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Abstract. Classroom teachers utilize many nonverbal activities, such as gestur-
ing and walking, to maintain student attention. Quantifying instructor behaviors
in a live classroom environment has traditionally been done through manual cod-
ing, a prohibitively time-consuming process which precludes providing timely,
fine-grained feedback to instructors. Here we propose an automated method for
assessing teachers’ non-verbal behaviors using video-based motion estimation
tailored for classroom applications. Motion was estimated by subtracting back-
ground pixels that varied little from their mean values, and then noise was re-
duced using filters designed specifically with the movements and speeds of teach-
ers in mind. Camera pan and zoom events were also detected, using a method
based on tracking the correlations between moving points in the video. Results
indicated the motion estimation method was effective for predicting instructors’
non-verbal behaviors, including gestures (kappa = .298), walking (kappa =.338),
and camera pan (an indicator of instructor movement; kappa =.468), all of which
are plausibly related to student attention. We also found evidence of predictive
validity, as these automated predictions of instructor behaviors were correlated
with students’ mean self-reported level of attention (e.g., » = .346 for walking),
indicating that the proposed method captures the association between instructors’
non-verbal behaviors and student attention. We discuss the potential for provid-
ing timely, fine-grained, automated feedback to teachers, as well as opportunities
for future classroom studies using this method.
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1 Introduction

Classroom lecturing can be a daunting task. Presenting the learning material in a mean-
ingful way is only half the battle, as maintaining students’ attention and engagement is
perhaps equally challenging. One way in which instructors might manage students’ at-
tention is through titrating their own behaviors during the lecture (e.g. moving around,
altering their volume) in response to their perception of student attentiveness. Indeed,
research has shown that an instructor’s behavior (e.g., head nodding) is related not only



to students’ learning [1—4], but also to their characterizations of instructors (i.e. com-
petence and enthusiasm). To date, however, very little work has focused on quantifying
the moment-to-moment dynamics of instructors’ behavior in the classroom. Similarly,
there is a paucity of work developing tools that can provide live feedback to classroom
instructors about their behaviors. The ultimate goal of this work is therefore to fulfill
this need and provide automated feedback to instructors regarding their behavioral dy-
namics in the classroom. A critical first step toward this goal, and the focus of the cur-
rent paper is to build an automatic quantification system which employs a video-based
method in the wild.

Previous research evaluating teachers’ non-verbal behaviors has primarily focused
on either simulations of instructor behavior by professional actors [5], manual evalua-
tions of behavior [6, 7], human-like avatars of teachers in e-learning [8], or laboratory
environments that may not adequately approximate actual classrooms [9, 10]. Although
these methods have led to some valuable empirical insights about how instructor be-
haviors influence learning, they cannot be easily parlayed into feedback systems for
instructors. We addressed this gap by creating an automated approach to estimating
instructor behaviors (e.g., walking, gesturing, interacting with a presentation) with tech-
niques from artificial intelligence and computer vision. The method we present in this
paper also has the advantage that it does not require any specialized sensors, such as
depth sensors [10]. Instead, it requires only a video camera. Furthermore, real class-
room videos were recorded from a vantage point at the back of the room, thus alleviat-
ing privacy concerns related to images of student faces being recorded.

2 Related Work

2.1 Impact of instruction behaviors

Instructor behavior is critical to assess given its consistent relationship with various
aspects of learning. Witt et al. [2] conducted a meta-analysis of 81 studies including
over 24,000 students, and discovered a significant correlation between teachers’ non-
verbal behaviors and students’ self-reported perceptions of how much they were learn-
ing (» = .510). Furthermore, teachers’ non-verbal behaviors were correlated almost as
strongly with students’ affective learning (= .490), which is a strong indicator of one’s
enjoyment of the course, and likelihood of enrolling in a future related course.
Computerized learning environments have allowed researchers to precisely manip-
ulate the non-verbal behaviors that (virtual) teachers exhibit and test their influence on
students’ perceptions. Alseid & Rigas [8] studied the effects of facial expressions (e.g.,
happy, interested), hand gestures (e.g., pointing, chin stroking), and walking in the con-
text of a computerized learning environment with a virtual teaching agent. Students
rated their perceptions of these instructor activities before and after the study. Several
of the teacher activities were rated significantly more positively after the study than
before, including the two most well-liked activities, pointing (100% positive rating
post-study) and walking (98% positive rating post-study). While it is unclear what the
impact of these positive ratings would be on learning, it is clear that students develop a



preference for particular instructor behaviors, which may in turn foster improved atten-
tion or learning.

