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Abstract. Novice students (N = 99) participated in a lab study in which they learned the fundamentals of 

computer programming in Python using a self-paced computerized learning environment involving a 25-min 

scaffolded learning phase and a 10-min unscaffolded fadeout phase. Students provided affect judgments at 

approximately 100 points (every 15 seconds) over the course of viewing videos of their faces and computer 

screens recorded during the learning session. The results indicated that engagement, confusion, frustration, 

boredom, and curiosity were the most frequent affective states, while anxiety, happiness, anger, surprise, disgust, 

sadness, and fear were rare. Confusion + frustration and curiosity + engagement were identified as two 

frequently co-occurring pairs of affective states. An analysis of affect dynamics indicated that there were 

reciprocal transitions between engagement and confusion, confusion and frustration, and one way transitions 

between frustration and boredom and boredom and engagement. Considering interaction events in tandem with 

affect revealed that constructing code was the central activity that preceded and followed each affective state. 

Further, confusion and frustration followed errors and preceded hint usage, while curiosity and engagement 

followed reading or coding. An analysis of affect-learning relationships after partialling out control variables 

(e.g., scholastic aptitude, hint usage) indicated that boredom (r = -.149) and frustration (r = -.218) were negative 

correlated with learning while transitions between confusion → frustration (r = .103), frustration → confusion (r 

= .105), and boredom → engagement (r = .282) were positively correlated with learning. Implications of the 

results to theory on affect incidence and dynamics and on the design of affect-aware learning environments are 

discussed. 
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INTRODUCTION 
Computer science (CS) is a difficult degree to complete and has some of the highest attrition rates 

among undergraduate majors in the U.S. (Haungs, Clark, Clements, & Janzen, 2012). To address this 

issue, researchers have attempted to identify the factors that contribute to the eventual or failure in 

computer programming classes. Some of this research has focused on individual differences, such as 

mathematical ability, programming aptitude, and psychological traits of temperament and motivation 

(Alspaugh, 1972; Blignaut & Naude, 2008; Law, Lee, & Yu, 2010; Shute & Kyllonen, 1990). Many of 

these factors are somewhat influential in predicting a student’s decision to enroll as well as their 

eventual success in computer programming courses. However, these trait-based attributes are very 

coarse grained and assume fixed dispositions. More fine-grained, person-in-context factors may 

provide additional insights for understanding outcomes in computer programming courses. The 

present paper focuses on one such factor – the affective states that students experience during their 

first encounter with computer programming. 

Our working hypothesis is that affective factors play an instrumental role in the process of 

learning to program and can influence both immediate (failing to solve current problem) and long-

term outcomes (failing an exam and dropping out of a CS course). A state of engaged concentration 



(and perhaps flow) is hypothesized to be the ideal affective state for learning (Csikszentmihalyi, 

1990). However, it is difficult to consistently maintain a state of engagement during computer 

programming because the experience is punctuated by failure and its resultant negative emotions. For 

example, confusion and frustration arise when output does not match expectations (confusion) or 

when the student gets stuck in a logical impasse (frustration). Persistent failure is associated with 

frustration (Burleson & Picard, 2004) and lower self-efficacy, which can lead to boredom (D’Mello & 

Graesser, 2012), and ultimately attrition (Larson & Richards, 1991).  

The long-term goal of this research is to develop advanced learning environments for CS 

education. Various strategies, such as game-based learning (Min, Mott, & Lester, 2014) and adaptive 

materials (Weber & Brusilovsky, 2001) have been used to improve the learning experience for CS 

students. Given the importance of affect to learning (Pekrun & Linnenbrink-Garcia, 2014), one 

promising strategy is to develop interfaces that are mindful of student affect while they learn computer 

programming (D’Mello, Blanchard, Baker, Ocumpaugh, & Brawner, 2014; D’Mello & Graesser, 

2015). However, much more basic research on students’ affect is needed before such affect-aware 

learning environments can be successfully engineered. As a step in this direction, the present study 

addresses five basic aspects of student affect during their first encounter with computer programming: 

1) incidence of affective states; 2) co-occurring affective states; 3) transitions between affective states; 

4) relationship between affect and interaction events; and 5) correlations between affect during 

scaffolded learning and later performance
1
 

 

Research Question 1 (RQ1). Affect Incidence 

Affect has been well-studied during learning with technology. In a recent meta-analysis of 24 studies 

that involved learning with technology (D’Mello, 2013), engagement was consistently found to be 

very frequent across multiple learning contexts. Boredom, confusion, curiosity, happiness, and 

frustration occurred frequently in some studies while anger, anxiety, contempt, delight, disgust, fear, 

sadness, and surprise were infrequent. However, none of these studies concerned computer 

programming as the learning activity. Some researchers (e.g., Khan, Hierons, & Brinkman, 2007; 

Rodrigo et al., 2009) have studied affect during computer programming. For example, Rodrigo et al. 

