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Abstract—Engagement is critical to satisfaction and perfor-
mance in a number of domains but is challenging to measure and
sustain. Thus, there is considerable interest in developing affective
computing technologies to automatically measure and enhance
engagement, especially in the wild and at scale. This paper pro-
vides an accessible introduction to affective computing research
on engagement detection and enhancement using educational
applications as an application domain. We begin with defining
engagement as a multi-componential construct (i.e., a conceptual
entity) situated within a context and bounded by time and review
how the past six years of research has conceptualized it. Next,
we examine traditional and affective computing methods for
measuring engagement and discuss their relative strengths and
limitations. Then we move to a review of proactive and reactive
approaches to enhancing engagement towards improving the
learning experience and outcomes. We underscore key concerns
in engagement measurement and enhancement, especially in
digitally enhanced learning contexts, and conclude with several
open questions and promising opportunities for future work.

Index Terms—Engagement, learning outcomes, affective com-
puting, procedural justice

I. INTRODUCTION

“If you are interested in something, you will focus
on it, and if you focus attention on anything, it is
likely that you will become interested in it. Many of
the things we find interesting are not so by nature,
but because we took the trouble of paying attention
to them.” – Mihaly Csikszentmihalyi, Finding Flow:
The Psychology of Engagement with Everyday Life,
pp. 128 [39]

AS the renowned psychologist Csikszentmihalyi points
out, our engagement is both a byproduct of and an

essential precursor to our long-term interests. For many of us,
it seems natural that we focus our attention on tasks we already
have an interest in, but research and theoretical models of
interest development suggest that we can nurture an emerging
interest in an activity through repeated engagement with it
[40, 41].

In the context of education, this observation is one of the
primary reasons why triggering and nurturing early phases of
interest is so important. Maintaining engagement, however,
taxes cognitive and emotional resources, making it difficult
to sustain for prolonged periods of time. In learning con-
texts especially, many hours of engaged attentive focus are
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needed to successfully master new and challenging content.
Thus, maintaining engagement in the moment as well as a
sustainable commitment to reengaging periodically over time
are essential. Can intelligent technologies help promote and
sustain engagement across extended periods of time?

Recent advancements in remote sensing technologies (e.g.,
portable cameras, microphones, wearable health trackers) and
affective computing approaches offer one potential solution by
enabling deeper understanding of people and their behaviors
and emotions in different contexts (e.g., facial expression
tracking [42], physiological stress detection [43]). In learning
contexts, these technologies aim to monitor learner engage-
ment and take actions to help promote engagement (e.g., to
help improve the pacing of instructional content or reengage
students who may have temporarily disengaged). These ap-
proaches fall under the broad umbrella of affect detection
[44, 45], affect-aware interaction (e.g., [46, 47]; see [48] for
a review), and attention-aware interaction [49].

However, because engagement is a complex psychologi-
cal construct (i.e., a conceptual entity), purely technical ap-
proaches risk oversimplification, resulting in measures that
are only tangentially related to engagement [50]. A purely
technical perspective also risks adopting narrow value and
reward structures such as maximizing predictive accuracy
without considering robustness, generalizability, interpretabil-
ity, bias/fairness, and application contexts [51, 52]. Thus, it
is critical that any attempts to measure and improve engage-
ment in a given domain adopt interdisciplinary perspectives
that blend psychological, computational, and domain-specific
know-how. This is precisely what we do in this manuscript by
providing a review of engagement from the fields of cognitive,
affective, and motivational science, affective computing, at-
tentional computing, wearable sensing, and machine learning.
We focus on research and applications involving learning and
education to keep the scope manageable.

So what exactly is engagement and how can technologies
help to enhance it? Conceptually, engagement is easy to
comprehend, but as we will discuss in this article, it is difficult
to precisely define. We will begin by examining notions of
engagement broadly, which encompass a very large number
of behaviors, emotions, and cognitive features that are differ-
entially relevant when studying engagement in different do-
mains (Section II-A). Next, we will adopt two complementary
schemes representing the multiple dimensions and perspectives



PROCEEDINGS OF THE IEEE, VOL. 111, NO. 1, JANUARY 2023 2

of engagement (Section II-B) and use them to illustrate the
breadth of engagement research in the past few years (Section
II-C). We will provide an overview of traditional and recent
approaches to measuring learner engagement in particular, and
also discuss how digital technologies and recent advances in
human-centered and affective computing are enabling auto-
mated measurement of learner engagement (Section III-A). We
will examine how these automated technologies perform both
in terms of accuracy of learner engagement assessment and
also in terms of the biases and errors they make and how
those may negatively impact certain groups of learners. Then,
with these traditional and automated engagement measurement
approaches in place, we will describe how technologies may
be used to help enhance engagement to improve learning
outcomes, focusing on systems from the past decade that
implemented these strategies (Section IV). Finally, we will
conclude with a discussion of the strengths and weaknesses
of different approaches to automated engagement detection
and feedback systems, propose open research questions for
enhancing learner engagement, and highlight important next
steps for future research (Section V).

II. CONCEPTUALIZING ENGAGEMENT

A. What is Engagement?

In 2013, an interdisciplinary group of researchers spanning
computing sciences and psychology convened to discuss and
better understand what “engagement” [53] means to dif-
ferent research fields. They discovered that the notions of
engagement in different research areas spans a wide range
of behaviors, thoughts, perceptions, feelings, and attitudes
towards a particular task, as also noted by Christenson et al.
[54]. In particular, the committee produced a list of behaviors
indicative of engagement relevant in specific contexts, includ-
ing: attendance, attention, memory, caring, emotion, inhibited
actions, an urge to share, understanding/learning, taking action,
willingness, active participation, and mental investment. While
this list indeed covers many pertinent aspects of engagement,
a rigorous definition that is both broad enough to be gen-
eralizable and narrow enough to be scientifically measured
and tested continues to remain out of reach. As Eccles and
Wang observe [55], generalizable notions of engagement may
be more intuitive and accessible to the public, but they offer
little guidance for scientific inquiry and uncovering cause–
effect relationships between the antecedents and consequents
of engagement. Thus, it may be more beneficial to narrowly
study engagement in particular contexts in terms of the
associated behaviors and mental states rather than adopting
all encompassing definitions which equate being engaged to
“doing something.”

Adopting a narrow focus has been the usual approach in a
tradition of theoretical and practical scientific inquiry. When
considering motivational aspects of engagement, theories in-
cluding self-determination theory [56, 57] and self-efficacy
theory [58–60] emphasize understanding the precursors of
engagement like autonomy, self-efficacy, interest in a partic-
ular activity, and a balance of challenge and skill. Theories
focused on cognition prioritize understanding the ebb and

flow of mental demands and how they impact attention and
performance [33, 61, 62]. For instance, in learning contexts,
the Interactive-Constructive-Active-Passive (ICAP) framework
[33] and an attention-based extension [63] propose that cog-
nitive engagement and attention are highest for interactive
(e.g., debating/discussing) and constructive (e.g., generating a
self-explanation) activities, decreasing progressively in order
for active (e.g., copying verbatim notes), and passive (e.g.,
watching a prerecorded lecture). Additionally, affective theo-
ries focus on the role of mood and emotion on engagement,
such as the assimilation–accommodation framework [64], goal
appraisal theories emphasizing how physiological arousal and
cognitive appraisal influence emotions, or hedonic schema-
based theories examining the interplay between the pleasure of
immersion (i.e., “flow” [65]) and interactive engagement [66].
Though engagement is often perceived as a positive mental
state, it is sometimes linked with addictive behaviors which
may occur when dopamine (a “feel good” chemical in the
brain) is confused with happiness causing people to engage
with certain activities (e.g., video games) to the detriment of
other life goals [67]. It may also be associated with affective
states such as confusion and frustration, which may have a
negative valence, but are part and parcel of complex learning
[68].

Given its multitude of manifestations (e.g., visual attention,
activity participation, feelings towards the activity) and the
numerous contexts in which it is studied, we adopt a broad
perspective of engagement. Specifically, we operationalize
engagement in terms of multi-componential affective states,
cognitive states, and behaviors that arise from interactions
with a person and a task context and unfold across multiple
time scales. In other words, as reviewed below, engagement
is is not one unitary entity, but an umbrella term that is
operationalized as a function of component(s), task context,
and timescale as noted below:

engagement = f(component, context, time)

B. Components of Engagement and the Engagement Contin-
uum

Researchers generally agree that engagement is a multi-
dimensional construct that encompasses not only how one
feels or behaves in the moment but also longer-term patterns
of engaging and wanting to engage with a task [53]. To
provide a more structured approach to its study in learning
contexts, Fredricks, Blumenfeld, and Paris [69] proposed three
components (or facets) of engagement: emotional, behavioral,
cognitive. Emotional engagement refers to one’s feelings and
attitudes about a specific task or the context in which it is
performed, such as feelings of interest towards a particular
subject or liking for a teacher in school [70]. Behavioral
engagement regards aspects related to one’s direct involve-
ment in a task and encompasses behavioral features like
participation and persistence (e.g., “hard fun” in learning
games [71]) practice, and level of effort. Cognitive engagement
pertains to the allocation of cognitive resources to a task,
ranging from maintaining attentional focus to adopting high-
level learning strategies, As such, it captures aspects related
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to cognitive outcomes, such as memory, recall, learning, and
a deep understanding or mastery of knowledge pertaining to
the task. These components provide a useful mechanism for
approaching engagement as a multi-componential construct,
however, they do not account for the influence of context and
time, both of which are crucial dimensions.

Complementary to the multi-componential categorization
scheme, Sinatra et al. consider how context and time scale
influence engagement [72]. They propose engagement along
a continuum with one endpoint corresponding to a person-
oriented perspective of engagement, which focuses on the
cognitive, behavioral, and emotional components of engage-
ment within individuals in a singular task context and across
a short time span lasting seconds to minutes. Studies at this
extreme would focus on tracking one or more components of
engagement while people are engaged in some activity over
a short time period (e.g., using eye trackers to measure mind
wandering while students interact with an educational technol-
ogy in a computer-enabled classrooms [12]). Most affective
computing research can be aligned to the person-oriented
perspective of engagement. At the other extreme is a context-
oriented perspective where group-level or task-level features of
engagement are considered as products of context and across
extended time frames lasting weeks, months, or years. For
example, understanding how broad learning structures (e.g.,
whether a school adopts a traditional lecture-based, computer-
based instruction, or a blended approach) influence engage-
ment at the school-level (i.e., an aggregate of measurements
on individual students). Sinatra et al. [72] propose that between
these two extremes, is the person-in-context perspective where
the focus in on how particular contexts influence individuals’
engagement (e.g., how a teacher’s behavior differentially influ-
ences students from different backgrounds [73]) and unfolds
over tens of minutes to hours and days. Of course, every event
entails an interaction of person, context, and time, but the
framework highlights whether the event is characterized from
the perspective of the person, the context, or their interaction.

