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Transition metrics, which quantify the propensity for one event to follow another, are often utilized to study 
sequential patterns of behaviors, emotions, actions, and other states. However, little is known about the 
conditions in which application of transition metrics is appropriate. We report on two experiments in which 
we simulated sequences of states to explore the properties of common transition metrics (conditional 
probability, D’Mello’s L, lag sequential analysis, and Yule’s Q) where results should be null (i.e., random 
sequences). In experiment 1, we found that transition metrics produced statistically significant results with 
non-null effect sizes (e.g., Q > 0.2) when sequences of states were short. In experiment 2, we explored 
situations where consecutively repeated states (i.e., loops, or self-transitions) are impossible – e.g., in digital 
learning environments where actions such as hint requests cannot be made twice in a row. We found that 
impossible loops affected all transition metrics (e.g., Q = .646). Based on simulations, we recommend 
sequences of length 50 or more for transition metric analyses. Our software for calculating transition metrics 
and running simulated experiments is publicly available. 
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1. INTRODUCTION 
Suppose two statistics students are learning about the normal distribution. Both students start 
off engaged, but over time one student becomes frustrated by the difficulty of the learning task, 
eventually disengages, and becomes bored. Meanwhile, the other student finds the task too easy 
and also becomes bored. Both students are experiencing boredom – a highly undesirable 
emotion for learning (Baker et al., 2010) – but for different reasons. Situations like these have 
motivated a growing body of research that analyzes the sequence of behavioral, emotional, 
cognitive, or other states that students experience (Baker et al., 2007; Bosch & D’Mello, 2017; 
D’Mello & Graesser, 2012; McQuiggan et al., 2010, 2008). A key requirement for these studies 
is a method to measure the tendency for one state (e.g., an emotion) to follow another. These 
methods consist of various transition metrics, which quantify probability, likelihood, or other 
measures of how often one state transitions to another. 

When used effectively, transition metrics allow researchers to examine students’ behaviors 
from state to state over time, thereby revealing new insights into learning behaviors that might 
otherwise remain hidden (Chen et al., 2018; Knight et al., 2017). For the example statistics 
students above, we might find that the first student’s tendency to transition through frustration 
to boredom indicates very different learning behaviors than the second student’s tendency to 
transition directly from engagement to boredom. However, some key properties of transition 
metrics are as yet not well understood, especially how sequence length relates to results and 
how differences in the type of sequence may influence results (e.g., non-repeatable vs. 
repeatable action sequences in a computerized learning environment). We focus on these two 
issues in the current paper, uncovering some common situations where transition metrics may 
produce flawed results and comparing these results across metrics. 

1.1. ISSUES OF SEQUENCE LENGTH 

Educational research examines state sequences of various lengths, ranging from less than ten to 
thousands (Andres et al., 2019; Ocumpaugh et al., 2017), depending on the type of data and how 
the data were collected. However, little is known about how sequence length relates to transition 
metric results. Shorter sequences might yield more noise, for example, if the standard deviation 
of a statistic calculated on these data is higher, but it is unclear whether such noise might lead 
to systematic biases in results. Moreover, it is unclear how long sequences should be to minimize 
possible biases. Hence, we explore this issue for several different transition metrics in this paper 
to provide guidance on what sequence lengths researchers should collect when studying state 
transitions and what kinds of problems related to sequence length they should anticipate and 
monitor. 

1.2. ISSUES OF STATE TYPE 

Sequences consist of states including emotions, behaviors, actions in a user interface, or any 
other discrete characterization of educational experiences that might lead to insight into 
learning. The type of state and manner of data collection may have important implications for 
results from transition metric analyses, however. For example, if researchers examine transitions 
between different regions of a user interface, such as tabs (Biswas et al., 2016) or activities 
(Bosch & D’Mello, 2017), it is impossible for sequences to include two consecutive occurrences 
of the same state. Similarly, certain student actions may not be allowed to repeat, such as 
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pressing a hint button twice in a row without taking any actions based on the first hint or pressing 
a “submit answer” button twice in a row (for two consecutive exercises) without entering an 
answer for the second exercise. In a graph of transitions such as Figure 1, these consecutively 
repeating states are represented by arrows from a state to itself and are referred to as state 
persistence, self-transitions, or loops (in graph theory terminology). We refer to situations where 
loops cannot arise (e.g., consecutive hint requests) as sequences with impossible loops. 

In the above examples, states and the transitions between them can be perfectly observed via 
log file analysis. Certain state types cannot be perfectly observed, however, and must be 
obtained via methods such as self-reports (Larson & Csikszentmihalyi, 1983) or periodic 
observation (Ocumpaugh et al., 2015). For example, attentional states are often observed via 
sampling methods (e.g., self-report, classroom observation). In such cases, the transitions 
between states are not directly observed; rather, they are inferred from points where an observed 
state differs from the previously observed state. In these cases, the same state may be observed 
several times in a row. For example, suppose a student pays attention for five minutes; if 
researchers prompt them to self-report attention once per minute, their sequence data will 
include five consecutive “paying attention” reports before transitioning to a new state. However, 
these reports represent only one incident of attention, not five. Increasing the frequency of 
prompts will lengthen the sequence of consecutive identical reports, despite the underlying 
phenomenon not changing at all. Thus, researchers sometimes remove or ignore consecutive 
occurrences of the same state to focus on the transitions only (Bakeman & Quera, 1995; Bosch 
& D’Mello, 2017; D’Mello & Graesser, 2012; Karumbaiah et al., 2019). As a consequence, the 
same situation may arise as in analyses of user interfaces, where a state cannot be consecutively 
repeated. We examine one such scenario in this paper using data from a computer-based learning 
environment (see section 3.3) where events are recorded each time a student completes an 
activity. We explore transitions between activities, where loops are possible, or exercise IDs, 
where loops are not possible and must be removed from the sequence (they occur in the data 
because exercise ID is recorded repeatedly for each activity within an exercise). Such situations 
are relatively common in educational data, where one type of state sequence is nested within 
another and requires loop removal to obtain the actual transitions. 

