
Abstract 

Affect detection is a key component of intelligent 
educational interfaces that can respond to the affec-
tive states of students. We use computer vision, 
learning analytics, and machine learning to detect 
students’ affect in the real-world environment of a 
school computer lab that contained as many as thir-
ty students at a time. Students moved around, ges-
tured, and talked to each other, making the task 
quite difficult. Despite these challenges, we were 
moderately successful at detecting boredom, con-
fusion, delight, frustration, and engaged concentra-
tion in a manner that generalized across students, 
time, and demographics. Our model was applicable 
98% of the time despite operating on noisy real-
world data.  

1 Introduction 

Learning with educational interfaces elicits a range of affec-
tive states that can have both positive and negative connec-
tions to learning [D’Mello, 2013]. A human teacher or tutor 
can observe students’ affect in a classroom or one-on-one 
tutoring situation and use that information to determine 
when help is needed to adjust the pace or content of learning 
materials [Lepper, Woolverton, Mumme, & Gurtner, 1993]. 
However, computerized learning environments rarely con-
sider student affect in selecting instructional strategies – a 
particularly critical omission given the central role of affect 
in learning [Calvo & D’Mello, 2011]. 

We believe that next-generation intelligent learning tech-
nologies should have some mechanism to respond to the 
affective states of students, whether by providing encour-
agement, altering materials to better suit the student, or redi-
recting the student to a different task when he/she becomes 
disengaged. Although some initial progress has been made 
in laboratory settings (see [D’Mello, Blanchard, Baker, Oc-
umpaugh, & Brawner, 2014] for a recent review), much 
work remains before affect-sensitive learning interfaces can 
be fielded at scale in the wild. A core challenge is the ability 
to detect student affect in real-world learning settings, which 

we address in this work by detecting the affective states that 
students naturally experience while interacting with an edu-
cational game in a computer-enabled classroom.  

We focus on detecting the affective states that are com-
mon during interactions with technology, namely boredom, 
confusion, engagement/flow, frustration, happiness/delight, 
and anxiety [D’Mello, 2013]. We adapt a multimodal ap-
proach, combining facial features (primary) and interaction 
patterns (secondary). Facial features have long been linked 
to affect [Ekman, Freisen, & Ancoli, 1980], but are not ro-
bust for affect detection in the wild due to occlusion, 
movement, and lighting issues frequently encountered in 
computer-enabled classrooms. Interaction patterns are de-
rived from logs of the student’s actions within the learning 
environment, and are thus less vulnerable to these factors. A 
multimodal approach is thus expected to capitalize on each 
approach’s benefits while mitigating their weaknesses. 

We address several unique challenges of learning-
centered affect detection in the wild: 1) detecting natural-
istic (as opposed to acted) affective states in a relatively 
uncontrolled group setting (classroom); 2) testing generali-
zation of these detectors across time and student de-
mographics; and 3) exploring a tradeoff between more accu-
rate affect detectors and those that are more robust to data 
availability issues that arise in the wild. 

1.1 Related Work 

Drawing from the ample body of research on affect detec-
tion [Calvo & D’Mello, 2010] we review key studies on 
affect detection with facial and multimodal features. 

In one classic study, Kapoor et al. [2007] used multimod-
al data channels including facial features, a posture-sensing 
chair, a pressure-sensitive mouse, skin conductance, and 
interaction log-files to predict frustration while students 
interacted with an automated learning companion. They 
were able to predict when a student would self-report frus-
tration with 79% accuracy, an improvement of 21% over 
chance.  

Whitehill et al. [2014] used facial features to detect en-
gagement as students interacted with cognitive skills train-
ing software. They were able to detect engagement with an 
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average area under the ROC curve (AUC) of .729 (AUC of 
.5 represents chance-level detection). More recently, Mon-
karesi et al. [in press] used facial features and heart rate es-
timated from face videos to detect engagement during writ-
ing. They achieved an AUC of .758, which we could con-
sider to be state-of-the-art. 

Bosch et al. [2014] built detectors of novice programming 
students’ affective states using facial features (action units, 
or AUs [Ekman & Friesen, 1978]) estimated by the Com-
puter Expression Recognition Toolbox (CERT) [Littlewort 
et al., 2011]. They were able to detect confusion and frustra-
tion at levels above chance (22.1% and 23.2% better than 
chance, respectively), but accuracy was much lower for oth-
er states (11.2% above chance for engagement, 3.8% above 
chance for boredom). 

Perhaps the study most relevant to the current work is 
[Arroyo et al., 2009]. The authors tracked emotions of high 
school and college mathematics students using both interac-
tion features from log-files and  facial features. Their best 
models explained 52% of the variance (R

2
) for confidence, 

46% for frustration, 69% for excitement, and 29% for inter-
est. However, these results should be interpreted with a 
modicum of caution, because the models were not cross-
validated with a separate testing set, The dataset was also 
limited in size with as few as 20-36 instances in some cases, 
raising concerns of overfitting.  

