one behavior detector (off-task) is applied to the 
data. It is included so that we can compare negative effects of 
boredom to this detector for additional validity in our findings 
4.2.2 Field Observations vs. Detectors. Detector performance is 
generally not as high as interrater reliability between two trained 
human coders. However, it does offer a significant advantage in 
terms of grain-size and scale. That is, with BROMP-base detectors, 
model labels are generated every 20 seconds for each detector. In 
contrast, BROMP field observers use a momentary time sampling 
procedure rather than observing the same student rapidly in 
succession. Thus, the time between field observations of a single 
student can sometimes be as high as several minutes, depending 
on how many students are being observed and what is happening 
in the classroom. . 
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4.3 Prevalence of Affective Patterns 
The frequency of specific affective and behavioral patterns was 
calculated for each student. This process required several steps.  

 
4.3.1 Applying Detectors. First, the BROMP-based detectors were 
applied to the log data for every student in the study. Each of the 
automated detectors was applied at the level of 20-second clips in 
the log data, producing a confidence value for each clip. Clips with 
a confidence value of at least 50% were labelled with the 
corresponding affective state. In the case where multiple detectors 
provided positive labels to a single log-file clip, all labels were 
applied, and multiple patterns were considered. 

Of the 53,087 clips in this study, 17,585 were labeled as bored 
(33%), 8,683 were labeled as confused (16%), 34,934 were labeled 
as engaged concentration (66%), 25,069 were labeled as delighted 
(47%), 6,200 were labeled as frustrated (12%), and 2,335 received 
no affective labels (4%). Predictions for off-task behavior were 
made using the same method, but separately from affective state 
labels, resulting in 22,537 clips labeled as off-task (42%). After all 
six detectors were applied, each 20-second clip contained a 
prediction from each detector (e.g., bored or not; confused or not; 
off-task or not; etc.); as such, the sum of the labels across all six 
detectors is greater than the total number of clips. 

 
4.3.2 Pattern Types. In our analyses we focus on three types of 
affect pattern. Each involved a sequence of either three or four 20-
second log-file clips. First, we looked at sequences that mirror the 
two cycles outlined by D’Mello & Graesser [11]: the ENG-CON-
DEL-ENG cycle and the ENG-CON-FRU-BOR cycle. For the 
purposes of this study, we have limited the analysis to 80 second 
(four-clip) versions of these cycles.  

Next, we considered transitions between two states. For these 
analyses, we looked for a student having at least two consecutive 
clips with the same affective state predictions, before then 
transitioning to a second state (e.g., ENG-ENG-BOR or CON-CON-
FRU). These durations allow us to explore the potential effect that 
a longer duration (two or more steps) of any given antecedent 
might have on the subsequent steps in a sequence. Thus, we are 
able to explore the possibility that affective states of a longer 
duration (more than one successive step) might be influencing the 
results seen for sequences involving multiple transitions without 
testing all possible durations. 

Finally, we consider sustained instances of two affective states 
that seemed to be driving the other patterns of statistical 
significance in this study. These are operationalized as 4-clip 
sequences (BOR-BOR-BOR-BOR and DEL-DEL-DEL-DEL), which 
we compare to sustained off-task behavior (OFF-OFF-OFF-OFF).  

 
4.3.3 Prevalence Calculations. Once the data from Betty’s Brain 
was fully labeled, we calculated the prevalence of each affective 
pattern within each student’s log files. Because we are interested 
in multi-step transitions, we use a prevalence calculation (as 
opposed to D’Mello’s L, which is more common in the affect 
dynamics literature, but which is designed to study only 2-clip 
patterns).  

In this study, prevalence is the total number of times a pattern 
occurred within a given student’s data (Oact) divided by the total 
number of times it could have occurred in that data (Opos). Because 
we consider the possibility of overlapping sequences, we calculate 
Opos by considering the total number of clips in a pattern (Cpat) 
and the total number of clips in the student’s data (Cstu). 

 

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
O𝑎𝑐𝑡

O𝑝𝑜𝑠
 ≡

O𝑎𝑐𝑡

C𝑠𝑡𝑢 − (C𝑝𝑎𝑡 − 1)
 

Equation 1. 
 