 

Figure 1: Example transition probabilities between three states in a sequence. Transitions form 
a Markov chain model, where the probability of transitioning to any state is conditioned only on 
the one previous state in the sequence. 
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1.3. CONTRIBUTION AND NOVELTY 

In this paper, we describe results from a series of simulations that illustrate the properties of 
common transition metrics, then compare them to two different types of sequence data from a 
computer-based learning environment. We explore relevant cases that occur in real-world 
scenarios, including short sequences and sequences where loops are impossible, and show how 
transition metric results are affected by these scenarios. We expect that short sequences will 
exacerbate issues caused by state type and random noise and thus seek to discover how long 
sequences must be to avoid large adverse effects on results. 

We make recommendations for proper usage of transition metrics based on simulation results 
and discuss how sequence length interacts with base rate (unconditional probability of a student 
experiencing some state) and number of unique possible states a person might experience. 
Finally, we explore the effect of impossible loops on different transition metrics to determine 
the magnitude of spurious effects that are likely to be observed in these situations. Our software 
(written in Python) for transition metric calculations and simulations is publicly available for 
researchers to utilize and expand upon (Bosch & Paquette, 2020). 

The analyses and contributions in this article are novel in several ways. This article is the 
first to discuss issues of sequence length and the effect of impossible loops across a variety of 
transition metrics. It is also the first to compare several widely-used transition metrics, which 
shows that many patterns are consistent across metrics. Comparison also reveals situations 
where apparently significant results may be due to unexpected properties of the metrics rather 
than meaningful patterns in data. 

2. RELATED WORK 
We consider several types of related work. First, we discuss work that exemplifies how 
transition metrics are commonly utilized to answer behavioral research questions. We then 
discuss work that examines the properties of transition metrics and research on sequences with 
impossible loops. 

2.1. UTILIZING TRANSITION METRICS 

Several different metrics have been utilized to study the transitions between states. Perhaps the 
simplest method is to measure the conditional probability of one state, given the previous state. 
This metric can be represented with the probabilities as edge weights in a graph of states (Figure 
1), forming a Markov chain model (MCM). However, MCM probabilities are heavily influenced 
by the rate of occurrence of each state (the base rate), which can be an undesirable property for 
some research. For example, if state Y in Figure 1 occurs 90% of the time, the transition from X 
to Y is unsurprising, but if state Y occurs only 50% of the time, the X → Y transition is potentially 
indicative of a meaningful effect where X often leads to Y. This issue with MCM has motivated 
researchers to develop and utilize alternative transition metrics, including D’Mello’s L (D’Mello 
& Graesser, 2012), lag sequential analysis (LSA; Faraone & Dorfman, 1987), and association 
measures such as Yule’s Q (Walsh & Ollenburger, 2001). 

Since their inception, transition metrics have been utilized primarily for behavioral research. 
In one of the earliest papers on transition metric methods, researchers explored transitions as a 
means to understand sequences of behavior across individuals (Bakeman & Dabbs, 1976). They 
discussed one example of undergraduate students having conversations, finding that students 
tended to look away before starting to speak to another person. In this application, behaviors of 
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several individuals were combined into a single sequence of events; transition metrics then 
measured the conditional probability of one event following another, including events from 
different individuals. 

Transition metrics are also effective for quantifying within-person phenomena. They have 
been used extensively to model the flow of one emotion to another, primarily during education-
related activities such as learning computer programming (Bosch & D’Mello, 2017; Guia et al., 
2013), medical training (Ocumpaugh et al., 2017), and problem solving (Baker et al., 2007), 
which has enabled the expansion of theories of emotion in learning (D’Mello & Graesser, 2012). 
Researchers have examined transitions and related phenomena for many different types of 
emotion data, such as continuous-valued estimates of valence or discrete states such as bored or 
confused (see Hamaker, Ceulemans, Grasman, & Tuerlinckx [2015] for a review). We focus 
here on metrics for transitions between discrete states in particular. In one such study, D’Mello 
& Graesser (2012) proposed a theoretical model of affect transitions during learning. The model 
suggested, for example, that confusion might be beneficial to learning if it was resolved 
(transitioning to engagement) or not beneficial if it was unresolved (transitioning to frustration), 
and was experimentally tested by applying transition metrics to sequences of emotions. They 
measured these transitions relative to chance with L, a transition metric which measures the rate 
of occurrence of transitions relative to their expected probability. 

In related emotion research, Rodrigo (2011) measured transitions between emotional and 
cognitive states with the L metric in a game-based learning environment and found, for example, 
that boredom tended to persist while confusion was transitory and often led to engagement. 
These findings contribute to psychological theories of learning and also demonstrate how loops 
in a transition graph can be interpreted as “persistence,” i.e., that a person’s behavior is more 
likely to remain unchanged than to transition to another state. Similarly, Ocumpaugh et al. 
(2017) examined transitions between emotions while military trainees engaged with simulation 
software, retaining loops to study persistence. 