2.2 Automatic evaluation of teaching behaviors

Multiple efforts have been made to develop automated methods for evaluating teaching
and presentation style, including evaluation of non-verbal behaviors. TeachLivE is one
example of a software platform designed to capture the behaviors of teachers as they
interact with 3D virtual students, and to automatically provide real-time feedback about
those behaviors [10]. Participants were 34 teachers in training, half of whom received
automated real-time feedback on non-verbal behaviors (specifically, open body pos-
tures such as arms hanging down versus arm-crossing and other closed postures) in
their first of two sessions with TeachLivE, and half who received feedback in their
second session. The participants who received feedback in the first session displayed
more open postures in the second session than the other participants, despite receiving
no further feedback. This study demonstrated that it is possible to perform real-time
assessment of teaching behaviors, and that instructors can modify their behavior based
on this feedback. However, TeachLivE requires a close, unobstructed view of the in-
structor, to allow their behaviors to be tracked with a depth-sensing camera. This is a
limitation which would prevent TeachLivE from being broadly applicable in many
common lecture hall classroom environments.

Presentation Trainer is another training platform designed to assess non-verbal be-
haviors and give corresponding feedback to presenters [9]. While it is not specifically
intended for teacher training, it does include relevant feedback about the behaviors
quantified by TeachLivE (open versus closed posture), as well as stance (shifting side
to side, which conveys being uncomfortable). In one empirical investigation of Presen-
tation Trainer, university professionals who received this feedback about behavior self-
reported significantly more learning than a matched control group (24.5% more, p <
.05), indicating that they found the automated feedback helpful for improving their
presentations. In a follow-up study, nine students gave presentations to their peers be-
fore and after completing a training session with Presentation Trainer [11]. The group
of peers rated the quality and frequency of gesture use for both presentations, and rat-
ings were significantly higher after training (27.9% improved, p <.01). Together, these
studies demonstrate that automated evaluation methods exhibit strong potential for the
improvement of non-verbal communication skills. However, similar to TeachLivE,
Presentation Trainer suffers the shortcoming that it requires a depth-sensing camera and
a clear, close and unobscured video of the speaker, both of which are unlikely to be
available in typical classroom environments.

2.3  Feasibility of camera-based motion tracking

Tracking motion in video is a well-studied problem in the field of computer vision.
Applications include tracking the movement of people [12], tracking the movement of
key visual points (e.g., corners, edges [13]), and background subtraction to find visual
changes over time [14]. Camera-based human motion tracking research has typically



focused on skeletal tracking and detection of individual body parts [15—17]. However,
unobstructed high-quality video of instructors is difficult to acquire, so alternative
methods are needed. Kory-Westlund et al. [18] made strides toward this goal with a
human motion tracking method that does not require detection of people or individual
body parts. Their motion measure correlated quite well with other markers of move-
ment, including posture changes measured by a pressure-sensitive chair (mean r =
.708), and hand gestures measured by a wrist-mounted accelerometer (mean » = .720).
This method was optimized for measuring the motions of a person seated in front of a
computer with a stationary camera, however, and is unlikely to be capable of effectively
tracking more dynamic classroom behaviors.

2.4 Research Questions

We extracted novel estimations of instructor motion, camera pan (rotation back and
forth), and camera zoom from classroom videos taken with a standard digital camera.
These estimations were then used as features in machine-learned models that detected
teacher activities including walking, gesturing, and presentation usage (slide changes).
As a proof of concept, we aimed to answer the following research questions: 1) How
well can we automatically detect instructors’ non-verbal behaviors using only amateur
videos taken from the back of a classroom?; and 2) Do the instructor activities detected
with this method correspond to student attention in the classroom?

3 Method

We took a multi-step approach to answering the foregoing research questions. We col-
lected classroom videos and manually annotated them for instructors’ non-verbal be-
haviors, then applied methods to estimate motion, camera pan, and camera zoom in the
videos.! Finally, we applied supervised machine learning methods test whether these
estimated features could reliably predict the instructors’ non-verbal behaviors. These
steps are described in detail below.