(2009) studied the affective states of computer programming students and reported that flow 

(engagement) occurred most frequently, followed by confusion, neutral, and then frustration. The 

focus of these previous studies has been on coarse-grained affect reports and long-term relationships 

between affect and performance. Here, we examine fine-grained (15-second interval) student affect in 

an attempt to study affect incidence of novice students first encounter with programming. 

 

RQ2. Affect Co-occurrence 
Previous work has provided some important insights into the affective states that arise when students 

learn with technology (D’Mello, 2013). These studies monitored discrete affect (e.g., confusion, 

frustration, etc.) at multiple points in a learning session, but only one affective state was tracked at 

each time point (D’Mello, 2013). The implicit assumption here is that affective states individually 

occur rather than co-occur. We extend this work by studying affect co-occurrence, or when multiple 

                                                      
1
 This paper advances our previous work by expanding a previously collected dataset of 29 

students with an additional 70 students for analyses (1) and (3) (Bosch & D’Mello, 2013; Bosch, 

D’Mello, & Mills, 2013), as well as adding new analyses to address (4) and (5). Analyses pertaining to 

(2) were presented in Bosch & D’Mello (2013) and are reproduced here for completeness.  



affective states are experienced at the same time. It should be noted that previous research has 

explored affect transitions, where the emphasis is on the change from one affective state to another as 

discussed in more detail below (Baker, Rodrigo, & Xolocotzin, 2007; Bosch & D’Mello, 2013; 

D’Mello & Graesser, 2012). Co-occurrence is different because the emphasis is on multiple affective 

states that occur at the same time rather than in sequence. One exception is a study by Harley et al. 

(2012) which investigated co-occurring affective states in the domain of human anatomy education. 

They used commercial affect recognition software to measure affect. They found that happiness and 

sadness and sadness and disgust frequently occurred together. The co-occurrence of happiness and 

sadness is rather surprising and inconsistent with theory given that these affective states have opposite 

valence profiles (happiness is positive while sadness is negative) (Pekrun & Stephens, 2012). 

Similarly, sadness and disgust, though both negative, have opposing activation levels (sadness is a 

deactivating state while disgust is an activating state). These inconsistencies raise the question of 

whether the co-occurrence relationships uncovered might be attributed to inaccuracies in automated 

affect detection, which is a well-known problem in the field of affective computing (Calvo & 

D’Mello, 2010).  

 

RQ3. Affect Transitions 
This paper also explores the sequence of affective states throughout time by testing a theoretical model 

on affect dynamics that has been proposed for a range of complex learning situations (D’Mello & 

Graesser, 2012). The model (Fig. 1) posits four affective states that are crucial to the learning process: 

engagement, confusion, frustration, and boredom. It predicts an interplay between confusion and 

engagement, whereby a learner in the state of engagement may encounter an impasse and become 

confused. If an impasse is resolved the learner will return to the state of engagement. On the other 

hand, frustration is triggered when the source of the confusion is not resolved. Frustration can also 

lead to confusion if new impasses are encountered, but can transition into boredom when frustration is 

persistent. Further, boredom can transition back into frustration when learners are forced to persist in 

the learning session despite their boredom. 

 
Fig. 1. Theoretical model of affect transitions. 
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Researchers have found some support for this model during learning with an ITS (D’Mello & 

Graesser, 2012), during self-guided undergraduate, masters, and doctoral research (Inventado, 

Legaspi, Cabredo, & Numao, 2012), and during interactions with narrative learning environments 

(McQuiggan, Robison, & Lester, 2008). We expect the theoretical model to apply to computer 

programming as well. We posit that encountering unfamiliar concepts, syntax and runtime errors, and 

other impasses can cause confusion. When those impasses are resolved, the student will be better 

equipped to anticipate and handle such impasses in the future. Alternatively, if the impasses persist, 

students may become frustrated and eventually disengage, entering a state of boredom. These 

possibilities will be tested in the present research. 