Researchers have also examined transitions between other types of states, such as actions 
performed in software systems. For instance, Galyardt & Goldin (2015) examined 
metacognitive strategies represented by sequences of actions in a simulated intelligent tutoring 
system, while Bosch & D’Mello (2017) measured transitions between actions in a computer 
programming environment with emotions interspersed in the sequences of actions. Further 
examples of transition analyses include studying sequences of speech behaviors to predict 
alcohol drinking behavior (Gaume et al., 2008; Moyers et al., 2009), predicting antisocial 
behaviors (Dishion et al., 2004), and others in various education domains and beyond (Altermatt 
et al., 2002; Marion et al., 2003; Wuerker et al., 2001). These studies demonstrate some of the 
possibilities of transition metrics, which offer a perspective for examinations of behavior that is 
complementary to typical analyses of individual states. 

2.2. INSPECTING TRANSITION METRIC METHODOLOGIES 

There are many possible transition metrics, including those designed specifically for the purpose 
and correlation measures that can be utilized as well. Here we briefly discuss some of the most 
relevant research on transition metrics and offer more details of the metrics themselves in the 
Method section. 

One of the first metrics to be studied was MCM (Bakeman & Dabbs, 1976). Bakeman & 
Dabbs compared MCM to unconditional probabilities of two states occurring independently 
(rather than in sequence) as a means of providing context to the MCM values. Later, Sackett, 
Holm, Crowley, & Henkins (1979) provided a FORTRAN computer program to calculate the 
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MCM and unconditional probabilities, as well as a z-score that compared the two numbers, 
which is commonly referred to as lag sequential analysis (LSA). LSA was criticized in later 
publications for having somewhat unintuitive properties that might hinder interpretation 
(Bakeman et al., 1997). In particular, the magnitude of an LSA score is relative not only to the 
probability of the transition relative to random chance but also by the length of the sequence of 
data, which is often not an intended or expected effect. 

Previous work has compared Yule’s Q to various other transition metrics. Q is a monotonic 
transformation of the log odds ratio (see the Method section for details), which captures the odds 
of a transition occurring relative to random chance level. Bakeman, Mcarthur, & Quera (1996) 
noted Q (and thus monotonic functions of Q like log odds ratio) produced similar results in 
simulations of 100 transitions, where transition probabilities were systematically varied. Lloyd, 
Kennedy, & Yoder (2013) further analyzed Yule’s Q with random simulations, finding that the 
correlation between Q and base rate (which dictates chance level) was |r| < .09. This corroborates 
the work of Bakeman et al. (1996) in establishing that Q is not biased by states that occur more 
or less frequently than others. 

Our results also explore the effect of impossible loops, which has been explored for some 
metrics in previous work. D’Mello & Graesser (2012) noted that with frequent observations of 
emotional states, the probability of observing the same incident of one emotion multiple times 
is high, and thus loop probabilities are high. However, their objective was to measure the 
transitions between emotions, so they removed loops from the sequences before computing L, 
leaving only the transitions between states. As noted by researchers utilizing LSA and related 
approaches, however, it is necessary to modify calculations to account for situations where loops 
have been removed (Bakeman, 1983; Bakeman & Quera, 1995; Matayoshi & Karumbaiah, 
2020). Modified calculations are needed because, after removing loops, the probability of 
transitions to all other states is increased a non-trivial amount. As noted in recent work focusing 
on L, this effect can influence the significance and even the direction of findings (Karumbaiah 
et al., 2019), solidifying the need for careful application of transition metric methods. Our work 
contributes to this literature by measuring the effect of loop removal on previously unexplored 
transition metrics and by exploring the relationship between loop removal and sequence length. 

3. METHOD 
The methods in this study consist of simulating sequences of states and evaluating these 
sequences with various transition metrics as well as applying the metrics to sequences collected 
in a computer-based learning environment. We examine the results (i.e., values of the metrics) 
to reveal key differences and similarities between metrics. 

3.1. TRANSITION METRICS IN THIS STUDY 

We describe metrics in terms of the cells of a 2×2 contingency table (Table 1) computed for a 
particular transition to be measured in a sequence (e.g., X → Y), though the sequence may 
contain other states. Rows in the contingency table indicate counts of preceding states in all 
possible transitions, and columns indicate counts of states that follow. We refer to the counts in 
the cells of the table by A, B, C, and D in equations. In general, any measure of association 
between two variables in a contingency table can be used as a transition metric (e.g., Cohen’s 
κ, correlation measures like φ); we focus on metrics that have been used in previous learning 
analytics research, including MCM (Dong & Biswas, 2017; Galyardt & Goldin, 2015; Jeong & 
Biswas, 2008), L (Baker et al., 2007; Bosch & D’Mello, 2017), L* (Matayoshi & Karumbaiah, 
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2020), LSA (Chen et al., 2017; Yang et al., 2015), and Q (Molinari et al., 2013; Tompkins et al., 
2013), and provide functionality for other association metrics in the accompanying software. 