3.1 Classroom videos and students’ self-reported attention

Nine classroom lectures were recorded over the span of six days at a Canadian univer-
sity. There were three videos each of three different instructors, all of whom taught
undergraduate psychology classes. The lectures were completely naturalistic and were
not manipulated in any way for the study. Lectures included the common elements one
might expect: speaking, question answering, referencing presentation slides, and occa-
sionally watching videos on a projector screen. Recordings occurred in two different
classrooms, each of which was equipped with a similar setup: a lectern/podium and a
stage-like space for the instructor to walk. A researcher started the video camera, which

! We have made the code for motion, camera pan, and zoom estimation available online at

https://github.com/pnb/classroom-motion



was placed at the back of the classroom, and actively panned and zoomed the camera
to keep the instructor and presentation slides in frame.

We also obtained self-reports of attention from the students during the lectures. Stu-
dents who agreed to participate (N = 76) downloaded a thought-probe application to
their laptop computers. This application displayed a notification in one corner of the
computer screen up to five times per class. The notification prompted students to report
their level of attention using a continuous scale ranging from Completely mind wander-
ing to Completely on task. Students were instructed to introspect about their mental
state just before the thought-probe appeared, with mind wandering defined to the stu-
dents as “thinking about unrelated concerns” and on fask defined as “thinking about the
lecture”.

3.2 Video annotation

To determine whether our motion estimation method was associated with the non-ver-
bal behaviors of the recorded instructors, ground truth labels of these behaviors and
related events were required. To this end, classroom videos were retrospectively coded
to describe instructors’ non-verbal behaviors (i.e. gesturing or movement), environ-
mental changes (e.g. lighting or camera pan), and student interaction (e.g. asking or
fielding questions). A total of 5,415 annotations were made, of which 24.9% were cam-
era pan, 0.3% camera zoom, 0.7% room lighting change, 0.1% instructor playing video,
3.8% student asking question, and 70.2% other (which were then explained in greater
detail in the coder’s comments). Because there were relatively few instances of camera
zoom, room lighting changes, video playing, and question asking, these annotations
were not considered further. We extracted additional annotations from the comments
documented by the coder, including 13.1% instructor walking, 33.3% gesturing, and
6.2% presentation slide change. Finally, we expected that camera pan events would be
closely related to walking, so we created an additional set of annotations pooling across
cases where either the camera panned or the instructor was coded as walking (37.3% of
annotations).

Although video annotations were made at the precise moment that a relevant event
was observed, the videos were pooled into 30-second segments (n = 1,431) to reduce
noise for automatic classification®. Each 30 s segment was assigned a binary label for
each annotation category. For instance, if the first and only camera pan occurred 43 s
into a particular lecture, the first 30 s epoch (0-30 s) would be coded as 0, the second
(30-60 s) as 1 and the third as 0 (60-90 s). In this manner, we derived a time series of
binary ratings at regular intervals, for each possible annotation class. Preprocessing the
data this way allowed for automatic classification via supervised machine learning with
features estimated from the videos.

2 We experimented with a range of segment lengths from 10 to 60 s, finding that 30-60 s seg-

ments provided equivalent results and were consistently better than 10 or 20 s. We thus seg-
mented at 30 s intervals to provide the finest granularity from the 30-60 s range.



3.3 Motion estimation

We estimated motion in two steps: 1) raw motion detection and 2) human-oriented fil-
tering. Raw motion was detected by applying a background subtraction method which
learns a Gaussian mixture model describing the video’s pixel values [14]. This method
learns descriptive statistics about pixels in the video, and tags pixels with low variance
over time as background, and those with high variance as motion pixels. Consider the
circumstance where the instructor moves across a particular region of the video frame.
Intuitively, the pixels the instructor crosses over will change dramatically over time and
be correctly labelled as motion. However, other artifacts may be erroneously labelled
as motion, so the raw motion data must be filtered.