For example, consider the calculation of Sustained BOR 

(operationalized as BOR-BOR-BOR-BOR) for a student whose total 
data consisted of the following 7-clip sequence: FRU-BOR-BOR-
BOR-BOR-BOR-CON. For this student, Oact = 2, since Sustained 
BOR is observed two times, from the 2nd to the 5th clip and from 
the 3rd to the 6th clip. Meanwhile, Cstu = 7 (the total number of clips 
in the student’s data) and Cpat = 4 (since it is a 4-clip pattern), so 
that Opos = 3. Therefore, prevalence of Sustained BOR in this 
student’s data is 2/4 or 50%. 

Were we interested in a 3-clip pattern like BOR-BOR-CON for 
the same students’ data, the calculation would be as follows: 

 
O𝑎𝑐𝑡

C𝑠𝑡𝑢 − (C𝑝𝑎𝑡 − 1)
=  

1

7 − (3 − 1)
 =  

1

5
 =  20% 

Equation 2.  
 
Because it is possible for one clip to be labeled with more than one 
affect, it is possible to have multiple different affective patterns 
within the same number of clips. For instance, BOR-BOR-BOR-
BOR/FRU would be counted as both Sustained BOR and the 
affective transition BOR–FRU. 

4.4 Statistical Analysis 
Spearman’s Rho was used to correlate the prevalence of each 
affective state pattern to pre-test, post-test, and normalized gain 
scores calculated as (post-pre)/(1-pre) [15]. While a gain score 
measures the difference between pre-test and post-test, the 
normalized gain score measures this difference relative to the 
maximum possible improvement given a student’s pre-test score. 
Spearman’s Rho is a non-parametric correlation coefficient, and it 
is commonly used in analyses where assumptions of normality are 
not met across an entire feature space.  

Because correlating each affective pattern against each of our 
three outcome measures resulted in 81 separate statistical tests, 
Benjamini and Hochberg’s [4] post-hoc FDR correction was used 
to adjust the significance criterion across multiple tests. P-values 
in the results section are only marked as significant if they 
remained significant after this correction was applied. 

5 RESULTS AND DISCUSSION 

5.1 Pattern Frequencies 
Affective patterns are described in Table 3, which summarizes the 
observation period and frequency for patterns involving boredom 
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(BOR), confusion (CON), delight (DEL), engaged concentration 
(ENG), and frustration (FRU).  
 
Table 3: Affect pattern frequencies 

 Pattern Obs. Period (sec) N Freq. 

ENG-CON-FRU-BOR 20-20-20-20 173 0.30% 

ENG-CON-DEL-ENG 20-20-20-20 1,678 3.20% 

ENG-BOR 40-20 7,964 15.00% 

ENG-CON 40-20 3,774 7.11% 

ENG-DEL 40-20 15,834 29.83% 

ENG-FRU 40-20 1,972 3.71% 

BOR-CON 40-20 1,871 3.52% 

BOR-DEL 40-20 5,866 11.05% 

BOR-ENG 40-20 7,789 14.67% 

BOR-FRU 40-20 1,006 1.90% 

CON-BOR 40-20 2,096 3.95% 

CON-DEL 40-20 3,423 6.45% 

CON-ENG 40-20 3,902 7.35% 

CON-FRU 40-20 2,224 4.19% 

DEL-BOR 40-20 5,755 10.84% 

DEL-CON 40-20 3,094 5.83% 

DEL-ENG 40-20 14,329 26.99% 

DEL-FRU 40-20 1,318 2.48% 

FRU-BOR 40-20 1,189 2.24% 

FRU-CON 40-20 2,421 4.56% 

FRU-DEL 40-20 1,736 3.27% 

FRU-ENG 40-20 2,614 4.92% 

Sustained BOR 80 11,759 22.15% 

Sustained DEL 80 16,219 30.55% 

Sustained OFF 80 10,155 19.13% 

OFF-ENG 40-20 7,750 14.60% 

 

The most frequently observed affective pattern in our data is 
sustained delight (33%), followed by ENG-DEL (29.83%), DEL-ENG 
(26.99%), Sustained BOR (22.15%), and Sustained OFF (19.3%). The 
two cycles hypothesized by D’Mello & Graesser [10] occur 
relatively infrequently (0.3% and 3.2%). In fact, all but three of the 
patterns occur more frequently than these two cycles: BOR-FRU 
(1.9%), DEL-FRU (2.48%), and FRU-BOR (2.24%). The relative 
infrequency of the hypothesized cycles, however, may be due to 
methodological differences between these studies, specifically our 
decision to look at 20-second intervals rather than to collapse all 
repeated instances of a given emotion into a single unit of 
observation.  