 

RQ4. Transitions Between Affect and Interaction Events 
We also examine sequences of affective states and interaction events in order to identify how 

particular interaction events (e.g., errors) influence specific affective states (e.g., frustration) and how 

affective states engender particular interaction events (e.g., hint request). Some previous work 

(Hosseini, Vihavainen, & Brusilovsky, 2014; Jadud, 2005; Rodrigo, Baker, Jadud, et al., 2009) 

examined interaction patterns during computer programming albeit without explicitly considering 

affect. For example, Rodrigo et al. (2009) analyzed student interaction patterns in a programming 

environment. Errors, such as consecutive source code compilations with the same error, were 

negatively related with performance as one might expect. D’Mello et al. (2009) studied transitions 

between affect and interaction patterns while students solved analytical reasoning problems. Their 

results indicated that students often became frustrated or bored (among other negative affective states) 

when provided with negative feedback, while happiness and eureka moments more often followed 

positive feedback. We apply a similar methodology in this paper, interleaving the affective states and 

interaction events by timestamp in an attempt to identify frequently occurring transitions between 

affective states and interaction events. 

 

RQ5. Relationships between Affect and Learning 
In our fifth question, we investigate the relationships between affective states and learning. Previous 

work with computer programming novices suggests that affective states are related to performance. 

Lee et al. (2011) found that confusion was negatively correlated with midterm exam score. Rodrigo et 

al. (2009) also found confusion and boredom were negatively related to midterm exam performance, 

while flow (engagement) was positively correlated with performance. More recently, Grafsgaard et al. 

(2012) collected several data sources while students conversed with a human tutor via a computer-

mediated interface. Coarse-grained frustration reported by students was correlated (r = .53) with 

student confusion observed by the tutor. Additionally, tutor reports of student confusion and 

frustration were correlated (r = .59), and confusion was negatively correlated with posttest scores (r = 

-.38). In the present paper, we study how students affect experience (i.e., affect incidence, affect co-

occurrence, and affect transitions) observed during a scaffolded learning phase correlate with 

performance on a subsequent fadeout phase after controlling for a number of factors (e.g., hint usage, 

demographics). 

 

Current Study 
The present study builds upon and extends previous research in this area (reviewed above) in the 

following three ways. First, previous work has taken an ecological approach to studying affect during 

computer programming in authentic learning contexts. This approach has obvious merits but is limited 



with respect to the relatively coarse-grained nature of affect measurements. Taking a somewhat 

different approach, we track affect at a fine-grained level (every 20 seconds). Also, while much of the 

previous work has studied students enrolled in computer science classes, we focus on novices. This is 

because having basic computer programming skills is essential in the 21
st
 century digital age. We 

accomplished this by carefully screening students to remove those with prior programming experience 

and those who are majoring in computer science. Third, our focus is on one-on-one human-computer 

programming experiences without interference, distractions, or social pressures that may apply when 

teachers or peers are involved in the learning process. This necessitated the high control of the lab, so 

we conducted a laboratory study in this early stage of the research. The hope is that insights gleaned 

from the present fine-grained lab study with non CS students can complement previous findings from 

coarse-grained ecological studies with CS students, thereby providing a more comprehensive 

understanding of students’ affective experiences while learning computer programming. 

 

METHOD 

Participants 
Participants (called students) were 113 students from a private Midwestern university in the United 

States. Fourteen students were removed because they reported having prior experience with computer 

programming and our intended focus was on novices only. Of the remaining 99 students, 49.5% were 

female and the mean age was 19.3 years (SD = 1.12 years). The students represented 25 majors 

including psychology, biology, architecture, marketing, and others, so there was considerable diversity 

(at least in terms of major) in the sample. Data collection took place over the course of two semesters. 

Data from cohort 1 (N = 29) was collected in Fall 2012 while data for cohort 2 (N = 70) was collected 

in Spring 2013. There were minor methodological differences between the two cohorts as detailed 

below. 

 

Procedure 
Students were individually tested in a two-hour session. The study consisted of three main phases 

(scaffolded learning; fadeout; and retrospective affect judgment) as discussed below. A webcam on 

the monitor recorded the face of students, while screen capture software recorded videos of the 

learning environment (see below). Students were not informed of the purpose of the research before 

beginning. Instead, they were informed that the goal was to test a new learning environment for novice 

computer programmers. Details of the purpose of the study were revealed to students only at the end 

of their two-hour session. 

 

Learning Environment 
Students were taught fundamentals of computer programming in the Python language, using a 

researcher-built computerized learning environment. Fig. 2 shows a screenshot of the learning 

environment used by students. Numbers overlaid in Fig. 2 indicate the different areas of the learning 

environment interface: 1) instructional text, 2) source code editing box, 3) hint display area, and 4) 

input/output console. Students in cohort 1 could freely interact with all four areas at the same time. 

However, cohort 2 students could only interact with only one area of the interface at a time. 