C. Review of Recent Studies on Engagement and Learning

We conducted a review of how recent research within
learning contexts has contextualized engagement with re-
spect to components, contexts, and time scales. To facilitate
this, we selected papers from the last six years (published
2017 or later) based on Google Scholar results for engage-
ment “machine learning” students, search variations including
modality-specific keywords (e.g., “EEG”), and by exhaustively
searching for “engage” in all paper titles published in IEEE
Transactions on Affective Computing during or after 2017.

We filtered papers based on whether they considered en-
gagement in learning, then categorized the contextual focus
(i.e., person-oriented to context-oriented) based primarily on
the research questions or goals in the papers. Research ques-
tions varied from highly person-oriented, in which the purpose
was to learn about signals of individuals’ engagement, to
highly context-oriented questions, in which the purpose was to
learn something about the engaging properties of the context
itself. For example, Chang et al. [4] focused on engagement

detection across contexts in a person-oriented way, relying
only on features that could be extracted across contexts (e.g.,
facial expressions) without accounting for the influence of
context on those features. Conversely, Soffer & Cohen [25]
addressed person-in-context research questions that integrate
person-oriented goals (i.e., detecting student engagement) and
context-oriented goals (i.e., discovering which aspects of the
context predicted engagement). In highly context-oriented re-
search, Seo et al. [24] investigated how an aspect of the context
(i.e., a novel type of video presentation) related to student
engagement. Most research projects are between the extremes
of the continuum, where they take contextual factors into
account for predicting individual engagement or consider a
mix of both contextual and person-oriented research questions.
Table A1 in the supplementary materials contains the tabulated
results from this survey, accounting for the focus along the
engagement continuum, engagement components, engagement
construct, data modalities, measurement approaches, modeling
approaches, and also methods to enhance engagement. Fig-
ure 1 plots these papers along the engagement components
(discrete) and engagement continuum (continuous) dimensions
and illustrates the focus of the past six years of research.
The color of the boxes in Figure 1 groups studies by
the measurement approaches where black boxes use overt
(openly displayed; e.g., gaze, face, logs) signals, white boxes
use covert (subconscious or less-controlled; e.g., electroen-
cephalography [EEG], electrodermal activity [EDA], ambient
sound) signals, and gray boxes indicate a mixture of the two.
Additionally, the data modalities used to monitor and measure
engagement are listed within each box.

Based on the results from Table A1 and Figure 1, the
past six years of learning engagement research span a variety
of components, contexts, and time scales. This is quite a
departure from the the bulk of research on learner engagement
prior to the last decade (see Christenson, Reschly, and Wylie
[54] for an excellent summary), which has mainly focused
on the classroom as a traditional learning context. In par-
ticular, out of the 32 papers we surveyed, only 22% focus
on traditional classroom activities or settings while the rest
focus on learning from digital technologies and online learning
systems (see the Learning context column in Table A1).
Collectively, these studies focus on different engagement com-
ponents (26% affective, 26% cognitive, 48% behavioral), more
remote/online than classroom contexts (22% classroom, 37%
remote/online, 41% laboratory), and they skew more towards
short (person-oriented) than long-term (context-oriented) time
scales (47% person-oriented, 38% person-in-context, 15%
context-oriented).

1) Engagement Components: Sometimes when learners are
willing to engage, but have difficulties sustaining engagement
(cognitive component), long-term learning outcomes are poor.
For instance, when learners are bored with learning content or
the learning environment (e.g., school classroom), they may
have difficulties maintaining attention, leading to diminished
learning outcomes [74–76]. A meta-analysis of 29 research
studies found a statistically significant (N = 19,052 students
total) negative correlation (r = -.24) between boredom (an
affective component) and academic success [77]. Perhaps
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Fig. 1. A plot of our survey of engagement research over the past six years (see Table A1) categorized using the three components (behavioral, cognitive,
emotional) proposed by Fredricks et al. [69] and the engagement continuum (ranging from person-oriented to context-oriented) proposed by Sinatra et al.
[72]. The signals used to measure engagement within each work are listed in each box. Black boxes use overt (openly displayed) signals, white boxes use
covert (subconscious or uncontrolled) signals, and gray boxes indicate a mixture of the two. Additionally, the data modalities used to assess engagement are
listed within each box. EEG = electroencephalography, EDA = electrodermal activity, CO2 = carbon dioxide levels.

unsurprisingly, interventions that promote attention and con-
centration are among the most beneficial of all interventions
explored in another recent meta-analysis of training programs
for self-regulated learning skills (total N = 5,786; Hedges’ g
= 0.61) [78]. Stress (an affective component) is yet another
influential factor, but one which can have both positive and
negative effects on learner engagement, depending on its
strength, duration, source, and learner personality [79–81].

Certain behavioral manifestations of engagement offer a
window into the day-to-day and week-to-week trends in en-
gagement. In the classroom, learner attendance and completed
exercises provides some important behavioral indicators linked
to positive learning outcomes [82, 83], while in technology-
driven and online learning contexts, forum posts and viewed
videos are readily apparent behavioral indicators of engage-
ment [84, 85]. Behavioral engagement in online settings has
also been used to learn more about how course content benefits
students (e.g., [22]).

2) Engagement Contexts: Engagement in learning mani-
fests in different ways across a spectrum of activities rang-
ing from listening and note-taking in traditional classroom
learning [33], watching lecture videos and answering questions
in remote or digital learning [86], to reading and completing
homework [87, 88]. Engagement is relevant for each of these
activities over varied time scales as well.

Today, more and more professionally curated learning con-
tent is becoming accessible through Massive Open Online
Courses (MOOCs; e.g., edX, Coursera) and less traditional
presentations of learning content are also available on YouTube
and other streaming platforms (e.g., Khan Academy, Verita-
sium). Though these digital learning platforms offer perhaps
the most convenient and approachable access to learning con-
tent, with MOOCs providing additional facilities for students
and teachers to directly communicate and interact, student
disengagement and course dropout rates are problematic and

often more troublesome than traditional classroom learning
[89].

Engagement manifests in ways that differ substantially
between face-to-face and online learning contexts as well.
Objective indicators of engagement from methods like eye-
gaze tracking and electroencephalography (e.g., [2, 5, 12])
are difficult to implement with high fidelity outside of
experimenter-controlled in-person contexts. Consequently, re-
search on engagement in different learning contexts has also
adopted varied approaches. For example, Rodriguez et al. [22]
clustered students according to their online course behaviors
to learn more about how the course context benefited students,
whereas Gao et al. [10] explored certain in-person contextual
factors directly, such as indoor climate. At the person-oriented
end of the spectrum, research questions about the individual
may be answered via fine-grained data of engagement-related
behaviors during learning with technology [16], though multi-
modal data collected in face-to-face contexts are perhaps more
common (e.g., [2, 11, 29, 30]).

3) Engagement Time Scales: Engagement influences learn-
ing in terms of both momentary engagement in a learning
task and longer-term engagement with a course or topic [90–
92]. Furthermore, prolonged periods of focused attention may
occur in a classroom setting during a lecture [30, 93], while
it may occur in short bursts when learning in between other
responsibilities or distractions within a home [94]. In spite of
the complexity of these multi-temporal aspects, students who
are engaged for prolonged periods should be better able to
learn and retain information compared to students who are
disengaged or engaged for shorter and less frequent durations
[95, 96].

Since learning requires sustained effort over a period of
time, periodic disengagement (e.g., for relaxation, taking
breaks) might actually benefit learning outcomes to the extent
that it enables learners to reengage in learning content over
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time [97]. However, prolonged periods of disengagement are
associated with negative learning outcomes, such as a reduced
interest in educational activities [98], lower self-efficacy [99],
an increase in risk-taking behaviors [100], lower levels of
educational achievement [74, 101], or an increased risk of
course absenteeism or dropping out from school entirely [102].

4) Summary: In short, engagement in learning is a multi-
temporal and multi-componential construct that is positively
associated with long-term learning outcomes in a variety of
formal (e.g., classroom) and informal (e.g., YouTube learning
videos) contexts. Though prolonged periods of disengagement
are associated with negative learning outcomes, periodic dis-
engagement may help learners “recharge” in between learning
sessions and can benefit long-term learning outcomes. Careful
measurement of learner engagement during these focused pe-
riods coupled with strategies to promote focused engagement
(i.e., to combat fatigue or boredom) are necessary to help
improve the effectiveness of these focused sessions and long-
term learning outcomes. The next sections focus on these two
major issues.

D. Takeaways

Key takeaways from this section on the conceptualization
of engagement are:

1) Engagement can be operationalized as a function of
component(s), task context, and timescale.

2) Engagement is multicomponential, encompassing affec-
tive states, cognitive states, and behaviors.

3) Engagement unfolds as a function of task context and
time, where a person-oriented perspective focuses on
momentary engagement patterns over narrow contexts,
a context-oriented perspective focuses on the influence
of the context on engagement patterns over extended
time frames, and a person-in-context perspective lies
somewhere between these two.

III. MEASURING ENGAGEMENT

Given the multitude of ways in which learners exhibit
behaviors, express emotions, and cognitively attend to learning
tasks, several methods for measuring engagement have been
developed. Since engagement is a latent construct and cannot
be directly observed, traditional measures rely on self-reports,
observation/annotation, or proxies for inferring engagement,
which we will delve into next. Automated approaches then
leverage these “ground truth” measures along with sensor
data to derive computer estimates of engagement. In both
cases, there are several challenges involved in obtaining valid,
reliable, and unbiased measures in different learning contexts.

A. Traditional (Manual) Approaches

The traditional approaches to measuring learner engagement
can be broadly categorized along two dimensions. The first
dimension concerns when the engagement measurement is
made, which can either occur in tandem with learning activities
(i.e., a momentary assessment) or retrospectively after the
activity. The second dimension concerns the perspective used

to make the assessment, which can either come from the
learner (i.e., self-reported engagement) or from the perspective
of an observer. We consider the merits and drawbacks of these
approaches below.

1) Retrospective Self-report Measures: These measures are
among the most commonly used to capture learner engagement
in classroom contexts (e.g., [92, 103, 104]). Typically, these
are operationalized as Likert-type or yes/no questionnaires
where learners reflect on recent learning experiences and
respond to a collection of questions. For example, learners may
be prompted with, “I like learning new things in class” (an item
for emotional engagement) or “I try to match what I already
know with what I learn in school” (an item capturing cognitive
engagement) (e.g., [105]). In other cases, students may be
presented with a list of statements to endorse, like “When I
am in class, I listen very carefully” (a behavioral engagement
item) or “In school, I do just enough to get by” (a reverse-
scored behavioral engagement item). Usually, these items are
packaged together into questionnaires to increase their validity
and reliability and promote reuse (for example, the Student En-
gagement in School Questionnaire [105]). This is an important
step for generalizable and reproducible research. Other non-
questionnaire approaches for retrospective and self-reported
engagement measurement include day reconstruction [106]
and interviews [107] (which perhaps blur the line between
self-reported and observer-based measurement).