It is worth noting, however, that these analyses are being 
conducted on indirect measures of affective states. While our 
detectors have undergone a careful cross-validation process, these 
results should be interpreted carefully. In particular, the detector 
for delight appears to over-predict the prevalence of this affective 
state [18]. However, as the results presented below suggest, the 
student actions associated with delight appear to be highly 
relevant to understanding knowledge and learning behaviors. 

5.2 Correlations with Pre-test Scores 
As Table 4 shows, 9 of the 26 affective patterns in this study were 
significantly negatively correlated with pre-test scores. These 
include the inhibitory cycle hypothesized by D’Mello & Graesser 
(ENG-CON-FRU-BOR, ρ = -.239), though it was rare, accounting 
for only .3% of the 4-clip sequences in the data.  

 
Table 4: Correlations between affect patterns and pre-test 
scores 

Pattern ρ Sig. (2-tailed) 

ENG-CON-FRU-BOR -.239* 0.026 

ENG-CON-DEL-ENG 0.209 0.052 

ENG-BOR -.434** <0.001 

ENG-CON -0.002 0.985 

ENG-DEL 0.194 0.081 

ENG-FRU -0.011 0.921 

BOR-CON -.239* 0.026 

BOR-DEL -.336** 0.001 

BOR-ENG -.449** <0.001 

BOR-FRU -.262* 0.014 

CON-BOR -0.137 0.207 

CON-DEL 0.081 0.458 

CON-ENG 0.063 0.561 

CON-FRU -0.036 0.739 

DEL-BOR -0.106 0.345 

DEL-CON 0.063 0.574 

DEL-ENG 0.197 0.076 

DEL-FRU 0.05 0.657 

FRU-BOR -0.17 0.116 

FRU-CON -0.045 0.687 

FRU-DEL -0.076 0.495 

FRU-ENG 0.06 0.579 

Sustained BOR -.450** <0.001 

Sustained DEL 0.195 0.07 

Sustained OFF -.376** <0.001 

OFF-ENG -.220* 0.041 
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Like D’Mello and Graesser’s [11] inhibitory cycle (ENG-CON-

FRU-BOR), six of the other significant patterns that are negatively 
correlated with pre-test scores also include boredom (ENG-BOR, 
BOR-CON, BOR-DEL, BOR-ENG, BOR-FRU, and Sustained BOR). 
This suggests that students who begin the activity with low 
knowledge are more likely to experience boredom. In fact, 
boredom patterns are even more likely (ρ = -.239 to -.450) among 
low-knowledge learners than off-task behaviors (Sustained OFF, 
ρ = -.376). 

 

5.3 Correlations with Post-test Scores 
Correlations between affective state transitions and post-test 
scores are presented in Table 5, which shows patterns similar to 
those found in the pre-test results. However, this time, the role of 
delight is more pronounced.  
 
Table 5: Correlations between affect patterns and post-test 
scores 

Pattern ρ Sig. (2-tailed) 