We observed several different sources of such visual noise in classroom videos (il-
lustrated in Fig. 1), each of which caused background pixels to be incorrectly labelled
as motion pixels: 1) electronic noise, causing random pixel variation especially under
low-light conditions, 2) camera vibration, caused by brief movements in the camera
mount, and 3) intentional camera pan and zoom actions performed to follow the teacher
more closely. To combat the first two flaws in particular, we developed a novel filtering
approach intended specifically for capturing human motion.

Human motion in the classroom can be distinguished from these sources of noise
using the speed and duration of the motion. Morphological filters were developed to
distinguish motion at different speeds [19]. Specifically, every pixel where motion was
detected was dilated, such that a surrounding circular area with a 5-pixel radius was
also labelled as motion. This was conducted with every frame of the video, and the
motion label was only upheld if the dilated area overlapped in temporally contiguous
frames. By manipulating the length of these time frames (the filter history length), mo-
tion with different speeds could be captured. Fast motions were captured with a short
filter history length, because even rapid human movements are likely to fall within a
five-pixel distance of their position in the immediately prior video frames. Conversely,
faster-moving motions were filtered out (leaving only slow motions) by a longer filter
history, which would only register a motion occurring in the same area of the video.

We distinguished instructor motions of different durations by also varying the his-
tory length in the background removal process. The background removal history length
determines how much time the process considers when calculating the variance of pix-
els. With a short history length, the background removal process quickly ‘forgets’ what
is moving and what is part of the background. Brief movements will register more
strongly with a longer history length, as the background removal process remembers
these brief changes for a longer amount of time. If the teacher briefly gestures, the mo-
tion pixels from the gesture will only be briefly counted as motion and soon be reab-
sorbed back into the background (non-motion) pixels. Conversely, a sustained action
like walking will continue to register as motion. In practice, we applied filter history
lengths of 100ms and 200ms, and background removal history lengths of 500ms,
1000ms, 2000ms, and 4000ms, for a total of [2 filters X 4 background removals] = 8
smoothed motion estimates. We estimated eight values of motion to account for the fact
that there are several different types of motion in the classroom, ranging from long and



slow (e.g., walking) to short and fast (e.g., a hand wave). Finally, we included unfiltered
motion estimates, for a total of 12 estimates.

Fig. 1. Examples of three kinds of visual noise in videos: A) camera pan, B) camera vibration,
and C) electronic low-light noise. Image D contains an example of smoothed motion from C with
lower-left instructor motion preserved and noise visible in the upper-right of C correctly removed
(zoom in for detail).

34 Pan and zoom detection

For this technique to be effective, we also needed it to detect pan and zoom in addition
to motion because the foregoing techniques would label both of these as substantial
motion. However, these events are clearly different from, and potentially less informa-
tive than, other types of motion (e.g., gesturing). We therefore sought to automatically
measure these events so that machine-learned models (section 3.5) could distinguish
this type motion from instructor behaviors. For example, a model might learn that brief,
high-intensity motion indicates a gesture if and only if a zoom event is not concurrent.
Furthermore, camera pan may be an indicator of instructor movement even when walk-
ing cannot be detected, so this is an important additional element to track.

To detect these events, we automatically selected 50 salient points to track in the
video with a common corner detection algorithm [20]. We then tracked the points (Fig.
2), and computed the correlation between the velocities of salient points in the video
(typically known as “optical flow” [13]). Over time some of these points would be
lost—for example, when the camera panned so far to one side that a tracked point was
no longer in view. When this occurred, we chose a replacement point to track such that
it was at least 10 pixels away from another tracked point. The number of tracking points
replaced in each video frame was included in the output, since tracking points being
lost may be an additional indicator of events such as pan and zoom.

Pan events were captured by measuring the standard deviation (SD) of all tracked
points in the preceding one second of video, selecting the middle 50% (25 tracked



points) to eliminate outliers, and then measuring the mean SD of those points and the
mean pairwise correlation (Pearson’s r) between those points. In theory, pan events
should have two measurable characteristics: 1) high standard deviations, because the
points moved across the video, and 2) large r, because the points moved together as the
camera panned.