2) Momentary Self-report Measures: Momentary self-
reports are useful measurement approaches for sampling men-
tal states at particular moments when those states may have
changed. One approach is called experience sampling [108],
which is similar to ecological momentary assessments used in
affective computing research [109, 110]). Here, learners may
be periodically probed to report their levels of engagement
during a learning activity. Though these kinds of assessments
are widely used in affective computing research, they are less
commonly utilized for measuring engagement in classrooms
because of the concern that they disrupt the engagement in the
process. However, this concern can be alleviated by careful
design of the timings and delivery of the probes [108]. In
perhaps the largest study on student engagement during digital
learning, Hutt et al. [111] used this method to collect tens
of thousands of engagement instances from close to 70,000
students across an entire school year.

3) Retrospective Human Observer-based Measures: These
types of engagement measures include video coding and
observer-based annotation of recordings of student engage-
ment. For example, several recent works (e.g., [26, 29, 30,
112]) utilized human coders to rate the level of engagement
of different students in laboratory and classroom settings based
on camera recordings (and eventually used these measures
to train machine learning models to automatically infer en-
gagement). This approach gives observers access to some
types of information available to teachers in a classroom for
assessing student engagement in real-time (e.g., visual and
audible information).

Some additional approaches utilize observations about the
learning outcomes to retrospectively infer whether learners
were engaged in activities or learning content. Examples of
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these types of measures are common in today’s classroom
and digital learning environments: homework grades or com-
pletion, absences, test scores, behavior records, time spent
watching lecture videos, number of discussion forum views
and posts, and more [113, 114]. Traditionally, these metrics
are evaluated by humans (e.g., teachers, teaching assistants)
to gauge learner engagement, but it is questionable whether
they actually reflect engagement (e.g., test scores are designed
to measure knowledge rather than engagement). Furthermore,
absences conflate legitimate reasons for nonattendance (e.g.,
illness) with disengagement and homework completion mea-
sures do not account for home-life factors (e.g., access to
reliable internet). These types of measures need to be taken
with a grain of salt and used as a last resort for assessing
learner engagement, unless they are validated against accurate
alternative measures.

4) Momentary Human Observer-based Measures: Momen-
tary observer-based measures can encompass both live human-
based observation (e.g., via a teacher or research assistant in
the classroom) and also asynchronous indicators of learner
behavior at particular moments (e.g., observation of video
recordings of students in classrooms [26], coding of log files
during digital learning [115]). One widely used observer pro-
tocol is the Baker-Rodrigo-Ocumpaugh Monitoring Protocol
(BROMP)—a human-observer coding method where students
are observed individually for up to 20 seconds to assess both
their affective (e.g., neutral, boredom, confusion) and behav-
ioral states (e.g., on-task, off-task, on-task with conversation)
[116]. To avoid ordering effects and the influence of distracting
behaviors on the observers, BROMP requires that the sequence
of students to be observed is determined a priori [117].

B. Recent (Automated) Approaches

Recent approaches to measuring engagement have turned to
automated and machine-based methods. The main ideas behind
using machines rather than human observers or self-reports are
to reduce costs, (ostensibly) reduce biases, improve objectivity
in assessment, scale up measurement, and have real-time mea-
sures for dynamic interventions. The manner in which these
automated systems are built depends on the learning context
in which they will be deployed. For example, an automated
engagement detection system in the classroom might use
video and audio data from camera and microphone recordings
of students to infer engagement, similar to how a teacher
would use the same visual and audible cues (e.g., [118, 119]).
Another example is an automated system for digital learning
environments where students’ interactions with the system
(e.g., time spent watching lectures, number of lectures viewed,
quizzes answered) and with each other (e.g., forum views and
posts) are used to infer engagement (see [120] for a review).
Each of these approaches are forms of machine observation
that are trained to infer learner engagement levels at different
moments in time using information from an array of features
(e.g., video-based gaze or face, audio cues, logs) and prior
examples of engagement and disengagement from human-
based measurement approaches. Thus, human measurements
provide the foundation for automated assessments.

Figure 2 provides an overview of how these automated
AI engagement inference systems are built. The end result
of this process is a trained machine learning model (i.e.,
the ML Model in the Model/Prediction stage) that is able to
infer engagement from (machine-based) observations about
learners. However, in order to train this model, additional
supporting information needs to be supplied, such as examples
of learners’ behaviors/cognition/emotions in context, human-
provided ground-truth ratings/annotations of engagement using
any of the aforementioned measures, and various decisions
from stakeholders (e.g., researchers) to determine the ML
model algorithm. To summarize, first the ML model is trained
to detect and predict learner engagement from examples, then
it can be used to infer engagement levels for new groups of
learners, as noted below:

ML model training:

machine-observed
features

+
human-provided

engagement scores/labels → ML
model

ML model deployment:

machine-observed
features

+
trained ML

model
→ machine-provided

engagement estimates

In Figure 2, each stage (gray dashed box with bold labels)
is comprised of information, denoted by the yellow wavy
boxes, and processes, people, or systems which act upon and
transform that information. We refer to this latter grouping
as agents and depict them using rounded green boxes. Within
and between each stage, information is produced by agents
and passed along to other agents that transform it into a new
type of information. Thus, the pipeline consists of alternating
steps (e.g., agent → information → agent ...). The red dia-
mond denotes a stakeholder decision which influences how
information flows through the pipeline and is used to decide
when an iteration of the pipeline is complete. In Figure 2,
only one decision is depicted at the end where stakeholders
control whether to continue training the ML model, but in
reality, many stakeholder decisions influence the structure
and flow of information throughout the entire pipeline (e.g.,
which algorithm for the ML model should be used, how
many learners should be studied and in what context?). For
simplicity here, only one decision is illustrated. We describe
each stage in turn next and use italicized font when referring
to items within the figure.

1) Engagement Continuum Stage: This stage encompasses
the learners and the learning context. As proposed by Sinatra
et al. [72], there are a number of influences that learners have
on their learning context and vice versa, thus there exists
a continuum where engagement can be studied at the level
of learners, the learning context, or anywhere in between.
This stage captures the details of a particular context, such
as learning in a traditional classroom or learning by watching
video lectures at or away from home.

2) Human-provided Measurement Stage: This next stage
encompasses any of the four aforementioned measurement
approaches (e.g., momentary observer-based). This stage is
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only necessary for ML model training and would not be used
once the ML model is deployed, thus all measurements made
in this stage involve human-based assessments of engagement
(see [121] for a review). Three paths are depicted in the
figure, but typically only one or two are utilized in a particular
study, but see D’Mello et al. [122] for a combination of
measures including self-reports, peer-judgments, and trained
judges. The top path represents both types of observer-based
measurements where human observers use their senses (e.g.,
watching and listening to learners behaviors, expressions, and
performance) to make a judgement about their perceived level
of learner engagement. Sometimes these judgements are purely
subjective and sometimes they may involve questionnaires
and assessment items, similar to those previously mentioned.
Perceived engagement scores from multiple observers are
sometimes gathered to help reduce the influence of any ob-
server’s biases, then the scores are fused (e.g., by averaging) to
produce an Engagement Score. The second path involves self-
reported engagement where the learners themselves reflect on
their experiences of engagement and report them directly (e.g.,
at seven-minute intervals [123]). Finally, sometimes engage-
ment is induced rather than measured, which the third path
represents. In these types of scenarios, the learning context is
carefully controlled and presumed to have some known effect
on the engagement levels of learners. For example, Siddiqui
et al. suggest that engagement can be induced via peer-to-
peer synchronous interactions [124] and Hsu et al. have shown
that disengagement can be induced using distractions [125].
Engagement scores are often treated as binary measures (e.g.,
engaged or disengaged) in these induced engagement settings,
offering coarse insights into the effects of (dis)engagement.

3) Automated Sensing/Feature Stage: In this stage, infor-
mation about the learners and learning context are observed
and recorded. Since the aim is to build an ML model that can
automatically infer engagement without human intervention
(though human oversight is needed at all steps, as we will
explain later), a machine-based observer collects observations
here rather than humans. Thus, these observations can be
generated from any signal that can be digitized. A video is
one example of a digitized signal from which features such as
facial expressions, gestures, body posture, or eye gaze [126]
among others could be automatically extracted using computer
vision techniques [42]. Another example for learners in remote
or digital contexts involves collecting patterns of interactions
with the learning management systems (LMS), including video
views, video skips, page view, or click streams, which provides
a basis for inferring student engagement (e.g., see [111, 127]).
This latter example is called a “sensor-free” approach because
it uses overt information obtainable from LMS interactions
rather than external sensors. Of the 32 studies surveyed (see
Table A1), most relied on overt signals (e.g., face, gaze, logs),
whether sensor-based or sensor-free, rather than covert (e.g.,
heart pulse) signals to infer engagement levels (i.e., 84% overt,
13% covert, 3% mixed).

More recently, advances in deep neural network modeling
are enabling automatic feature extraction and the transfer of
trained automated sensing technologies across domains. For
example, Sümer et al. [26] used pre-trained deep networks

called Attention-Net and Affect-Net to learn deep embeddings
(i.e., features of engagement) based on facial expressions and
head pose in a classroom learning context (a person-oriented
approach). Transfer learning (i.e., from outside sources to
learning contexts) benefits from large amounts of data to
learn how to understand different signals (e.g., gaze, facial
expressions, vocalized audio) are proving to be powerful
methods for automated construct inference in many domains
(see [128] for a review of transfer learning), and it seems
likely advances in automated learner engagement inference
will follow suit.

4) Model/Prediction Stage: Next is the Model/Prediction
Stage where the ML Model is trained using the Features of
Engagement and the Engagement Scores (i.e., supervised ma-
chine learning). The training process, represented by the ML
model in Figure 2, entails learning a mathematical function
which maps the engagement features to the engagement scores
as accurately as possible. This process is typically iterative, as
many refinements to the learning model may be needed (e.g.,
hyperparameter tuning) until a sufficiently optimized mapping
is found. Once the ML model is trained, it can be used to make
predictions about the level of engagement based solely on the
engagement features without using the engagement scores.

Cross-validation is often employed in this stage to im-
prove the generalizability and reliability of the ML model
for a particular purpose. This technique entails measuring
the ML model’s performance on different subsets of data
not considered when training the models, and the choice of
these subsets influences the model’s robustness. For example,
if the stakeholders want to train the ML model to make
predictions about the engagement levels of new learners in a
similar context, the ML model will be trained using a subject-
independent cross-validation procedure where examples from
a given learner appear only in the training or testing set,
but never split among the two. Likewise, ML models meant
to assess the effectiveness of different courses at eliciting
engaged behaviors (i.e., a context-oriented approach) would
use a course-independent cross-validation approach. Details
of this procedure are discussed further in Section III-C.