ENG-CON-FRU-BOR -.308** 0.004 

ENG-CON-DEL-ENG .214* 0.046 

ENG-BOR -.443** <0.001 

ENG-CON -0.003 0.976 

ENG-DEL 0.19 0.087 

ENG-FRU 0.038 0.736 

BOR-CON -.350** 0.001 

BOR-DEL -.389** <0.001 

BOR-ENG -.468** <0.001 

BOR-FRU -.294** 0.006 

CON-BOR -.224* 0.037 

CON-DEL 0.082 0.448 

CON-ENG 0.073 0.499 

CON-FRU -0.039 0.719 

DEL-BOR -0.096 0.393 

DEL-CON 0 0.999 

DEL-ENG 0.18 0.105 

DEL-FRU 0.092 0.411 

FRU-BOR -0.191 0.076 

FRU-CON -0.031 0.783 

FRU-DEL -0.051 0.65 

FRU-ENG -0.042 0.698 

Sustained BOR -.505** <0.001 

Sustained DEL .300** 0.005 

Sustained OFF -.512** <0.001 

OFF-ENG -.307** 0.004 

 
Two of these are positive correlations for the patterns ENG-

CON-DEL-ENG (ρ = .214) and Sustained DEL (ρ = .300). These 
positive correlations suggest that increases in the frequency of 
these patterns would relate to an increase in post-test scores as 
well. By contrast, ten patterns show negative correlations. Five of 
these patterns begin with boredom, two with off-task behavior 
(Sustained OFF, ρ = -.512; OFF-ENG, ρ = -.307), two with engaged 
concentration (ENG-CON-FRU-BOR, ρ = -.308; ENG-BOR, 
ρ = -.443), and one with confusion (CON-BOR, ρ = -.224). No 
significant correlations were found for 3-step patterns beginning 
with either delight or frustration. 

Overall, 8 of the significant patterns involve boredom. These 
include several patterns that were significantly negatively 
correlated with pre-test scores, including D’Mello and Graesser’s 
negative cycle (ENG-CON-FRU-BOR, ρ = -.308) and the six other 
boredom-related patterns (ENG-BOR, BOR-CON, BOR-DEL, BOR-
ENG, BOR-FRU, and Sustained BOR). In these cases, the strength of 
the correlations have all increased. The same is true for CON-BOR, 
which was not significantly correlated with pre-test scores, but 
which is significantly correlated with post-test scores (ρ = -.224). 

5.4 Correlations with Learning Gains 
Table 6 summarizes the correlations between affect patterns and 
learning gains. In contrast with pre-and post-test scores, only one 
significant correlation was found, suggesting that in this case 
affective states may be more closely tied to student knowledge 
than to student learning.  

Curiously, the only pattern associated with higher learning 
gains is Sustained DEL (DEL-DEL-DEL-DEL, ρ = .335), which was 
a pattern that was significantly correlated with higher post-test 
scores but not with prior knowledge. This result corresponds to 
the finding that the ENG-CON-DEL-ENG cycle was also correlated 
with post-test, but not pre-test scores; this cycle was not 
correlated significantly to learning gain, although there was a 
trend in that direction that may be worth further investigation. 

 
Table 6: Correlations between affect patterns and learning 
gains 

Pattern ρ Sig. (2-tailed) 

ENG-CON-FRU-BOR -0.086 0.397 

ENG-CON-DEL-ENG 0.141 0.162 

ENG-BOR -0.002 0.981 

ENG-CON -0.02 0.847 

ENG-DEL 0.01 0.927 

ENG-FRU 0.043 0.681 

BOR-CON -0.13 0.197 

BOR-DEL -0.036 0.719 

BOR-ENG -0.028 0.782 

BOR-FRU -0.098 0.332 
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CON-BOR -0.032 0.753 

CON-DEL 0.095 0.347 

CON-ENG 0.112 0.269 

CON-FRU 0.074 0.466 

DEL-BOR 0.05 0.635 

DEL-CON -0.053 0.614 

DEL-ENG 0 0.999 

DEL-FRU 0.055 0.601 

FRU-BOR -0.07 0.488 

FRU-CON 0.042 0.685 

FRU-DEL -0.006 0.954 

FRU-ENG -0.106 0.296 

Sustained BOR -0.099 0.328 

Sustained DEL .335** 0.001 

Sustained OFF -0.09 0.374 

OFF-ENG 0.012 0.903 

 

5.5 Summary of Results 
Even after the use of Benjamini and Hochberg’s [4] post-hoc 
control, 22 of the 81 tested correlations produced significant 
results. Eighteen of these results emerged from only nine affective 
patterns (BOR-CON, BOR-DEL, BOR-ENG, BOR-FRU, FLO-CON-
FRU-BOR, ENG-BOR, OFF-ENG, Sustained BOR, Sustained OFF), 
which were negatively correlated with both pre- and post-test 
scores. One other pattern (CON-BOR) was also negatively 
associated with post-test scores. None of these patterns, however, 
were correlated with learning gains, a result which highlights the 
role of prior knowledge in the manifestation of affective patterns.  