Zoom events were rare in our data, as noted in section 3.2, but could still be im-
portant contextual information, and importantly, will be necessary for applying these
techniques to other video sets. To detect zoom events, we measured mean point SD in
the same way as pan events, but point correlation was measured differently. In a zoom
event, all tracked points appear to move radially, either toward the edge of the frame
(zoom in) or toward the center of the frame (zoom out). We thus converted tracked
point coordinates from Cartesian to polar coordinates and measured the mean correla-
tion between the point radii. Analogous to pan events, zoom events should have two
measurable characteristics: 1) large standard deviation, and 2) radial correlation of
points. However, we included the mean SD and mean r values as features for both pan
and zoom detection, so that our machine learning methods would not be restricted by
certain cutoff values for what qualifies as pan or zoom.

Fig. 2. Example (A) pan and (B) zoom events. In the pan event, most tracked points are moving
together to the right as the camera pans left, while in the zoom event points are moving outward
radially as the camera zooms in.

3.5 Machine learning for prediction of video annotations

We created features at the same timescale as the annotations made manually by coders
(every 30 seconds) by calculating the mean and standard deviation of frame-level esti-
mates in each 30-second window, yielding 38 features in total.

We tested the capabilities of our motion estimation methods by training logistic re-
gression models to predict the video annotations. Separate models were trained to detect
each annotation type in a one-vs-other scheme: camera pan, instructor walking, gestur-
ing, slide change, and walking + pan combined. Models were cross-validated by train-
ing on data from five of the six days of video and testing on the remaining day. This
process was repeated six times so that each day’s data served as the test-set once. We
also applied a forward feature selection process with nested cross-validation to select
predictive features [21]. Feature selection took place in training data only, so that fea-
tures would not be selected based on performance in the testing data.



Model accuracies were measured with Cohen’s kappa and area under the receiver
operating characteristic curve (AUC), both of which are commonly employed to eval-
uate predictive models in educational contexts [22—24]. Kappa measures the agreement
between two sets of labels; in this case, those labels are the manual video annotations
and the automatically predicted annotations. Kappa = 0 represents random chance-level
accuracy, while kappa = 1 represents perfect agreement between ground truth and pre-
dictions. AUC, on the other hand, measures the tradeoff in accuracy between true pos-
itive classifications and false positives across all possible false positive rates, rather
than one specific rate. AUC = .5 represents chance-level accuracy, while AUC = 1 rep-
resents perfect accuracy.

4 Results

We set out to answer two research questions using these techniques. Below we unpack
the results with respect to these two questions.

How well does the proposed method detect teachers’ non-verbal behaviors? Table
1 displays the results of supervised classification models trained to predict teachers’
non-verbal behaviors and associated classroom activities, from the motion-related fea-
tures. Overall, models predicted instructor behaviors at levels well above chance, with
the exception of slide changes (kappa = .048). Furthermore, predicted rates were similar
to the actual base rates present in the video annotations. Thus, we have confidence that
these models provide reliable video annotations, and may be applied in authentic class-
room settings to examine the role of instructor behaviors (as we have done below).

The models predicted longer-lasting behaviors such as walking with high accuracy,
whereas briefer activities were not predicted as effectively (gesture kappa = .298, slide
change kappa = .048). Video data and annotations were processed at a 30-second gran-
ularity, which may have caused the motion of these briefer events to be lost in the larger
period of non-motion. It is possible that with narrower time windows, these finer-
grained movements would be detected as accurately. However, we note that our gesture
detection models are on par with or superior to previous video-based modeling in class-
rooms [22].

Table 1. Results of models for automatically predicting video annotations.

Annotation Kappa AUC Base Rate Predicted Rate
Camera pan 468 768 419 460
Gesture 298 705 .393 550
Slide change .048 .595 173 011
Walk 338 748 294 217
Walk + pan .397 .683 516 .549

Do the instructor activities detected with this method correspond to student atten-
tion in the classroom? It is also important to establish if predicted instructor behaviors
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relate to students’ self-reported attention. We examined the correlation between the
predictions made by the models in Table 1 and students’ self-reported levels of attention
(see section 3.1). We divided every class lecture into 72 consecutive segments, each of
which was 500 s long?, and calculated the mean self-reported attention level across all
students within each segment. We then similarly calculated the mean prediction of each
annotation as well as standard deviation (to capture variation in non-verbal behaviors)
within each 500 s segment. Finally, we did the same with the ground truth manually-
coded annotations to provide a comparison to the automatic method. We thus measured
20 correlations (5 activities x automatic and manual annotation X mean and SD of each)
to determine which measures of classroom activity were reliably correlated with student
attention. Given the large number of correlations, we applied a post-hoc Benjamini-
Hochberg procedure to control for multiple tests [25].