 

Table 1: Example 2x2 contingency table calculated from a hypothetical sequence of 201 
observations of three or more states (X, Y, and others) for the transition from state X to state Y. 
Note that the sum of cells is 200 rather than 201 because it is unknown what follows the last 
state in the sequence, and thus no transition can be calculated. 

n = 200 
Next state (offset sequence) 
State Y State is not Y 

Current state 
(original sequence) 

State X 74 (A) 44 (B) 
State is not X 52 (C) 20 (D) 

 

3.1.1. Markov-chain Model (MCM) Probability 

Perhaps the most straightforward way to measure the propensity for transitions from state X to 
state Y is to calculate the conditional probability of Y given X (Equation 1), where the probability 
of a state occurring depends only on the one previous event (i.e., it satisfies the Markov 
property). MCM as a transition metric is straightforward to define and compute but slightly more 
difficult to interpret because it is influenced by differences in base rate. For example, an X → Y 
transition may appear to be occurring with unusual frequency simply because Y is especially 
common or uncommon. 

 

𝑀𝐶𝑀 = 𝑃(𝑌|𝑋) =
𝐴

𝐴 + 𝐵 (1) 

3.1.2. D’Mello’s L 

L addresses the interpretability issues of MCM by subtracting the expected rate of occurrence 
for a particular transition so that values of 0 indicate a transition is occurring as often as would 
be expected in randomly-ordered data (Equation 2). The metric value is also scaled so that the 
maximum value is 1 regardless of state base rates. L has no lower bound, however, so negative 
values can have large magnitude and are thus less straightforward to interpret than positive 
values. 

 

𝐿 =
𝑃(𝑌|𝑋) − 𝑃(𝑌)
1 − 𝑃(𝑌) =

𝐴
𝐴 + 𝐵 −

𝐴 + 𝐶
𝐴 + 𝐵 + 𝐶 + 𝐷

1 − 𝐴 + 𝐶
𝐴 + 𝐵 + 𝐶 + 𝐷

 (2) 

3.1.3. L* 

The transition metrics we consider make the assumption that all transitions between states are 
possible. However, this is not always the case. Matayoshi & Karumbaiah (2020) explored the 
case where transitions are impossible because loops (transitions from one state to itself) have 
been removed – which might be done, for example, if loops were recorded in the original data 
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due to a high sampling rate (e.g., when observing the same emotional event twice in a short 
period of time). L* is a modified form of L that accounts for this specific case (Matayoshi & 
Karumbaiah, 2020). L* follows the same equation as Equation 2, except that probabilities are 
computed from only the transitions X → Y where X differs from Y. 

3.1.4. LSA 

The interpretation of LSA is relatively straightforward because it produces a z score (Equation 
7). Thus, for example, a result where |LSA| > 1.96 implies the transition being measured occurs 
significantly more or less often than expected by chance (two-tailed p < .05). However, the value 
of LSA is also influenced by sample size, since both effect size and significance are reflected in 
the value. Thus, the value of LSA is difficult to interpret as an effect size. 

LSA, like the other transition metrics we explore here, is often calculated with a lag of 1, 
which means that transitions are measured between consecutive states. However, there is also 
some research in which larger lags are examined, allowing researchers to measure longer-term 
associations between actions. Hence, we also examine a larger lag value of 5 (referred to as 
LSA-5) as an additional example. 

 

𝑂!" = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑋 → 𝑌	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝐴 (3) 

𝐹! = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑓𝑟𝑜𝑚	𝑋 = 𝐴 + 𝐵 (4) 

𝑇" = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑡𝑜	𝑌 = 𝐴 + 𝐶 (5) 

𝐸!" = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑋 → 𝑌	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =
𝐹!𝑇"

𝐴 + 𝐵 + 𝐶 + 𝐷 (6) 

𝐿𝑆𝐴 = 𝑧 =
𝑂!" − 𝐸!"

I𝐸!" J1 −
𝐹!
𝑁L J1 −

𝑇"
𝑁L

 (7) 

3.1.5. Yule’s Q 

An odds ratio (OR) can be calculated as the odds of state Y following state X. Yule’s Q (Yule, 
1900) is a simple transformation of OR so that it ranges from -1 to 1, with 0 indicating random 
chance level (Equation 8) – unlike OR, which ranges from 0 to infinity with 1 indicating chance. 
Though its range and midpoint match those of common association measures like Cohen’s κ, 
the values of Q can deviate considerably in certain cases. If A = 0, the value of D can change 
arbitrarily without influencing the result (and vice versa if D = 0). Similarly, if B = 0, the value 
of C has no influence on the result, and vice versa if C = 0. For example, if X transitions to Y in 
a sequence, but Y never transitions to another state (e.g., XXYYY), then D = 0 and the fact that X 
transitions to Y once (A = 1) makes no difference when measuring Q for the X → Y transition. 

 

𝑄 =
𝑂𝑅 − 1
𝑂𝑅 + 1 =

𝐴𝐷 − 𝐵𝐶
𝐴𝐷 + 𝐵𝐶 (8) 
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3.2. SIMULATIONS 

We generated simulated datasets to quantify the properties of transition metrics in precisely 
controlled conditions. In particular, we generated random datasets so that the expected result of 
calculating transition metrics for each dataset would be chance level (a null result). For each 
experiment, we generated 10,000 independent sequences. These datasets can be thought of as 
sequences of observations from 10,000 unique students in a study, for example, rather than 
10,000 trials from one student (since each sequence is completely independent). We computed 
all transition metrics for each sequence after it was generated so that metrics would be calculated 
with exactly the same input data. Finally, we averaged each transition metric value over the 
10,000 sequences to produce a final value for each metric. 

3.2.1. Experiment 1 Simulations 

Short sequences of states may produce misleading results for at least two reasons. First, 
transition metrics cannot be calculated in some short sequences, resulting in invalid values. This 
may occur, for example, when calculating Q: if D = 0 and B = 0, the denominator of Equation 
8 is 0, and thus Q cannot be calculated. The probability of invalid values occurring by chance is 
higher for shorter sequences, since there are fewer opportunities to observe infrequent state 
transitions. 