In summary, despite active research on affect detection, 
there is a paucity of research on learning-centered affect 
detection with naturalistic facial expressions in the wild. 
The present study addresses this challenge, and explores the 
generalizability of face-based affect detectors and the ad-
vantage afforded by a multimodal combination of face- and 
interaction- based affect detection.  

2 Method 

2.1 Data Collection 

The sample consisted of 137 8
th

 and 9
th

 grade students (57 
male, 80 female) enrolled in a public school in the South-
eastern U.S. The study took place in one of the school’s 
computer-enabled classroom, which was equipped with 
about 30 desktop computers for schoolwork. Inexpensive 
webcams ($30) were mounted to the top of each computer 
monitor.  

The main learning activity consisted of students interact-
ing with the educational game Physics Playground [Shute, 
Ventura, & Kim, 2013] in groups of about 20 in  55 minute 
class periods over four days (data from two days is used 
here). Physics Playground is a two-dimensional game that 
requires the player to apply principles of Newtonian Physics 
in an attempt to guide a green ball to a red balloon in many 
challenging configurations (key goal). The primary way to 
move the ball is to draw simple machines (ramps, pendu-
lums, levers, and springboards) on the screen that ―come to 
life‖ once drawn (example in Fig. 1). 

 
Fig. 1. Ramp solution for a Physics Playground problem 

Students’ affective states were observed during their in-
teractions with Physics Playground using the Baker-Rodrigo 
Observation Method Protocol (BROMP) field observation 
system [Ocumpaugh, Baker, & Rodrigo, 2015]. These ob-
servations served as affect labels for training detectors. In 
BROMP, trained observers use side glances to make a holis-
tic judgment of students’ affect based on facial expressions, 
speech, posture, gestures, and interaction with the game 
(e.g., whether a student is progressing or struggling). We 
obtained 1,767 affect observations during the two days of 
data used in this study. The most common affective state 
observed was engagement (77.6%), followed by frustration 
(13.5%), boredom (4.3%), delight (2.3%), and confusion 
(2.3%). 

2.2 Model Building 

Video-based Features. We used FACET
1
, a commercial-

ized version of CERT (see above), to estimate the likelihood 
of the presence of 19 AUs as well as head pose (orientation) 
and head position. Gross body movement was also estimat-
ed by the proportion of pixels in each video frame that dif-
fered from a constantly updated background image. Features 
were created by aggregating AUs, orientation, position, and 
body movement estimates in a window of time (3, 6, 9, 12, 
or 20 seconds) leading up to each BROMP observation us-
ing maximum, median, and standard deviation for aggrega-
tion. Feature selection was applied to obtain a sparser set of 
features for classification. RELIEF-F [Kononenko, 1994] 
was run on the training data in order to rank features and a 
set of the highest ranked features were then used in the 
models. 

About a third (34%) of the instances were discarded be-
cause FACET was not able to register the face, and thus 
could not estimate the presence of AUs. Poor lighting, ex-
treme head pose or position, occlusions from hand-to-face 
gestures, and rapid movements can all cause face registra-
tion errors; these issues were not uncommon due to the na-

                                                           
1 Currently available as Emotient Module from iMotions 

(https://imotions.com) 



ture of the game and the active behaviors of the young stu-
dents in this study. 

Supervised Learning. We built separate detectors for 
each affective state, which allowed the parameters (e.g., 
window size, features used) to be optimized for that particu-
lar affective state. A two-class approach was used for each 
affective state, where that affective state was discriminated 
from all others (e.g., confusion vs. all other). We experi-
mented with supervised classifiers including C4.5 trees and 
Bayesian classifiers, using WEKA [Witten & Frank, 2000]. 

Models were cross-validated at the student level. Data 
from 66% of randomly-chosen students were used to train 
each classifier and the remaining students’ data were used to 
test its performance. Each model was trained and tested over 
150 iterations. The students in the training and testing data 
for each iteration were chosen randomly with replacement 
to amortize random sampling errors. This approach ensures 
that the models are generalizable to new students since 
training and testing data sets are student-independent. 

The affective distributions led to large class imbalances 
(e.g., .04 vs. .96 priors in the boredom vs. all other classifi-
cation). Majority-class downsampling and synthetic over-
sampling were used to equalize base rates in the training 
data to help combat this disadvantage. 

3 Results 

Baseline Results. The best results for baseline face-based 
affect detection (student-level cross-validation) are present-
ed in Table 1. The number of instances refers to the total 
number of instances used to train the model, including nega-
tive examples. This number varied based on the window 
size because shorter windows represent fewer video frames, 
and thus have a lower probability of containing valid video 
data. 

Accuracy (recognition rate) is not an ideal metric for 
evaluation when base rates are highly skewed, as they were 
here. For example, delight occurred 2.3% of the time, so a 
detector that always predicted ―Not delight‖ would have a 
97.7% recognition rate. AUC is recommended for skewed 
data and is used here as the primary metric of detection ac-
curacy [Jeni, Cohn, & de la Torre, 2013]. 