Table 2 contains the correlations that were significant at p < .05 after controlling for
multiple tests. Two compelling patterns emerge from these results. First, every signifi-
cant correlation was positive, indicating that increased non-verbal activity from the in-
structor was generally related to better (not worse) student attention. Second, the auto-
matic annotations were more consistent predictors of attention than even the ground
truth manual video annotations.

Table 2. Significant correlations between automatic/manual annotations of instructors’ non-
verbal behaviors and students’ self-reported attention.

Annotation Method Pearson's r N
Camera pan (mean) Manual 299 72
Camera pan (SD) Automatic 311 72
Gesture (SD) Automatic .346 72
Walk (SD) Automatic 331 72
Walk OR pan (SD) Automatic .303 72
Walk OR pan (mean) Automatic 293 72

5 General Discussion

We were interested in automatic evaluation of instructors’ non-verbal behaviors as an
initial step towards providing useful feedback to instructors. We developed a video-
based motion estimation method tailored for classroom videos, and evaluated its effec-
tiveness compared to manual annotations of video, and the ability of these features to
predict student attention. In this section we discuss the implications of our findings, as
well as limitations and opportunities for future work in this area.

The motion estimation method we proposed was effective for detecting non-verbal
activities and related events that had been manually annotated by humans (see Table

3 Changing the segment length does not have a dramatic effect on results. Longer segment lengths
(e.g., 700 s) produce slightly stronger correlations, but we report our original segment length
in this paper (500 s) to avoid overfitting the analysis to desirable results.
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1). It shows great promise for teachers who wish to get feedback on their non-verbal
behaviors without requiring manual coding, advanced technical tools or professional
videographers. It can provide them feedback as to how they might improve their lec-
turing to create a more engaging experience for students. Furthermore, we showed that
the automatic assessments of instructors’ non-verbal behaviors were significantly cor-
related with students’ self-reported attention in the expected direction (i.e. more activity
= more attention). In fact, the automatic annotations of non-verbal behaviors were more
strongly related to attention than the manual annotations (which showed only one sig-
nificant correlation). One possible explanation for this is that the motion estimation
method works on every frame of classroom video, whereas humans produced much
sparser annotations that may not have been sufficiently fine-grained estimates of non-
verbal behaviors in every 500 s segment. The proposed method, being automatic, is
also easier to apply frequently and in many classrooms compared to manual annotation
— making it suitable for the eventual goal of providing feedback to teachers.

This paper is the first to attempt automatically estimating teacher behaviors from
classroom videos taken in the wild. This is a particularly challenging problem because
the videos analyzed in this study are from ordinary cameras placed in the back of the
classroom, which could pan and zoom at the discretion of the operator. Furthermore,
videos were recorded in multiple classrooms with varying designs. Nevertheless, in-
structor behavior was accurately detected with our methods.

There are two key limitations that should be noted. First, few (i.e. three) teachers
were examined in this study. It may be that increased non-verbal activity was related to
student attention for these instructors (Table 2), but that replication is warranted since
these instructors may not be representative of others’ teaching styles. Future work eval-
uating many more teachers with this method will be able to address this issue by search-
ing for consistent differences in style, and the relationships of these styles with student
attention. Furthermore, we will collect data in different classrooms and topics, to meas-
ure the robustness of the method across these dimensions and others (e.g., lighting con-
ditions) that might be encountered in classroom applications. Second, certain activities
such as slide changes and question answering were not detected as well as motion. Fu-
ture work with different visual features may be able to capture slide changes, but it is
likely that multimodal analysis involving audio will be needed to detect questions ef-
fectively [26].

Improving the quality of classroom lectures is a difficult process that can require
years of teaching experience to overcome a lack of feedback about one’s teaching style.
As a step toward ameliorating this difficulty, we developed video-based methods for
detecting teachers’ non-verbal behaviors and showed that detected behaviors related to
student attention. In the future, these methods will enable wide-scale research into as-
sessment for teachers, thus improving the technique of teachers and the learning expe-
riences of students.
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