5) Decision/Evaluation Stage: In this final stage, the pre-
dicted levels of engagement from the ML model are evaluated
to determine whether the model performs well enough for
its intended purpose. In most research, this determination
is made based on accuracy (i.e., the similarity between the
Engagement Predictions and the ground truth Engagement
Scores), reliability (i.e., similarity of Engagement Predictions
for similar Features of Engagement), and generalizability (i.e.,
how accurately the model predicts engagement for different
learners and contexts). Statistical tests are sometimes utilized
to assess how well the model’s predictions perform compared
to suitable baselines (e.g., simple heuristics, educated guess-
ing) both in terms of strength and statistical significance. If the
models under-perform compared to expectations, stakeholders
may choose to alter portions of the pipeline (e.g., adding or
removing engagement features, choosing a different ML model
algorithm) and try again. The final output of this pipeline is
a trained ML model suitable for automatically predicting the
engagement levels of a new set of learners in similar learning
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Fig. 2. A pipeline demonstrating how machine learning models for automated engagement assessment are trained. ML = machine learning

contexts using only machine-based observations.
This pipeline for training the ML model is a general-purpose

pipeline for human-centered computing tasks where constructs
beyond engagement are of interest (e.g., positive or negative
affect [129], perceived sleep quality [130], suitability of job
candidates for hiring [51]). A person-oriented version of this
pipeline tailored for automated learner engagement assessment
in digital learning contexts was proposed by D’Mello, Di-
eterle, and Duckworth [131] called the Advanced, Analytic,
Automated (AAA) approach. Many of the studies surveyed
(see Table A1) include an automated engagement inference
system trained in this fashion. In particular, while 25% of the
32 studies used a more traditional form of statistical inference,
the other 75% used machine learning methods (42% classic
ML [e.g., k-nearest neighbors, support vector machines], 33%
modern ML [e.g., deep and reinforcement learning]). Though
research into automated engagement inference is still emerg-
ing, these and other studies (e.g., [118, 132–134]) demonstrate
the power of this general supervisory approach for developing
automated systems for engagement prediction.

C. Challenges in Measurement

Though the specific implementations for each engagement
measurement approach aim to be as accurate and reproducible
as possible, there are several challenges involved with both
human-based and automated machine-based measures of en-
gagement whose predictive accuracies depend on the human-
based measures (used as supervisory signals). Here, we discuss
some of the challenges to engagement measurement.

1) Validity of Ground Truth Assessments: According to the
Standards for Educational and Psychological Testing [135],
the validity of a measurement refers to “the degree to which

evidence and theory support the interpretations of test scores
for proposed uses of tests.” Using the three components of
engagement [69] as a guide, this means that a valid measure
needs to be accurate and encompass all facets of engagement.

Figure 3 illustrates how different perspectives (self, hu-
man observer, machine observer) have varying access to
information signals (e.g., introspection, gaze, heart pulse) for
determining engagement within each component. Thus, each
perspective is restricted to producing engagement measures
based on the available channels of information, some of which
serve as unreliable proxies for estimating engagement. Proxy
measures such as grades, test results, visual cues, and atten-
dance are often limited in what they can reveal about affective
and cognitive engagement (e.g., neutral facial expressions are
limited proxies for focus, gaze is a limited proxy for visual
attention), and some behavioral proxies are non-specific; for
example, absences can reflect health conditions and a difficult
home life rather than lack of engagement, whereas showing
up each day might reflect compliance rather than a genuine
desire to learn. Thus, any measure of engagement should strive
to incorporate a multitude of perspectives in order to maximize
validity.

However the validity within each perspective can be di-
minished by various forms of bias. Self-report accuracy may
be influenced by social desirability bias [136], memory re-
call limitations [137], cultural contexts [138], and cognitive
and recall biases [139]. Though human-based observational
measures can mitigate some of the biases from self-reports
(e.g., [70, 140–143]), these measures are also subject to the
influence of prior experiences, implicit biases, spatial atten-
tion [144], and individual differences between learners and
observers (see [145] for a catalogued review). Biases are also
introduced by the timing of the measure. For example, whereas
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Fig. 3. A Venn diagram illustrating three different perspectives for measuring
engagement. Examples of data modalities (i.e., signals) are contained within
each circle showing which types of information can be incorporated by each
perspective. A complete view of engagement should include a multitude of
these perspectives and also momentary and retrospective assessments (not
pictured). Biases in the form of contamination or deficiency can arise when
irrelevant sources of information (e.g., situational factors, cultural context) are
utilized when making an assessment of learner engagement.

the asynchronous nature of retrospective observation allows
human observers to more carefully reflect on the behaviors
and affect of students, contextual factors not captured in a
video cannot be considered. Retrospective self-report measures
avoid interrupting the learning activity but suffer from limits
of memory reconstruction. As a result of these biases and
differences in perspectives, self- and observer- ratings of
engagement and affect in general tend to be very weakly
correlated [131, 146–151], suggesting each is sensitive to
different sources of information. Attempts to mitigate these
differences, such as frame-of-reference training that increases
observer–observer agreement, does not seem to improve self–
observer agreement [152].

Overcoming these challenges is difficult, and at present
there is no single best approach. Generally, biases in one
measurement procedure can be mitigated by collecting several
measures independently (e.g., multiple observers, multiple
self-reports), and research should aim to incorporate multiple
measures where possible that accurately comprise cognitive,
affective, and behavioral engagement. Given that both self-
and observer- reports have biases and are privy to different
sources of information, perhaps the most defensible approach
is to consider a combination of the two as in D’Mello et
al. [122]. Thus, a major weakness in current research is that
studies typically do not capture or account for these multiple
perspectives.

2) Scalability of Assessments: To maximize the validity
of engagement measures, multiple approaches to engagement

measurement are desirable, but this increases costs and impacts
the scalability of research. Human-based observer measures
in particular entail considerable human effort, which makes
it difficult to replicate studies in similar contexts and across
cultures to test the generalizability of findings at scale. These
limitations can be partially addressed when using machine-
based observation to supplement or replace some human-
based observation. For instance audio and video recording
systems, such as the Electronically Activated Recorder (sam-
pling audio clips in naturalistic settings) [153] or cameras
in a classroom [26], can capture indicators of student en-
gagement passively and easily at scale. These recordings,
however, need to be transcribed and annotated by human
observers (e.g., [147, 154]) to obtain an engagement measure,
which still incurs considerable costs and hinders scalability.
This is where automated ML models can help by generating
engagement measures from the machine observations without
any need for human observers beyond the model training
process. This approach saves considerable time, effort, costs,
and easily scales to studies involving large populations. There
have been several studies utilizing automated AI in this way
(e.g., [118, 132–134]), but research along these lines is still
relatively new and more work is needed before the ML model’s
engagement assessment accuracy achieves parity with human-
based observation [91, 120].

3) Generalizability of Human-based Assessments: Self-
reported measures of engagement are relatively inexpensive
and easy to administer, but in addition to the previously
mentioned biases, they may not generalize across learners and
cultures [136, 148]. For example, on a 5-point questionnaire
item asking learners to rate how hard they study each day,
one student in a competitive learning environment who studies
for at least an hour each day may rate their effort as 4/5
while another student in a more relaxed environment who
reviews flash cards for five minutes each day may do the
same. Since the learning outcomes and amount of time spent
engaged is likely to differ between learners in this instance, the
validity of interpretations of these self-reported questionnaires
is reduced when comparing them across contexts [148]. This
basic argument applies to learners in different contexts (e.g.,
formal classroom learning with notes vs. informal digital
learning with a learning management system) or cultures since
the study habits and perceptions of successful studying vary by
context. Self-reported measures are more valid when compared
over time within a learner since these differences in reference
frames are no longer problematic.

4) Validity of ML Models: There is the major issue of how
to evaluate the expected validity of automated ML models for
engagement prediction on new samples of learner data. Often,
the model’s accuracy is used (a form of convergent validity),
measured as the alignment between automated estimates and
an external standard (typically self- or observer- annotations)
and quantified, for instance, using recognition rate, kappa, or
correlations. Measuring the suitability of an ML model for a
purpose in terms of accuracy ultimately requires stakeholders
to make a subjective assessment (see the Stakeholder Decision
in Figure 2). Although it is difficult to specify exact bounds on
what constitutes “good” accuracy (as discussed in detail later
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on), at a minimum it should exceed random guessing (chance).
As automated machine-based engagement measures have

only been the focus of concentrated research effort in recent
years, their validity has yet to be thoroughly examined. Efforts
to build the best ML model possible (see Figure 2) have
focused almost entirely on optimizing accuracy, and thus
convergent validity. This provides one form of evidence of the
validity (accuracy) of ML-based measures, but as Standards
for Educational and Psychological Testing [135] clearly states,
multiple types of evidence of validity are needed to help
establish the suitability of a measure for a particular purpose.
To date, there is little to no evidence of the discriminant
validity (i.e., ML predictions are uncorrelated with unrelated
constructs), predictive validity (i.e., the success at predicting
future states of engagement), or external validity (i.e., gen-
eralizability). For instance, none of the reactively designed
systems we describe later in Section IV-B provide evidence
of these additional types of validity. Only a small handful of
studies (e.g., [91, 155–157]) link the automated engagement
predictions to meaningful outcomes, such as learning gains
and college enrollment (i.e., evidence of predictive validity).

5) Generalizability of ML Models: Only another handful of
studies (e.g., [91, 158, 159]) consider generalizability beyond
predictive accuracy for new learners by measuring the gener-
alizability over time and demographics. The generalizability
of a measure is concerned with its validity when applied to
data beyond what was used to develop it. In the context of
machine learning, this refers to how well the ML model’s en-
gagement predictions perform on unseen data from a different
set of learners. Generalizability is usually operationalized by
dividing the data into two mutually exclusive sets, training the
ML model on one set (i.e, the “training data”), and testing its
performance on the remaining data (i.e., the “test set”). Cross-
validation is a widely employed variant of this procedure
where the ML model’s performance on the test set is measured
over different partitions or test sets within the data. In this type
of procedure, each data sample is used as testing data only
once and never simultaneously included in the training data,
which would be a form of “cheating” since a flexible ML
model would be able to recall the exact engagement score
when making a prediction. Thus, it is important to ensure
that the samples contained within each test set reflect the
deployment goals for the ML model. For example, if the model
aims to be used to predict engagement levels of previously
unseen individuals, then the training and test sets should be
constructed so all available samples from one individual are
contained entirely in either the test or training sets, but not both
(i.e. subject-independent cross-validation folds). This ensures
the training data will never contain specific information about
a learner in the test data, and hence, measures of the test-
set performance will be better indicators of the anticipated
performance on new learners. Usually, the average perfor-
mance across the test sets (e.g., the mean correlation) provides
a measure of the expected performance of an automated
machine-based engagement measure on new data. Sometimes,
the variance is also reported (e.g., the standard deviation of
the correlations), which provides some information about the
precision of the ML model’s engagement predictions.