Classification accuracy was better than chance for all af-
fective states including the infrequently-occurring states 
with large class imbalances. Delight was detected best, like-
ly due to overt facial features that often accompany it. Clas-
sification accuracy may have been lower for other affective 
states because they manifest more gradually and less dra-

matically on students’ faces over time. 
Generalization. We also tested the generalizability of 

face-based detectors across days, time of day, gender, and 
ethnicity [Bosch, 2015] (as annotated by researchers). De-
tector accuracy was not greatly influenced by these differ-
ences. We found less than 4% decrease relative to within-
group baseline accuracies. Fig. 2 illustrates the effect of 
generalization across key dimensions. 

 
Fig. 2. AUC change when generalizing across time and de-

mographics 

Availability. The face-based affect detection results dis-
cussed thus far are derived from 65% of instances. The re-
maining instances are unclassifiable due to factors such as 
hand-to-face occlusion, rapid movement, and poor lighting. 
To increase availability (proportion of all instances from 
which features could be extracted), we developed multi-
modal affect detectors including features from the log-files 
recorded while students interacted with the game [Bosch, 
Chen, Baker, Shute, & D’Mello, 2015]. Interaction features 
were distilled from log-files and comprised 76 gameplay 
attributes theoretically linked to affect. Example features 
included  the amount of time between start and end of level 
and the total number of objects. See [Kai et al., 2015] for 
additional details of interaction features computed for Phys-
ics Playground. Interaction-based detection was available in 
94% of instances, but was less accurate than the face-based 
detectors (see Figure 3). Fusing these detectors at the deci-
sion-level using logistic regression yielded a multimodal 
detector that was nearly as accurate as the face-based detec-
tors, but available in 98% of instances. 
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Table 1. Details and results for baseline classification of affective states using face-based detectors 

Classification AUC Accuracy Classifier No. Instances No. Features Window Size (secs) 

Boredom 0.610 64% Classification Via Clustering 1305 20 12  

Confusion 0.649 74% Bayes Net 1293 15 12  

Delight 0.867 83% Updateable Naïve Bayes 1003 24 3  

Engagement 0.679 64% Bayes Net 1228 51 9  

Frustration 0.631 62% Bayes Net 1132 51 6  

 



 
Fig. 3. Accuracy vs. availability for unimodal and multi-

modal affect detectors 

4 Discussion 

Affect detection is a crucial component for affect-sensitive 
user interfaces, which aspire to improve students’ engage-
ment and learning by dynamically responding to sensed 
affect. This paper advances research in this area by demon-
strating the efficacy of detectors for learning-centered affec-
tive states in a computer-enabled classroom. Our key contri-
butions were the development and validation of face-based 
detectors for learning-centered affect in a noisy school envi-
ronment, and multimodal affect detectors with improved 
applicability over face-only detectors. The inexpensive, 
ubiquitous nature of webcams on computers makes facial 
expression recognition an attractive modality  for affect de-
tection. Similarly, interaction-based detectors are sensor-
free, requiring no additional equipment cost. 

We demonstrated that automatic detection of boredom, 
confusion, delight, engagement, and frustration in natural 
environments was possible for students using an educational 
game in class—despite the many real-world challenges for 
these classification tasks, such as classroom distractions and 
large imbalances in affective distributions. With respect to 
class distractions, students in the current study fidgeted, 
talked with one another, asked questions, left to go to the 
bathroom, and even occasionally used their cellphones 
(against classroom policy). In some situations multiple stu-
dents crowded around the same screen to view something 
that another student had done. Essentially, students behaved 
as expected in a school computer lab. Furthermore, lighting 
conditions were inconsistent, in part due to placement of 
computers. In some videos, students’ faces were well-
illuminated while barely visible in others.  

We were able to develop detectors without excluding any 
of these difficult but realistic situations. Although we were 
unable to register the face in 35% of instances using modern 
computer vision techniques—an illustration of just how 
much uncontrolled lighting and the way students move, oc-
clude, and pose their faces can make affect detection diffi-
cult in the wild—by incorporating interaction features, we 
were able to develop  multimodal detectors that could be 
used in 98% of instances, despite the noisy nature of the 
data. 

We also showed that our approach generalized across 
days, time of day, gender, and ethnicity (as perceived by 
researchers). Accuracy decreased by less than 4% for each 
of these generalization tests, demonstrating that detectors 
can be applied quite broadly.  

Despite these encouraging findings, this study is not 
without its limitations.  First, the number of instances was 
limited for some affective states. Second, though the stu-
dents in this study varied widely across some demographic 
variables, they were all approximately the same age and in 
the same location. Further research is needed to test detec-
tors on a larger dataset and with more demographic variabil-
ity. 

A next step is to use the detectors to  guide intelligent in-
structional strategies in an affect-sensitive version of Phys-
ics Playground. Given the moderate detection accuracy, the 
interventions must be fail-soft so that they are not harmful if 
delivered due to detection errors. Subtle strategies, such as 
re-ordering the problems to display an easier problem after a 
frustrating experience, may be used.  

In summary, affect-sensitive interfaces offer the exciting 
possibility of endowing computes with the ability to sense 
and respond to student emotions, just like a gifted human 
teachers. This research takes an important step toward mak-
ing this vision a reality, by demonstrating the feasibility of 
automated detection of student affect in a noisy real-world 
environment: a school. 
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