Second, shorter sequences may produce less accurate estimates of the strength of a transition 
and thus result in increased chances of finding outliers. For instance, a very short sequence of 
XYY may seem to indicate that X always transitions to Y (i.e., MCM for X → Y = 1.0). However, 
the true probability may be much lower but not apparent due to the short length of the sequence. 
This issue is exacerbated in the presence of state imbalances, where one or more states 
infrequently occur even in long sequences. However, in experiment 1 simulations, we focus on 
the best-case scenario – when states are balanced – and note that issues arise even in this 
scenario. 

Thus, it is important to determine how long a sequence of observed states must be to 
successfully measure the desired state transitions and avoid invalid values. We conducted 
simulations varying sequence length to quantify the relationships between sequence length and 
the number of invalid values encountered and between sequence length and the maximum 
transition metric value observed. 

We calculated the maximum metric value calculated from among the means across 10,000 
sequences. For example, with only two unique states, there are two possible transitions (X → Y 
and Y → X); we calculated the mean X → Y transition across all sequences, and likewise for Y 
→ X, then found the maximum of those two means. Thus, these maximum values did not simply 
represent outliers from among the 10,000 sequences; rather, they are stable across many 
sequences. 

These simulations required specifying the number of unique states from which to sample to 
create sequences. In practice, the number of unique states varies across domains. For example, 
researchers in one study examined transitions between seven different emotions (Baker et al., 
2007); another study considered transitions between ten different self-regulated learning 
behaviors (Witherspoon et al., 2008), and in another study, researchers considered transitions 
between six emotions and eight behaviors (14 total states; Bosch & D’Mello, 2017). A dataset 
with a large number of states (versus a small number) will have more possible transitions 
between states and a lower base rate of occurrence for some or all states. Consequently, we 
expect that longer sequences would be needed with more states to achieve low error, given that 
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there is less available evidence for each transition in a given sequence length. We contrasted 
both the simplest possible case (two states) and a slightly more complex case (four states) in 
experiment 1 simulations. These examples serve to illustrate the expected trend and the 
magnitude of potential errors due to short sequences, even with few states. We then also briefly 
describe how this trend continues with seven states, chosen as a realistic number to match one 
previous study (Ocumpaugh et al., 2017). These choices of sequence lengths and number of 
states do not fully cover the range of possibilities that could be encountered in research; 
however, they do illustrate trends that can be used to extrapolate expectations for research with 
the same order of magnitude of states and sequence lengths. 

3.2.2. Experiment 2 Simulations 

We ran a second set of simulations to explore the effect of impossible loops on transition metric 
values. In these simulations, we considered three possible states because it is the simplest non-
trivial case. The case of two possible states is trivial because, without loops, each state is left 
with only the possibility to transition to the other state and vice versa. For example, XYYXXXY 
becomes XYXY without loops, and X → Y transition probability will always equal 1.0 (as will Y 
→ X). 

State imbalance (differences in base rates of occurrence for different states) is also important 
to consider for cases where loops are removed, since removal can influence base rates. Thus, 
for these simulations, we considered sequences of three states with 50%, 25%, and 25% base 
rates of occurrence. We measured the values of transition metrics along with their standard 
deviations (across all 10,000 random sequences) to determine how metrics differed with and 
without loops. These sequences were each 100 states long, which we chose to avoid issues that 
can arise with short sequences (see experiment 1 results). 

3.3. COMPUTER-BASED LEARNING ENVIRONMENT DATA (EXPERIMENT 3) 

Randomly-generated sequences provide the opportunity to examine transition metrics in a 
situation where the null hypothesis is known to be true. That is, transition metrics should 
produce null results. Conversely, data collected in real-world learning situations are generated 
by students (or teachers) who are, presumably, not performing actions or having experiences at 
random. We examine one real-world dataset from a computer-based learning environment to 
determine how experimental results may differ with such data. We expect transition metric 
values to converge as sequence length increases, but not necessarily toward a null value. 

The data we examined came from the Educational Process Mining (EPM) dataset (Vahdat et 
al., 2014). EPM data were collected from 99 students in a digital electronics course at the 
University of Genoa. Students learned in a computer-based learning environment called Deeds 
(Digital electronics education and design suite), which allowed students to design and simulate 
circuits, read learning materials, take notes, and do other learning-related activities. Deeds 
recorded (i) the sequence of exercise IDs students worked on, (ii) the sequence of learning 
activities within each exercise, and (iii) the number of actions within each activity, such as the 
number of mouse clicks and keystrokes. We examined sequences (i) and (ii) from these data, 
which serve as examples of key transition metric cases. The exercise sequence data included 
many loops (95.8% of transitions were loops) because each activity within an exercise was 
recorded as a separate step, and exercise IDs were repeated for each step. Hence, we removed 
loops from this sequence since loops dominate the sequence yet provide no insight into the order 
of exercises students did. The activity sequence data included relatively few loops, on the other 
hand (14.3% of transitions), and loops are meaningful transitions for the activity sequence 
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because they indicate that a student transitioned from one particular activity type in an exercise 
to the same activity type in a different exercise. 

We examined the effect of sequence length on transition metric values for these sequences 
by extracting subsequences from the beginning of each sequence, varying in length from 5 to 
50 steps. We also calculated transition metrics on the full sequences for each student, which 
ranged in length from 87 to 1087 actions (M = 442.9, SD = 162.9). These full-length sequences 
make it possible to determine whether trends observed in the initial 50 sequence steps converge 
for long sequences. 