Models designed to be deployed in heterogeneous settings
or in environments where data noise may vary from the
training data need to generalize to a range of noise conditions.
This is especially true for models trained on sufficiently
clean or denoised data (e.g., vocalized audio in a controlled
and quiet classroom) which intend to make predictions in
naturalistic setting (e.g., groups of students chatting, talking
over one another, and making noise while working together)
(e.g., [160]). Though modern machine learning techniques
have the ability to separate out noise from the relevant data
if provided enough samples (e.g., [161, 162]), most research
discards noisy samples prior to modeling (e.g., [155]). Sys-
tematic modeling of noise processes and how they affect
data can be incorporated during the modeling process and
improve measurement accuracy [163]. Nonetheless, the ability
to handle noisy data and thus generalize to similar contexts
with varied noise conditions needs to be a fundamental design
constraint rather than an afterthought.

Furthermore, efforts to improve ML model generalizability
are only meaningful when models are deployed to predict
learner engagement in similar learning contexts. As noted by
Sinatra et al. [72], there is a continuum of influence between
learners and the learning context, so studies aiming to assess
the same type of learner engagement (e.g., via within-lecture
quizzes) in different learning contexts (e.g., for remote learners
in a controlled laboratory setting vs. in-person learning in a
naturalistic classroom setting) should expect different results.
For example, studying a construct in its natural context is gen-
erally more difficult than studying it in a controlled laboratory
setting (e.g., [164]), and research is starting to highlight the
gap in performance when an ML model trained in one context
(e.g., lab studies on remote learner engagement) is used to
make predictions in another context (e.g., classroom engage-
ment) [165–167]. Thus, scientists and practitioners should
expect that generalizability measures are only applicable when
both the populations and contexts are very similar, and they
should take caution when using automated ML systems outside
of their intended contexts. Accordingly, the basic learner-
independent cross-validation method can be expanded in scope
to incorporate groups of learners with particular characteristics
[168], temporal changes [169], domain differences [168],
amongst others. Even when models fail to generalize, these
analyses provide valuable data for further refinement.

6) Robustness of ML Models: We consider the robustness
of an ML model as a function of its reliability and handling
of missing data. The Standards for Educational and Psy-
chological Testing [135] defines the general reliability of a
measurement as the “consistency of scores across replications
of a testing procedure, regardless of how this consistency is
estimated or reported.” For ML models inferring engagement,
this refers to the precision and consistency of accuracy/errors
in engagement predictions for unseen data (i.e., future sam-
ples) in the same learning context. Measures of reliability
are often obtained during the ML model training process us-
ing cross-validation, where out-of-training-sample accuracies
provide a measure of a model’s reliability across replicated
testing procedures. These measures are operationalized using
different metrics, such as the standard deviation in prediction
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accuracy or test-retest reliability metrics [170]. Reliability is
an important measure because it provides insight into the
expected performance of the ML model on unseen data in the
same learning context, however in practice the performance
is further modulated by the degree to which the context
surrounding the unseen data is similar to the one used to train
the ML model.

Additionally, the robustness of an ML model is affected by
its ability to handle missing data. When data is gathered in
naturalistic settings (e.g., in the classroom, at home during
remote learning), both user- and sensor-based issues often im-
pact the availability and quality of data. For example, learners
may forget to turn on or wear sensing devices (e.g., wristband
heart rate sensors, cameras), forget to clean them properly,
forget to recharge the batteries between uses, or sensors
may simply malfunction. Thus, sparse samples or completely
missing data are unavoidable. Under ideal conditions, an ML
model would only be asked to provide predictions of learner
engagement when it has observed a sufficient amount of data
to be confident, but in practice, the unpredictable nature of
missing data means this is not always possible. In this scenario,
a robust ML model should be capable of making a best-guess
prediction based on the available information (e.g., [163]), and
it should also report low confidence in its assessment(s). In
cases where multiple sensors are available capturing an array
of multi-modal information, ML models can use information
from one channel to compensate for the lack of information
from other channels. For examples, Bosch et al. found that
multimodal fusion techniques were able to compensate for
missing facial data (due to face detector failings of motion,
occlusion, poor lighting, etc.) to achieve around 98% coverage
when combined with educational game interaction data [171].

7) Privacy, Ethics, and Bias/Fairness: Most of the data
used to assess learner engagement, whether based on in-
person observation or retrospectively, is sensitive to privacy
concerns. Information about grades, test scores, behavioral
performance, and more can be legally protected (e.g., by the
Family Educational Rights and Privacy Act in the United
States), so researchers needs to take extra precautions to ensure
that adequate permissions are obtained from learners and
that protective measures are in place (e.g., anonymizing data,
binning performance scores) to prevent a breach of privacy.
The 2010 “WebcamGate” scandal [172], where thousands of
compromising video camera and desktop background images
were captured from students’ computers without their knowl-
edge or permission, illustrates the massive potential for these
technologies to cause harm. One effective strategy for ensuring
the privacy of engagement features is to obtain and record
non-identifiable features from the signals and then immedi-
ately discard the signals themselves. This is the approach
taken by certain machine-based observation tools, such as
the TILES (Tracking IndividuaL pErformance using Sensors)
Audio Recorder [173] that randomly samples the environment
listening for vocalized audio clips and transforms and records
anonymized versions of them (e.g., prosodic information rather
than the words uttered). Bosch et al. [112] demonstrate a simi-
lar approach to anonymizing facial expressions in classrooms.

Even with these protective measures in place, bias/fairness

concerns apply to the Features of Engagement (see Figure 2)
as well, since these may contain additional information beyond
engagement (e.g., about race from skin tone or gender from
vocal pitch). Not only does this threaten individual rights to
privacy (e.g., via re-identification), it also can manifest as a
type of measurement bias where some aspect(s) of the input
features which are irrelevant to the construct (e.g., race) is
treated as relevant (i.e., a contamination of the relevance; see
[51, 174] for a full discussion of contamination and deficiency
biases). Automated engagement measurement systems can
help to prevent these bias/fairness concerns by discarding
all portions of the captured signal irrelevant to engagement
assessment and keeping only non-identifiable versions of the
relevant information.

Furthermore, the manner in which automated engagement
tools are trained, evaluated, and used also presents major
ethical and fairness concerns. Recent research has uncovered a
plethora of examples of sensing technologies that collect high-
quality and more representative features for certain groups of
people than others. To give a few examples, facial feature
recognition software (a foundation for emotional expression
recognition) captures Black and female faces less well than
lighter colored or male faces [175]; vocalized audio tran-
scription accuracy may be diminished for non-native language
speakers due to articulatory differences from native speech
[176], longer pause durations [177], or non-normative pause
locations [178]; and measures for engagement in digital learn-
ing may not account for differences in eye gaze or interaction
patterns for learners with attention-deficit disorders [179, 180].
Because these technologies may perform less well for certain
people, researchers and practitioners must pay extra attention
to potential disparities in the resulting trained ML model’s
performance across groups, especially groups protected by
legal statutes (e.g., race, ethnicity, sex, gender).

In addition to outlining the ML model training process,
Figure 2 provides a theoretical framework for systematic
investigation into differences in ML model accuracy across
protected groups (i.e., bias and fairness concerns). As Booth
et al. [51] discuss, versions of this figure tailored to an appli-
cation domain (learner engagement in this article) can serve as
a guide for identifying potential sources of bias leading to dif-
ferences in accuracy across groups. Each piece of information
(yellow wavy boxes) can in principle be inspected for evidence
of unnecessary group differences. If these differences exist, for
example if the Evaluation Measurement indicates engagement
detection accuracy is better for one group vs. another when no
such differences are to be expected, then the potential sources
of bias causing this disparity occur anywhere upstream (i.e., at
previous stages). The goal during this investigative process is
to identify the agent(s) (i.e., an information “transformer”) that
causes this developmental difference to appear. For example,
possible sources may include: differences in the presence of
Features of Engagement for different groups, differences in
how self-reported measures are interpreted among learners
from different groups, or differences in how human observers
notice and assess engagement across groups. Once possible
sources have been identified, additional steps can be taken to
mitigate the influence of these biases, such as in-learning ML
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model debiasing strategies [181]. There is yet no prescriptive
method for performing this search, but it is important to
reduce the potential sources of bias as much as possible
when designing and building these automated ML systems for
engagement assessment.

Lastly, the contexts of use of trained ML models for
engagement prediction and the decisions made by stakeholders
presents other ethical concerns. Many ML models are not
yet “self-aware” to the extent that they can recognize when
the features used to make engagement predictions are coming
from a different context. An ML model may thus produce
engagement scores to the best of its ability without making its
confidence in assessment or confusions known to stakeholders.
Noting that this situation is likely a failing of the stakeholders
to recognize that the ML model should not be used in this
setting, any decisions made by the stakeholders may result in
ethical concerns. For example, using a face-based engagement
prediction system to measure learner engagement in class-
rooms consisting of a majority of female and Black faces may
fail to adequately capture student engagement due to well-
known deficiencies in current facial recognition techniques
[175].

Even if all of these sources of biases were mitigated, there
is still the question of whether a model should be used for a
particular purpose. Specifically, there is a massive concern of
these automated models being used to surveil students and for
purposes of disciplining and evaluating them. Using models of
student engagement to evaluate teachers is similarly alarming
and distressing. Thus, even when an ML model seems to
function in a particular context, stakeholders’ decisions to
utilize it without considering its fitness-for-purpose can result
in ethical concerns. Therefore, we recommend that these
models be used for research purposes, formative feedback
(i.e., feedback for improvement not evaluation), or dynamic
intervention, and ideally in low-stakes settings. Users should
have agency over the measures including the ability to turn
them off.

D. Takeaways

The key takeaways pertaining to engagement measurement
covered in this section are:

1) Measures of engagement should utilize multiple ap-
proaches to measuring engagement because each ac-
cesses different sources of information (see Figure 3).

2) Low-levels of agreement between engagement scores
from different perspectives should be expected due to
differences in information and biases that uniquely affect
measurements from each perspective. However, these
unique scores provide a more nuanced view of the dif-
ferent ways in which affective, cognitive, and behavioral
indicators of engagement manifest.

3) In addition to accuracy, researchers should analyze gen-
eralizability, bias/fairness, and robustness when evaluat-
ing automated measures of engagement (see Figure 2)

4) The use-for-purpose of automated measures of engage-
ment should be scrutinized for ethical concerns. ML
models should only be deployed to measure learner

engagement in contexts very similar to how they were
trained and never used for evaluation purposes or in
high-stakes scenarios.