Only three of the significant correlations were positively 
associated with our outcome measures, and notably both involved 
the affective state of delight. D’Mello’s ENG-CON-DEL-ENG was 
positively associated with post-test scores (but not pre-test scores 
or learning gains). Sustained DEL was significantly correlated with 
both the post-test scores and learning gains (but not pre-test 
scores), suggesting that experiences of delight may increase the 
likelihood of improved learning outcomes.  

6 CONCLUSIONS 
Overall, the findings in this study suggest that boredom is a 
powerful indicator of students’ knowledge, but not necessarily 
indicative of learning. In particular, it is interesting that Sustained 
BOR correlates (negatively) more strongly to pre-test values than 
Sustained OFF does. This relationship changes for post-test values 
(where their rho values are nearly equally negative). This seems 
to suggest that students may learn despite high levels of boredom, 
but that low-knowledge learners are more prone to boredom.  

Other significant patterns involving boredom (ENG-BOR, BOR-
CON, BOR-DEL, BOR-ENG, BOR-FRU, CON-BOR and the negative 

cycle ENG-CON-FRU-BOR) show comparable trends. In general, 
their correlation with the pre-test appears to be weaker than their 
correlation with the post-test, and none are significantly 
associated with learning gains. 

Two patterns involving delight are more weakly associated 
with knowledge, and one of them (Sustained DEL) is the only 
pattern correlated with learning gains. However, none of the 
sequences that transition from delight to another affective state 
are statistically significant, and even BOR-DEL, which is the only 
significant transition to delight, is, like other sequences involving 
boredom, negatively associated with pre- and post-test scores. 

Interestingly, even though they are relatively infrequent, the 
two hypothesized cycles from D’Mello and Graesser [11] appear 
to have a disproportionate effect on knowledge measures. Both 
are among the most infrequent patterns seen in the data (0.3% and 
3.2%), and both are correlated with post-test scores. Neither is 
associated with learning gains, which might suggest that their 
relatively infrequent occurrence may be more strongly associated 
with prior knowledge than with learning. While both correlate to 
post-test scores, only the inhibitory cycle (ENG-CON-FRU-BOR) is 
significantly correlated to pre-test scores.  

The limited prevalence (and somewhat limited effect) of the 
hypothesized cycles, in particular, may be attributed to 
methodological differences and suggests the need for further 
research.  

The results from this study have been calculated from learning 
outcomes, measured from pre-test and post-test scores, and 
predictions from the detectors. When interpreting these results, it 
is important to remember that the study may be limited by the 
relatively lower performance of the affect detectors (A′ of the 
detectors ranges from 0.568 to 0.725) in comparison to those in 
other learning environments, which we hypothesize is related to 
the open-ended nature of the Betty’s Brain environment [18]. 
Although the results do not strongly indicate correlations with the 
actual emotion, the findings still indicate that there may be a 
correlation between the tests scores and the features of student 
behaviors that are associated to the different affective states. 

Other methodological issues could also be impacting these 
results. It is possible that researchers would benefit from varying 
the number of steps by increasing the number of self-transitions 
involved in these cycles as well as by increasing the length of 
observation periods. Increasing the clips and amount of time 
considered in the analysis could allow for the discovery of more 
meaningful affect patterns. However, the fact that the shorter 
patterns showed so few statistically significant results may 
indicate that longer-stepped patterns will be of limited value.  

If the latter is true, then researchers may need to look more 
carefully for specific learning contexts where these patterns are 
most effectual. For example, these results also suggest that, at least 
within the context of this study, affective patterns may be more 
related to prior knowledge than to learning gains. If this is true, 
interventions or design changes that help support students with 
relevant knowledge gaps may disrupt the boredom patterns that 
were prevalent among these students and increase the prevalence 
of other patterns thought to be relevant to learning.  
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