4. RESULTS 
We present results to answer two general research questions: 1) how does sequence length 
impact transition metric values? and 2) how do impossible loops impact different transition 
metric values? 

4.1. EXPERIMENT 1A: INVALID METRIC VALUES VS. SEQUENCE LENGTH 

We first examined the occurrence of invalid results (i.e., “not a number” results) that were 
produced with random state sequences of varying lengths. Not all metrics produce invalid results 
for the same sequences. For example, the value of Q will be invalid if the denominator is zero 
in Equation 8, which occurs when either A or D is zero and either B or C is zero. Conversely, 
simple MCM probability will be invalid only when A and B are both zero. 

Figure 2 shows the trend in the proportion of invalid values for each metric versus sequence 
length. In general, shorter sequences were more susceptible to producing invalid values for these 
randomly-generated sequences. Additionally, invalid values were more common with a higher 
number of states (four, rather than two). LSA with lag 5 (i.e., LSA-5) followed the same pattern 
as LSA (lag 1, by default), shifted by 4 units on the x-axis. This was expected, given that 
sequences were random and were functionally shorter by 4 states when lag increased from 1 to 
5. As results show, shorter sequences resulted in more invalid values. 
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Figure 2: Proportion of invalid values for transition metrics as a function of sequence length for 
random sequences of two states (top left), four states (top right), and seven states (bottom). 
Overlapping lines are shown with varying styles to avoid occultation. Note differences in x- and 
y-axes given that more states resulted in substantially more invalid values. 

4.2. EXPERIMENT 1B: MAXIMUM METRIC VALUE VS. SEQUENCE LENGTH 

Of the transition metrics we consider in this paper, all have a chance level of 0 except MCM. 
That is, given random sequences, they should (on average) not result in values notably above or 
below 0. For example, Q = 0 indicates no association between two variables. MCM is different 
since it is a probability; the chance-level value of P(Y | X) is the probability of Y. If there are 
two equally probable states (X and Y) in a sequence, the expected value of MCM for X → Y 
transitions in random sequences is 1 / 2 = .5. With four equally probable states, the expected 
value of MCM for X → Y transitions is 1 / 4 = .25, and with seven it is 1 / 7 = .143. 

We computed the maximum value observed among all transitions in a simulation to 
determine whether there were systematic (averaged across all iterations) deviations from 0. 
Figure 3 shows these maximum values relative to sequence length. Results indicated that there 
were indeed cases where short sequences can produce seemingly significant results. This effect 
was more notable with fewer states in most cases except perhaps Q, which had more negative 
values for larger numbers of states. This occurs because Q subtracts transitions between state 
pairs that are not the two states of interest for a particular transition (BC in Equation 8). With 
more states, there are many such transitions, and Q is thus often negative, as seen in Figure 3 
right and bottom. 

2 states
4 states

7 states
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Figure 3: Maximum average transition value observed over all simulations for varying sequence 
lengths and two (top left) versus four (top right) versus seven (bottom) states, with 95% 
confidence intervals indicated by shading. All metrics converge toward 0 except MCM, which 
converges toward 0.5 for two states, 0.25 for four states, and 0.143 for seven states. LSA 
converges extremely slowly because longer sequences increase the magnitude of LSA results, 
including spurious results. 

4.3. EXPERIMENT 2: TRANSITION METRIC VALUES IN SEQUENCES WITHOUT 
LOOPS 

Sequences where loops are impossible (either because of the nature of the data collection 
environment or because of data preprocessing steps) have different probabilities of transition 
from one state to another than would otherwise be expected. We investigated both of these 
aspects with additional simulations where we calculated transition metrics with and without 
loops (by removing loops – i.e., repeated states in the sequence – wherever they occurred) on 
the same set of randomly-generated state sequences of length 100. We did not consider lags 
other than 1 for LSA, given that experiment 1 results showed that larger lags essentially 
shortened the sequences but did not otherwise differ from lag 1 results. 

Figure 4 shows the effect of having sequences where loops are not possible. The initial base 
rate of each state was directly tied to probability of transition to that state (e.g., probability of 
transition from any state to X was approximately .250 since the base rate of X was 25%). With 

2 states 4 states

7 states
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no loops (Figure 4 right), the base rates of states themselves were influenced because fewer 
loops occurred by random chance for less common states, and thus fewer instances of the 
uncommon states were removed compared to the more common state. 

It is evident from Figure 4 that metrics change without loops and that transition probabilities 
no longer match base rates of the destination states. Furthermore, transition probabilities do not 
match the new base rates of destination states even after ignoring the initial state (e.g., ignoring 
X in an X → Z transition and calculating the Z base rate as Z / [Z + Y] = 40% / 70% = .571). For 
other transition metrics with clearly defined chance levels, related phenomena occur; some 
transitions were apparently well above chance-level (0, for L, LSA, and Q), despite the fact that 
sequences were generated randomly. Each metric consists of calculating some expectation for 
how often transitions should occur, and when loops are impossible, the expected value is no 
longer correct (it is 0 for the loop and thus slightly higher for all other transitions). L* was 
unaffected, however, which is as expected since it corrects for this specific problem (Matayoshi 
& Karumbaiah, 2020).  

 

 

Figure 4: Transition metric values before (left) and after (right) removing loops (transitions from 
a state to the same state) in random sequences of length 100, with three possible states (X, Y, 
and Z). Percentages inside circles indicate base rates of each state. Numbers in parentheses are 
standard deviations for each metric. 