IV. ENHANCING ENGAGEMENT

Early learning technologies in the 1980s focused primarily
on optimizing knowledge and skill acquisition (e.g., [182–
184]), in line with learning theories at that time emphasiz-
ing knowledge as the predominant learning outcome. This
perspective has shifted over the past four decades as newer
learning theories have come to realize the role of engagement
in deep conceptual learning. Consequently, we focus on the
promotion of learner engagement in the context of learning
technologies. Methods to enhance engagement via curriculum
design, presentation style, and teacher intervention have been
a major focus of good pedagogical practice for many decades
[185, 186], and more recently in the context of learning
technologies [50].

Deep conceptual learning is difficult because it requires
sustained effort, rehearsal, practice, and struggle [187]. Short-
term distractions and gratifications providing affective rewards
(e.g., social connection, “fun”) may need to be temporarily
deferred [188]. A commitment to genuine and persistent focus
on learning needs to be established and become routine to
sustain long-term interest [40]. Even when these factors are
accounted for, mental lapses in attention are normal occur-
rences (e.g., students experience “zone outs” around 30% of
the time while learning from technology; see [189, 190] for a
review) and might need to be regulated to optimize learning
and avoid diminished learning outcomes [191, 192].

There is also a fundamental tension between liking and
learning. Whereas, “edutainment” games can be highly en-
gaging, it is not clear if they encourage deep comprehension
[193, 194]. On the other hand, intelligent tutoring systems
(ITSs) designed to mimic one-on-one human tutoring effec-
tively promote deeper learning (e.g., [195–197]), but they also
result in increased levels of boredom [150, 198, 199], which
may hinder the development of sustained engagement in the
long-term.

How do we design learning technologies and contexts
that facilitate situational engagement and promote sustained
engagement to improve learning outcomes? This question has
received concentrated research effort over the past 30 years
[200], and researchers have identified two main strategies:
proactive and reactive design. Proactive design is more of
a top-down approach focusing on optimizing the learning
context and materials to facilitate engagement (i.e., person-in-
context). Reactive design is more of a bottom-up approach that
monitors and encourages learner engagement either in real-
time (intervening with learner engagement) or over a short
time-scale (e.g., hours or days) by offering feedback to learners
and instructors. Both of these strategies can be utilized in
tandem, and Figure 4 provides some examples of both proac-
tive and reactive design for improving learner engagement
across the three engagement components (affective, cognitive,
behavioral).
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Engagement

Examples of Proactive Intervention (top-down influence)

Examples of Reactive Intervention (bottom-up influence)

Productive struggle
design (e.g., [32])

Interactivity design
(e.g., ICAP [33])

Classroom environment
(e.g., [35])

Affective Design Cognitive Design Behavioral Design

Digital learning
interface (e.g., [24])

Motivational messages
(e.g., [11])

Cognitive loading

(e.g., [8])

Self-regulation
supports (e.g., [11])

Metacognitive supports
(e.g., [38])

Mind wandering

(e.g., [37])

Mental capacity
chunking (e.g., [34])

Achievement rewards
(e.g., [36])

Emotional design

 (e.g., [31])

Affective Design Cognitive Design Behavioral Design

Fig. 4. Examples of proactive (top-down) and reactive (bottom-up) design for improving learner engagement across the affective, cognitive, and behavioral
engagement components.

A. Proactive Design

Proactively designed learning experiences are carefully
crafted to enhance engagement and successful learning out-
comes. This approach is mainly person-in-context focused (see
Figure 1) in that the design aims to optimize the likelihood
of promoting engagement across learners or learner groups
in a particular learning context. These experiences can take
on many forms, such as carefully crafted lectures with sev-
eral interesting asides to break up content, interactive digital
technologies where learners are given the freedom to explore
the learning content according to their interests [201], well-
designed curricula [202], or personalization of math prob-
lems based on students’ interests [203]. The main aim of
the proactive approach is to craft experiences that produce
cognitive and affective states associated with engagement (e.g.,
interest, curiosity, challenge, critical thinking and reflection,
surprise, productive struggle), while minimizing events and
mental states that reduce engagement and trigger boredom and
mind wandering.

Within the digital learning space, early attempts to proac-
tively optimize content for engagement attempted to incor-
porate elements of games, puzzles, and comics (e.g., point
systems, badges, achievements, leaderboards, and more [204,
205]) to increase motivation and engagement. The results
were generally unfavorable—students appreciate the ease-of-
use that tends to accompany the “gamification” of educational
content, but they do not favor the game-enhanced experience
[206]. This phenomenon has been described as “chocolate-
covered broccoli” [207] and has been a barrier to the uptake
of entertainment elements within education. Since then, recent
approaches to proactive design have targeted learner affect,
cognition, and behaviors (following the three components of
engagement; see Figure 4) more directly.

1) Affective Design: Proactive affective design broadly
aims to enhance engagement by appealing to affective ele-

ments. One approach called emotional design is simple: alter
the content so the learning materials induce mild positive
affect and delight. Some specific implementations of this
method include adding anthropomorphic facial features to non-
human graphical elements and adding colors to embellish drab
imagery [208, 209]. A recent meta-analysis [31] found that
emotional design was effective both in increasing learning
and improving learner engagement as measured by intrinsic
motivation, liking/enjoyment, positive affect, and reductions in
perceptions of difficulty. Conversely, another approach named
productive struggle aims to control the emotional arc when
a learner first encounters cognitive disequilibrium—a state
of confusion when confronting content that does not match
expectations [32]. At the moment when learners would be
expected to experience this disequilibrium, additional supports
can appear, encouraging the learner to persist in achieving
understanding (e.g., motivational language, alternative per-
spectives) until a productive resolution is reached, resulting
in conceptual change [68, 210]

2) Cognitive Design: Proactive cognitive design aims to
promote the onset and maintenance of cognitive engagement,
for instance through the content design, content ordering, and
interactivity within a learning session. In one example, Chi
and Wylie [33] organize learner engagement during activities
demanding different amounts of attention and interaction in
their Interactive-Constructive-Active-Passive (ICAP) frame-
work. The framework is named after four tiers of types of
activities with decreasing likelihoods of promoting engage-
ment (I > C > A > P). The research suggests that passive
activities, such as simply watching a lecture video, are least
likely to generate engagement. Active verbatim note-taking in
class produces slightly more engagement, while a constructive
version where notes are summarized via self-explanations
would be much more engaging. Interactive tasks, like debating
or discussing learning content with peers, is the most likely
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to elicit high levels of engagement. Thus, the ICAP approach
encourages the incorporation of interactive and constructive
tasks in the design of learning experiences to promote high
levels of cognitive engagement.

Another approach called chunking seeks to improve the
ability of learners to store and retain information [211] while
also helping teachers manage the anticipated cognitive load
of learning content. The main theme in different styles of
chunking is to break down complex ideas into smaller portions
that are easier for learners to hold in short-term memory, and
the general rule of thumb (from Miller [211]) is that about
seven “bits” of information is right for most people (e.g., see
[34] for an approach using chunking to teach communication
skills). While Fiden [212] has observed that microlearning (us-
ing bite-sized chunks) reduces cognitive loading on learners in
a flipped classroom context (and also improves behavioral and
affective engagement), Gao and Kuang [213] have observed
that increasing cognitive load improves cognitive engagement
in an educational art design setting. Thus, proactive designs
using chunking to promote cognitive engagement must balance
the chunk size of content to ensure adequate cognitive loading
(larger chunks) while using chunks which are small enough to
help learners store and retain information.

3) Behavioral Design: Proactive behavioral design attempts
to influence context in which learners engage in activities
to improve behavioral engagement for instance by reducing
environmental distractions or minimizing the amount of effort
required to participate in learning activities. For example,
Cheryan et al [35] highlight how inadequate environmental
conditions (i.e., lighting, noise, air quality, heating) within
a classroom can impact behavioral engagement and lead to
significantly lower student achievement. Thus, one effective
proactive strategy for improving behavioral engagement is
ensuring the environmental conditions are conducive to learn-
ing. Another example for distance learning students regards
how behavioral engagement is impacted by the effectiveness
of the digital interface. For instance, Seo et al. [24] studied
remote learners who watched lecture videos week-to-week and
observed that students spent more time selectively searching
for specific content within videos to prepare for exams. The
authors suggest that a proactive design where the video player
would adapt to students each week as needed, to help them
easily locate important information, may improve engagement,
perhaps by reducing the tedious task of seeking out informa-
tion.

4) Multi-component Design: Highly successful proactive
interventions will incorporate all three components of en-
gagement in design. More modern attempts at well-designed
educational games, for example, that carefully incorporate
game-design principles of problem solving, adaptive chal-
lenges, and ongoing feedback can trigger and sustain interest
and motivation, in turn supporting engagement and learning
[214–217]. Good educational game design in this context
addresses affective design (e.g., well-timed and meaningful
rewards), cognitive design (e.g., activity structure, a balance of
challenging content), and behavioral design (e.g., easy-to-use
interface). This is very different from designing games simply
for entertainment and “fun”, which may enhance engagement

but not necessarily learning.

B. Reactive Design

The following excerpt borrowed from D’Mello [50] illus-
trates the potential of reactive designs to enhance engagement
in learning:

“Imagine you are helping your niece prepare for
an upcoming examination in evolutionary biology.
Things started off quite well, but after a while,
you realize that her mind is a million miles away.
Although the plan is for the two of you to collabora-
tively model genetic frequency shifts in populations,
you notice that her attention has drifted to unrelated
thoughts of lunch, the football game, or an upcoming
vacation. You might try to momentarily reorient her
attention by asking a probing question. However, if
her attentional focus continues to wane, you realise
that you must adapt your instruction to better engage
her by altering the course of the learning session.
You shift the initiative from a collaborative discus-
sion to a student-centered perspective by asking her
to develop a strategy for tracking genetic changes in
populations. This works and she appears to tackle
this task with a renewed gusto and the session
progresses quite smoothly. However, sometime later,
you notice that she actually appears to be nodding
off as you delve into the fundamentals of allele fre-
quencies. So, you suggest switching topics or even
taking a break, thereby giving her an opportunity to
recharge.”

In this example reactive approach, the niece’s attentional
states are being monitored and responded to in the moment as
needed to maintain engagement. This type of momentary inter-
vention nudges learners towards an engaged state when their
engagement seems to decline. Reactive approaches influence
learners in a person-oriented fashion (see Figure 1) in order to
promote affective, cognitive, and behavioral states conducive
to successful learning outcomes. The main benefit of this
type of design is that it embraces the notion that engagement
varies over time as a result of interactions between competing
mental and somatic demands (e.g., fatigue, hunger, stress) that
result in mind wandering, inattention, and distractions [218].
It also demonstrates that guided and subtle alterations to the
learning content, the ordering of the content, and just-in-time
motivational feedback can help turn an otherwise mundane
learning experience into an engaging one.