4.4. EXPERIMENT 3: ACTIVITY SEQUENCES IN COMPUTER-BASED LEARNING 

In experiment 3, we explored the effects of sequence length on transition metric values with 
data collected in the wild from students using a computer-based learning environment. This 
experiment shows the importance of sequence length outside of simple simulations. However, 
because of the non-random nature of activity sequences in real learning contexts, we do not 
expect transition metrics to converge to a specific null value (i.e., the mean base rate for MCM 
or 0 for all others). We might expect mean values across all possible transitions to approach the 
null value for a metric, but this behavior is not guaranteed; for example, the range of L is (–∞, 
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1] and thus can have negative outliers that draw the mean far from zero. We also examined the 
transitions with the minimum value and the maximum value, in addition to the mean across 
transitions, to provide additional perspectives on how metrics might behave differently in these 
data. Note that these minimums and maximums were the lowest and highest mean values of a 
transition obtained after averaging each transition over all students. Hence, they represent 
transitions that were consistently low or high across students: for example, the maximum-value 
transition is the maximum mean across students, rather than the mean of the maximum within 
each student, which might be a different transition for each student. 

Trends in the results for sequences of activities students performed (e.g., use a text editor, 
use an electronics simulator) indicated that the minimum-value transition tended to converge 
toward the lowest possible value as sequence length increased, the maximum-value transition 
trended toward the highest possible value, and some means converged toward approximately a 
null value. For example, the minimum-value transition converged toward 0 for MCM and toward 
-1 for Q as sequence length increased (Figure 5 top left), which are the minimum possible values 
for those metrics. This indicates that there was at least one transition that almost never happened, 
and this was evident from sequences even shorter than 10 for those metrics. Conversely, LSA – 
which has no minimum possible and is a z-score that depends on sequence length – trended 
continually lower, while L (which also has no minimum possible but is not relative to sequence 
length) converged toward a negative value. These trends extend in the full-length values in 
Figure 5 (lower right), where it is apparent that, on average, the minimum and maximum LSA 
values continued to diverge while minimum MCM reached its lowest possible value (0), as did 
Q (-1), and maximum L, MCM, and Q were all near (though not quite at) the maximum possible 
value of 1. These trends were also apparent in very short sequences, like the minimum-value 
transition. Conversely, mean metric values for all transition metrics were close to the chance-
level value of 0 for L and LSA. Similarly, mean MCM was close to its chance level of .125 
(because students engaged in 8.02 unique activity types, on average). These results indicate that, 
on average, the transitions above and below chance level tended to cancel out, though that trend 
required relatively long sequences to consistently observe, especially for MCM. 

LSA with a larger lag (i.e., LSA-5) results differed in notable ways for the EPM dataset, unlike 
for the randomly-generated sequences. Like LSA (lag 1), the maximum- and minimum-value 
transitions for LSA-5 (Figure 5) trended increasingly positive and negative, respectively, as 
sequence length increased. However, LSA-5 maximum and minimum values were both smaller 
than LSA, including in the full-length sequences. This suggests that there were clear above- and 
below-chance transitions for lags 1 and 5 but that the trends were clearer for lag 1. Intuitively, 
this pattern might be expected: the activity directly preceding the current activity is likely more 
related to the current activity than the fifth most recent activity is. 

Results from the sequence of exercises that students worked on, with loops removed, showed 
primarily that students tended not to revisit previous exercises, and worked in a predictable order 
(Figure 6). Maximum and minimum transitions converged quickly toward the highest and 
lowest possible values for metrics with clearly defined limits, indicating that there were some 
transitions that almost always happened and some that almost never did. However, the mean 
metric values (Figure 6 lower left) show that the mean was slow to converge as sequence length 
increased, and thus there were some transitions that happened infrequently – but more often than 
never. More notably, the jagged nature of the mean transition metric values suggests that even 
longer sequences up to 50 states were insufficient to provide a stable estimate of transitions with 
loops removed. This is unsurprising given that many of the transitions consisted of loops (see 
section 3.3). Even the full-length sequences in Figure 6 (lower right) may not have all 
converged, as evidenced by the fact that the magnitude of minimum LSA was smaller than 1.96, 



 

 16 
 

which corresponds to the typical p = .05 threshold given that LSA is a z-score. Consequently, 
this result illustrates the importance of considering the effect of loop removal on sequence 
length, since even long sequences may become too short to produce reliable results when loops 
are removed. 

 
 

 

 

Figure 5: Minimum (top left), maximum (top left), and mean (bottom left) transition metric 
values observed across all possible transitions between activities recorded in the EPM dataset. 
Full-length sequences (lower right) show how observed sequence length trends extend to 
sequences hundreds of steps long. 
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Figure 6: Minimum (top left), maximum (top right), and mean (bottom left) transition metric 
values for the sequence of exercises students worked on in the EPM dataset, with loops in the 
sequence removed. L, L*, and MCM all have maximum values of 1 and are thus occluded by Q 
in the top right subfigure. Full-length sequences (lower right) illustrate trends in the best-case 
scenario where sequences are as long as possible, i.e., they include the entire dataset. 