Reactive approaches require more awareness and contextual
understanding than proactive ones. Dynamic adaptation to the
ebb and flow of a learner’s engagement requires the ability to
measure it and to understand how to intervene to nudge it in
the right direction. The measurement needs of such a system
have been described in the previous section (e.g., see Figure
2), but the implementation of the intervention mechanism
is open-ended as it entails selecting an action among many
possibilities. If a learner is engaged, should the intervention
mechanism do nothing or provide some motivational reward?
If a learner is confused, should it wait while the learner
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struggles, provide some supportive message to encourage
productive struggling (e.g., [32, 219, 220]), or provide a hint
or just-in-time explanation (e.g., [221])? Just as video games
must adapt to increases in player skill to maintain engagement,
learning experiences must also adapt challenge to abilities
or boredom may emerge if learners are underwhelmed or
overwhelmed [222]. The best courses of action are not yet well
understood, largely due to the variability among individual
behaviors and preferences for how and when to engage with
learning content.

There have been recent reactive design efforts to optimize
learner engagement (see Reactive Interventions in Figure 4)
following the three components of engagement. We look at
some examples of these approaches and delve further into spe-
cific reactive intervention systems utilizing affective, cognitive,
and behavioral designs.

1) Affective Design: Rewards for demonstrating a learned
skill (i.e., achievement rewards [36]) and motivational mes-
saging to help struggling learners [11] are two examples
of reactive techniques for improving affective engagement.
These examples provide feedback to elicit desired emo-
tional responses while other systems, such as the following
iTalk2Learn example, vary how feedback is furnished based
on learners’ affective states pertaining to engagement.

iTalk2Learn: Grawemeyer et al. [11] detected affective
components of engagement from voice-based features and
automatically transcribed text recorded from students’ speech
in a computer-based learning environment called iTalk2Learn.
In iTalk2Learn, students ages 8–12 learn about math frac-
tions by interacting with a graphical interface as well as
talking through problems out loud. The system combines
speech and interaction log file data in a model to predict
affective components of engagement including flow, confu-
sion, frustration, and boredom. Then, a Bayesian network
predicts what kind of feedback should be given to students
to promote engagement (e.g., encouragement, additional task
instructions), and a second Bayesian network predicts how best
to display that feedback (i.e., either subtly or more forcefully
in a way that will interrupt the learner’s activities). The final
feedback prediction system produced feedback that aligned
well with experts’ decisions about feedback (10-fold cross-
validated Cohen’s κ = .50), and was thus incorporated into
iTalk2Learn.

iTalk2Learn researchers evaluated the automatic feedback
system in a randomized controlled trial with 77 students
in two conditions: one condition using the automatic feed-
back system, and an active control condition in which the
system generated feedback without incorporating affective
engagement detection. The engagement detection condition
resulted in significantly lower rates of boredom and off-task
behavior (both reduced by 50% in the engagement detection
condition) as assessed by third-party observers, as well as
suggestive (but not significant) evidence of greater learning.
In sum, the iTalk2Learn project illustrated the feasibility of
increasing real-time engagement based on affective analysis
of multimodal speech and interaction data and demonstrated
some of the expected resulting benefits for students.

2) Cognitive Design: Examples of reactive designs for
cognitive engagement may aim to vary the pacing of content or
reengage distracted learners. For instance, a study from Elden-
fria and Al-Samarraie [8] aimed to regulate the presentation
of learning content (i.e., cognitive loading) based on real-time
measures of learner aptitude, while other research has shown
that mind wandering can be sensed and used to trigger digital
learning interventions to reengage students [37], such as the
Eye-Mind Reader study.

Eye-Mind Reader: Research shows that adapting interfaces
based on cognitive aspects of engagement can benefit learners.
In one example, Mills et al. [37] trained a support vector
machine to predict instances of mind wandering, or “zoning
out”, from features of learners’ eye-gaze patterns including
gaze fixation durations, pupil diameters, and other measures.
Learners read an instructional scientific text and self-reported
when they were mind wandering—that is, a form of cognitive
disengagement that occurred when they found themselves
thinking about something other than the task at hand. The
machine learning approach yielded weighted precision and
recall of .722 and .674, respectively. The researchers then
incorporated this machine learning model into an adaptive
version of the text reading interface, called Eye-Mind Reader,
which triggered interventions to improve reading comprehen-
sion in situations where the model detected mind wandering.
When an intervention was triggered, the student would write
a short self-explanation of what they had just read in response
to a prompt. Their response was then automatically graded
via natural language processing. If the summary appeared
inaccurate, students would then be prompted to re-read the
last few pages and generate a revised summary.

To evaluate Eye-Mind Reader, researchers conducted a ran-
domized controlled trial with experimental and yoked-control
conditions. In the experimental condition, 35 learners received
interventions triggered by the machine learning model, while
in the yoked-control condition a further 35 learners were not
asked to self-report mind wandering but still received interven-
tions at the same points in the text as the corresponding yoked-
learner in the experimental condition. This careful design
ensured equal treatment dosage across conditions, but the
dosage was only timed to mind wandering in the intervention
condition.

Learners’ assessment scores were not significantly different
on an assessment directly after the learning experience, but
on a follow-up assessment one week later the experimental
group significantly outperformed the yoked-control group in
terms of both surface-level and deep comprehension questions
(Cohen’s d = .352 and .307). Thus, Eye-Mind Reader suc-
cessfully improved longitudinal retention of learned material
by adapting to cognitive engagement.

3) Behavioral Design: Research has demonstrated that
careful learner feedback can reduce off-task behaviors (i.e.,
self-regulation supports) [11] and improve metacognitive
awareness [38], both of which help improve behavioral en-
gagement. Systems designed to monitor students’ behavioral
engagement and raise teacher’s awareness, such as the SEAT
[3] system below, can also be effective reactive designs for
indirectly improving learner engagement.
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Student Engagement Analytics Technology (SEAT):
Aslan et al. [3] adopted a multimodal approach to engage-
ment detection that incorporated facial features, interaction
log files, and contextual factors in real-world classrooms.
The researchers trained two machine learning models with
these features, one to predict students’ behavioral engagement
(specifically, on-task vs. off-task behavior) and one to predict
affective facets of engagement including boredom, confusion,
and satisfaction. Their multimodal random forest model for
behavioral engagement had accuracy well above chance (Co-
hen’s κ = .65) [223], while their affective engagement model
had F1 scores ranging from .558 to .634 depending on the
type of learning activity (instructional vs. assessment) [224].
These machine learning models powered an adaptive graphical
interface, referred to as SEAT (Student Engagement Analytics
Technology), which provided teachers with whole-class and
student-specific engagement information to enable them to
better tailor instructional support based on individual student
engagement with technology in the classroom.

The authors conducted a single-user case study with one
teacher and two classes (one with SEAT and another with-
out) over several weeks. The goal was not to demonstrate
any causal effects but merely to ascertain the usability of
SEAT across time. Results stemming from interviews with the
teacher showed that SEAT enhanced the teacher’s abilities to
ascertain engagement and act on it, especially across the whole
classroom. The teacher also noted that SEAT enabled more
timely interventions to reorient students who were experienc-
ing boredom, confusion, or were off-task, and that without
SEAT some disengaged students would have remained unno-
ticed in some cases. This study helps illustrate the potential
of automated engagement inference systems to contribute to
improved student engagement in the classroom.

4) Multi-component Design: There is a dearth of recent
research incorporating reactive design elements spanning all
three components. Table A1 (in the Enhancement approach
column) lists further examples of studies promoting learner
engagement, but only two systems (SEAT [3], Park et al. [20])
demonstrate successful approaches to enhancing engagement
by reacting to both affective and behavioral learner cues.
We expect that future automated AI systems incorporating
reactive designs spanning all three engagement components
(examples in Figure 4) will be better equipped to enhance
learner engagement.

C. Takeaways
Key takeaways in this section related to the enhancement

of learner engagement are:
1) Designs for improving engagement can be proactive

(top-down) or reactive (bottom-up), ideally including
elements of both

2) Rather than focusing on individual components of en-
gagement (i.e., affective, cognitive, behavioral), the most
effective approaches should address multiple compo-
nents.

3) The promotion of learner engagement in digital learning
technologies has only recently become the focus of con-
centrated research. As such, many strategies have only

been tested once and have yet to be tested longitudinally
for individual learners, meaning these methods have yet
to be robustly validated.

4) Methods to validate efforts to enhance engagement need
to be improved. Simple experimental designs that com-
pare systems enhanced with interventions to baseline
versions belie dosage and placebo effects and can result
in misattributing effects to the intervention itself.

V. FUTURE RESEARCH DIRECTIONS

We have presented an overview of several approaches to
measuring learner engagement, including automated, machine-
based measurement strategies, and shown examples of how
systems can improve learner engagement. So where do we
take learner engagement research next? Here we end with
a prospective look at promising research directions in this
domain.

1) Utilizing Heterogeneous Engagement Measures: Among
researchers, practitioners, policy-makers, and learning system
designers alike, there is an over-reliance on using a single
measurement approach, be it self-reports or observer (infor-
mant) reports, to collect ground truth human judgments. These
measures have and continue to inform learner engagement
theories and intervention strategies, and yet as we discussed in
Section III, they have individual biases and only provide one
perspective into a complex construct. By utilizing a variety
of self-reported, observer-based, and even machine-observed
measures, we stand to gain a more comprehensive view of
its varied affective, cognitive, and behavioral components and
dynamics. Focusing on blending these measures in a valid,
fair, and reliable fashion will improve the social and scientific
value of research studies and findings.

2) Integrating with Human-sensing Technologies: The mar-
ket for Consumer-Off-The-Shelf (COTS) devices (i.e., wear-
able sensors and fitness trackers; e.g., Fitbit, Garmin) has
exploded over the past decade. The success of COTS devices
means a pervasive network of human-sensing technology is
becoming a reality. However, there is still much to learn
about how these new-generation technologies for tracking
physiological signals (e.g., [225, 226]), eye gaze (e.g., [12,
227]), and vocal audio (e.g., [6]) can inform about learner
engagement. Recent research cautions that the effectiveness of
different COTS-derived indicators of mental states decreases
when clean signals gathered in controlled settings (e.g., digital
learning in a lab) are applied to real-world domains (e.g.,
digital learning from home) [165]. Thus, leveraging these
abundant human-sensing options will take considerable effort
and testing in naturalistic environments, but will unlock the
potential for findings to quickly scale to large populations
rather than smaller numbers of learners using specific digital
learning platforms or sensing-enabled classrooms.