5. DISCUSSION 
We were interested in the properties of state transition metrics, especially as they relate to 
sequence length. To study transition metrics, we first generated random state sequences to 
simulate various scenarios that occur in research, including short sequences and sequences with 
impossible transitions. We found several situations where results appeared to be above chance 
levels, despite the fact that sequences were randomly generated. Analyses of real-world data 
also showed the importance of having long input sequences. These results offer some insight 
into scenarios that should be avoided when applying these metrics to study sequential data so 
that spurious conclusions can be avoided. 
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5.1. MINIMUM SEQUENCE LENGTH 

Sequence length impacted the number of invalid transition metric values observed in our results. 
These invalid values are undesirable for two reasons. First, they reduce the number of estimates 
of transition metric values that are available for analyses (i.e., reduced statistical power when 
testing whether transitions occur significantly more or less frequently than chance). Second, the 
presence of a notable proportion of invalid values for a specific sequence length suggests that 
the other sequences of the same length – which did yield valid values – were based on low-
power estimates of the parameters in the equations (e.g., the expected probability of a particular 
state occurring). 

We expected invalid values would be more common for shorter sequences, sequences with 
more possible states, and sequences with imbalanced base rates, because each of these scenarios 
increases the chances of encountering sequences with few (or even zero) transitions involving 
some states. Indeed, we found that shorter sequences yielded more invalid values in the random 
sequences we sampled, especially with more possible states. We suggest that researchers should 
consider the possibility of invalid values when deciding how long state sequences need to be 
during experiment design and analyses. Our simulation code is publicly available (Bosch & 
Paquette, 2020), which allows easy manipulation of the number of states and plotting invalid 
values across a range of sequence lengths. Behavioral researchers can thus generate sequences 
for the expected number of states in their work and observe the proportion of invalid values; for 
example, from the results of this paper, we might suggest sequence length should be at least 10 
for 2 possible states, at least 20 for 4 possible states, and at least 35 for 7 possible states (Figure 
2). In general, there are 𝑛 × (𝑛 + 1) transitions between n states, including loops. Hence, we 
would expect the minimum necessary sequence length to grow quadratically with the number 
of states, so that each transition has some evidence from which to calculate its propensity. 
Indeed, this appears to be the pattern observed in the results. However, uncommon states would 
also reduce the available evidence for transitions to or from that state, which should be taken 
into account as well. 

We also found that shorter sequences were more likely to result in spurious above-chance 
transition estimates. This issue was more pronounced with fewer states (two versus four) but 
was apparent for both cases (Figure 3). Overall, these results suggest that long sequences are 
needed to avoid spurious findings. Depending on metric and number of states, sequence length 
may need to be in excess of 50 to avoid spurious results over 0.1 (a “small effect” for some 
measures; Cohen, 1988). Our experiments with real-world data (Figure 6) highlight the fact that 
sequence length after loop removal may be substantially shorter, and thus even long sequences 
can produce noisy results once shortened due to loop removal. 

Sequences may also vary in length in most practical applications. For example, students 
might interact with a computer-based learning environment for differing amounts of time or 
perform different numbers of actions within such environments. Since transition metrics are 
calculated per student to avoid issues with statistical dependencies, it is important to examine 
sequence length for each student to determine whether each meets a reasonable minimum. 
Alternatively, the LSA metric might be preferable in situations where some students have short 
sequences, because LSA penalizes shorter sequences by its nature. 

5.2. IMPOSSIBLE LOOPS AND LOOP REMOVAL 

We expected that situations where loops (i.e., self-transitions, state persistence) are impossible 
would result in increased transition metric values for transitions to other states, since the 
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probability of transition to those other states would be higher. This was indeed the case for all 
metrics. Accounting for this effect is complicated by the influence of base rates; infrequent states 
are less affected by the fact that loops within those states are impossible. For situations where 
impossible loops are caused by loop removal, it is possible to correct for these base rate effects, 
at least for one metric (i.e., L* correcting for L). Our results show that all transition metrics we 
explored were affected by this issue, apart from the L* metric designed specifically to solve this 
issue. Moreover, results from the real-world computerized learning environment we 
investigated showed that results may be unstable even with seemingly long sequences of 
behaviors if loop removal results in dramatically shortened sequences. Hence, it is also crucial 
to consider the proportion of states in a sequence that are likely to be removed when doing loop 
removal. 

However, there are also situations in which transitions other than loops may be impossible. 
For example, students might use a computerized learning environment in which it is only 
possible to view a hint after attempting to solve a problem, but not directly after starting the 
problem. In this case, the show problem → hint transition is impossible, and thus the expected 
probability of transitions from other states to hint should be increased to maintain the sum of 
probabilities being 1. This is a broader case of the impossible loop situation, which merits further 
research in the future. For example, an alternative approach to transition analysis might be to 
treat each transition as a probability, like MCM, but to estimate these via Bayesian methods that 
could account for any impossible transitions (whether loops or not) by specifying prior 
distributions for each transition. 

5.3. CONCLUDING REMARKS 

We were motivated to examine the properties of state transition metrics, given their importance 
in analysis of student behaviors and emotions. To do so, we conducted simulations with random 
sequences of states, uncovering situations where such metrics produce misleading results (in 
short sequences or with impossible loops) and suggested ways to avoid or correct for these 
situations. Although our findings are intuitive (i.e., short sequences cause problems), the results 
still have potential to influence behavioral research by providing specific guidance regarding 
the length of sequences needed, and our open-source transition metric calculation and simulation 
software will make application of metrics more straightforward. Our software supports 
simulation for prospective analyses before data collection begins, calculation of transition 
metrics from collected data, and integration as a library into other software packages. 
Ultimately, we hope that these methods will be applied to develop a more accurate 
understanding of student behavior. 
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