3) Embracing Multimodal, Multi-componential, and Multi-
temporal Complexity: Engagement in any context, not just
learning, entails cognitive, behavioral, and affective states
(multi-componential) expressed in a variety of manners (mul-
timodal; e.g., focused eye gaze, note-taking, discussions) and
over momentary and long-term time scales (multi-temporal).
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Most research has focused on one or two of these areas,
but none have yet investigated the complexity of interac-
tions among all three. Multimodal measurement (e.g., video,
audio, logs) offers more relevant channels through which
engagement is expressed and can help to improve ML model
robustness. Though, multimodal measures may not always
prove unbiased or useful when predicting constructs (e.g.,
[52]), they at least offer a practical advantage in that the
presence of one secondary signal can compensate when a
primary signal is unavailable (e.g., muddled speech, blurry
camera focus, occluded face). Furthermore, capturing multi-
componential information yields a more complete view of
engagement, and it may be best achieved through multi-
modal signal capture. For instance, eye gaze and central
physiology are best suited for cognitive engagement [228–
232], facial features and peripheral physiology for affective
engagement [233–236], and interaction features for behavioral
engagement [115, 237–239]. Multimodal measures (capturing
multi-componential aspects of engagement) that operate across
multiple timescales ranging from milliseconds (physiological
signals), milliseconds to seconds (bodily responses), and sec-
onds to minutes (interaction patterns) would likely improve
modeling of different components of engagement that manifest
across different timescales [240].

4) Incorporating Theories of Engagement-related Experi-
ences: As we mentioned earlier in this section, little research
on machine-aided engagement prediction focuses on divergent
validity. Thus, when learner engagement is predicted to be low,
it is uncertain whether the learner is disengaged or whether
the model simply is inaccurate in this case. This can be
remedied in part by training the model to accurately predict
disengagement as well, but more can be done. For instance,
theories of disengagement can be strategically incorporated
into the measurement process where indicators of different
types of disengagement (e.g., boredom, distraction, disinterest)
can inform and improve the accuracy and diagnosticity of the
reason(s) for disengagement. Boredom, for example, can stem
from multiple factors: understimulation, perception that effort
is forced, underchallenge, lack of value, lack of interest, or
even a dislike of the teacher [75, 241]. Hence, making an
accurate disengagement assessment is helpful, but if it can be
correctly attributed to boredom, for example, then subsequent
steps aimed at enhancing engagement can directly address the
sources of boredom.

5) Blending Person-oriented and Context-oriented Perspec-
tives and Proactive and Reactive Design: Reactive interven-
tions, which aim to address disengagement when it occurs in a
person-oriented manner, is a powerful paradigm to promote en-
gagement (see Section IV-B). Proactive designs with context-
oriented perspectives have been less studied (see Figure 1), but
several examples of successful designs exist. Well-designed
video games, for example, lie somewhere between a context-
oriented and person-in-context oriented design, and many
successfully capture attention and produce hours of engaged
interactions [242, 243].

We anticipate that the most successful systems for mea-
suring and enhancing engagement will blend both person-
oriented and context-oriented approaches and both proactive

and reactive designs. For example, researchers are exploring
how to embed both cognitive (focusing on improving learning)
and affective (focusing on improving affective/motivation)
supports in a video-game design [36, 244], thereby aiming
to improve both liking and learning outcomes.

VI. CONCLUSION

Engagement is one of the most fundamental aspects of
the human experience, yet its ubiquity defies its complexity.
We presented an accessible overview and selective review
to affective computing research on conceptualizing, measur-
ing, and enhancing engagement with an emphasis on educa-
tional applications. We conceptualized engagement as a multi-
componential construct (i.e., affective, cognitive, behavioral)
situated within a context over time where an ebb and flow
of influence between a learner and learning context (i.e., the
engagement continuum) constantly impacts engagement levels.
We examined traditional (manual) and affective computing-
based (automated) methods for measuring and enhancing
engagement and discussed major challenges to broad adoption
of these techniques and technologies across learning contexts
and periods of time. Finally, we discussed promising future
research directions embracing heterogeneous perspectives, and
the multimodal, multi-componential, multi-temporal nature of
engagement to get one step closer to generalizable, scalable,
and effective technologies for enhancing learner engagement
and improving learning outcomes.
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APPENDIX

TABLE A1
SELECTIVE SURVEY OF PAST SIX YEARS OF ENGAGEMENT RESEARCH FOR LEARNING

Paper Engagement
continuum

Engagement
components

Engagement
construct

Learning
context

Data
modalities

Measurement
approach

Modeling
approach

Enhancement
approach

(Ninaus et al.,
2019)

person/person-
context

Affective PANAS, flow short
scale (FKS), affect

Individual, digital
activity, lab

Face Face, surveys,
Microsoft emotion API
(face)

Stats None

(Li et al.,
2021)

person Cognitive Individual, digital
activity, lab

Face Survey SVM None

(Chang et al.,
2018)

person Behavioral Visible engagement
(Whitehill)

Individual, remote
learning, remote

Face Annotation NN,
AdaBoost

None

(Yun et al.,
2020)

person Behavioral Visible engagement
(Whitehill)

Individual, digital
activity, in situ
controlled

Face Annotation NN None

(Sümer et al.,
2021)

person-
context

Behavioral Visible engagement Cohort, classroom
activities, in situ

Face Annotation NN None

(Fujii et al.,
2018)

context/person-
context

Behavioral Visible engagement,
posture synchrony

Cohort, classroom
activities, in situ

Face Expert rules, annotation NN Real-time
monitor for
teachers

(Thomas &
Jayagopi,
2017)

person/person-
context

Behavioral Visible engagement
(Whitehill)

Cohort, video, lab Face, gaze
(via head
pose)

Annotation SVM, log.
reg.

None

(Kaur et al.,
2018)

person Behavioral Visible engagement
(Whitehill)

Individual, remote
learning, remote

Face Annotation NN, RF,
SVR

None

(Savchenko et
al., 2022)

person-
context/person

Affective,
Behavioral

AffectNet labels Individual, remote
learning, remote

Face Annotation NN, RF,
SVR, ridge
reg.

None

(Psaltis et al.,
2018)

person-
context

Affective,
Behavioral,
Cognitive

Flow, success in game,
visible engagement

Cohort, digital activity,
in situ controlled

Face, whole
body

Surveys, acted
emotions

NN None

(Zaletelj &
Košir, 2017)

person Behavioral Visible engagement
(gaze, writing)

Cohort, classroom
activities, in situ

Face, whole
body

Annotation KNN, trees None

(Grawemeyer
et al., 2017)

person Affective Flow, affect Cohort, classroom
activities, in situ

Audio, logs Annotation Bayes net Supportive
feedback

(Ahuja et al.,
2019)

person-
context/person

Affective,
Behavioral

Smiling, posture,
visible activity

Cohort, classroom
activities, in situ

Audio, face,
whole body

Annotation NN, SVM None

(Park et al.,
2019)

person-
context

Affective,
Behavioral

Activity in task (Q’s
answered), affect

Individual, intelligent
tutoring systems, in situ

Audio, whole
body

Expert rules RL Curriculum
sequencing

(Aslan et al.,
2019)

person-
context/context

Affective,
Behavioral

On/off-task, affect Cohort, classroom
activities, in situ

Face, logs Annotation RF Teacher
dashboard

(Lu et al.,
2017)

person-
context

Behavioral Activity in task Individual, remote
learning, remote

Logs Expert rules Stats Instructor email
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Paper Engagement
continuum

Engagement
dimensions

Engagement
construct

Learning
context

Data
modalities

Measurement
approach

Modeling
approach

Enhancement
approach

(Seo et al., 2021) context Behavioral SRL activities Individual, video, online/in
situ

Logs Survey Stats None

(Crues et al.,
2018)

person-
context/context

Behavioral Persistence in task Individual, remote learning,
remote

Logs Expert rules Stats None

(Soffer & Cohen,
2019)

person-
context/person

Behavioral Activity in task Individual, remote learning,
remote

Logs Expert rules Stats None

(Li et al., 2020) person Cognitive Information
processing
behaviors

Individual, digital activity, lab Logs Clustering Stats None

(Rodriguez et al.,
2021)

context/person-
context

Behavioral Activity in task,
time management

Individual, remote learning,
remote

Logs Clustering Stats None

(Mills et al.,
2021)

person-
context/person

Cognitive Mind wandering Individual, digital activity, lab Gaze Self-report SVM, naı̈ve
Bayes, RF

Self-explanation,
rereading

(Chauhan et al.,
2020)

person/person-
context

Behavioral Gaze alignment
w/saliency map

Individual, remote tutoring,
lab

Gaze Annotation NN None

(Chorianopoulou
et al., 2017)

context/person-
context

Affective,
Behavioral

Gaze at interaction
partner, interact

Individual, structured
interactions, home

Gaze (from
video), audio

Annotation SVM None

(Hutt et al., 2021) person-
context

Cognitive Mind wandering Individual/cohort, intelligent
tutoring system, lab/in situ

Gaze Self-report Bayes net Reiteration,
questions,
personalization

(Hutt et al., 2019) person-
context

Cognitive Mind wandering Individual and cohort,
intelligent tutoring system,
lab

Gaze Self-report Bayes net None

(Apicella et al.,
2022)

person Affective,
Cognitive

Cognitive effort,
cheerful/sad

Individual, digital activity, lab EEG Expert rules,
music-induced

SVM, KNN,
NN

None

(Khedher et al.,
2019)

person/person-
context

Cognitive Time in EEG
frequency bands

Individual, digital activity, lab EEG Expert rules Stats None

(Eldenfria &
Al-Samarraie,
2019)

person Cognitive Time in EEG
frequency bands

Individual, digital activity, lab EEG Expert rules Stats Change presentation
of materials

(Gao et al., 2020) context/person-
context

Affective,
Behavioral,
Cognitive

Attention,
enjoyment,
self-reflection

Cohort, classroom activities,
in situ

EDA, PPG,
accelerometer,
temperature,
environment
(CO2, humidity,
ambient sound)

Self-report LightGBM None

(Monkaresi et al.,
2017)

person Affective,
Behavioral,
Cognitive

Broadly “were you
engaged”

Individual, digital activity, lab Face, heart
rate

Self-report Naı̈ve Bayes,
other classics

None

(Yue et al., 2019) person Affective,
Behavioral,
Cognitive

Task performance,
attention

Individual, remote learning,
remote

Face, gaze,
logs

Self-report,
expert rules

NN None

The engagement continuum entries denote a location along the continuum, where for instance “context/person-context” corresponds to studies focused mostly on context-oriented engagement but also considered person-in-context to some
extent. These entries were determined by the authors based on subjective assessment of each paper’s focus on highly person-oriented research questions, in which the purpose was to learn about signals of individuals’ engagement, to highly
context-oriented questions, in which the purpose was to learn something about the engaging properties of the context itself. Most research projects fall between the extremes of the continuum, where they take contextual factors into account
for predicting individual engagement or consider a mix of both contextual and person-oriented research questions. EEG = electroencephalography, EDA = electrodermal activity, CO2 = carbon dioxide levels.
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