Specifically, each area could be made visible by clicking a button for that area, which would then hide 

the previously used area of the interface. This was done to disambiguate students’ current interaction 

activity (i.e., determine if they were reading, viewing the hint, coding, or testing their code). 

Instructions for using the interface were provided to students. The learning environment kept logs of 



interaction events including both student actions (e.g., key presses, button presses) and system actions 

(e.g., providing feedback on code correctness). 

 

Fig. 2. Screenshot of the learning environment used by students, with key areas numbered. 

Learning Procedure 
Students completed a 25 minute scaffolded phase, in which they had access to instructional materials, 

exercises to solve, and hints (both cohorts). This was followed by a 15-minute (cohort 1) or 10-minute 

(cohort 2). fadeout phase. The goal of the scaffolded phase was to provide foundational knowledge 

that could be applied in the fadeout phase while the goal of the fadeout phase was to assess learning. 

Scaffolded phase. The scaffolded phase consisted of a set of 19 programming exercises and was 

timed at 25-minutes. Exercises covered syntax for arithmetic concepts (addition, multiplication, 

subtraction, exponentiation), geometry (volume, area, perimeter), and basic programming concepts 

(variables, reading from standard in, printing output, and integer vs. floating point numbers). Each 

exercise had a problem statement, an explanatory text, and a set of hints. Students needed to write 

working Python code to solve the problem in each exercise. The exercises were predominately math-

based geometry problems with numeric inputs. This topic was chosen because it is often used in 

introductory programming courses. An example of an exercise is as follows: ―Suppose you want to 

calculate the mileage you are getting in your car easily. Create a program to assist in this, first by 



prompting for Miles driven: and then Gallons of gas used: Store each of these values in a variable and 

print out the resulting miles per gallon.‖ This exercise represents an incremental step from reading 

input and storing it as a variable (previous exercise) to reading two different inputs into different 

variables (current exercise). 

Students were able to test their code with the interactive console, and submit code for automatic 

correctness checking when they were satisfied with their work. If a submitted solution was correct, the 

student would automatically be advanced to the next exercise. Otherwise, the learning environment 

would tell the student their solution was incorrect, and suggest using a hint or trying again. There was 

no limit on number of submission attempts allowed. Correctness was determined by comparing the 

output of the students’ code with the output of a predetermined correct solution, allowing acceptable 

variations such as different precision of π in geometry-based solutions. Additionally, solutions to 

exercises that required reading input were tested by automatically providing different input values and 

checking for corresponding correct outputs. 

Hints were able for each scaffolded exercise. Hints ranged from further instructional explanation 

of the key concept(s) in an exercise, code examples illustrating the concept(s), up to complete 

solutions for an exercise (bottom-out hint). Hints were made available after a time delay ranging from 

45 to 90 seconds relative to the start of the exercise or the previous hint request. Time delays were 

based on the anticipated difficulty of the exercise and previous hints. Longer delays were used to 

require more processing of complicated concepts. The possible score for each exercise was set to be 

the number of hints for that exercise plus one. Using a hint resulted in a deduction of one point from 

the exercise. For example, an exercise with three available hints could be worth as much as four points 

(no hints used) or as little as one (all hints used). 

Fadeout phase. Following the scaffolded phase, students completed a fadeout programming 

phase. The fadeout exercise made use of all major concepts that could be covered in the scaffolded 

phase. It was designed to be more difficult than novice students would be capable of solving, though 

they could make progress toward a solution. No hints or explanation were available during the fadeout 

phase in order to encourage unscaffolded problem solving and assess learning. Students in cohort 1 

also completed a five-minute debugging exercise. However, the debugging exercise was removed 

from cohort 2 because it proved too short for meaningful analysis. The present analyses only focus on 

the 10-minute fadeout programming exercise and the 25-minute scaffolded phase since these were 

consistent across both cohorts. 

 

Affect Judgments (Phase 3) 
We measured students’ affective states using a retrospective judgment protocol (Rosenberg & Ekman, 

1994), which is a validated offline affect-judgment technique that affords fine-grained affect 

measurement without any interruptions during the learning session (see review of affect annotation 

methods [Porayska-Pomsta, Mavrikis, D’Mello, Conati, & Baker, 2013]). The protocol commenced 

after the fadeout phase of the study. Students were shown synchronized videos of their own face and 

on-screen activity (from screen capture videos) and were asked to make judgments about what 

affective states they were experiencing at various points in the learning session. Thus, affective 

judgments were based on a combination of context (as given by screen capture video), facial cues, and 

memories of the learning session. Fig. 3 shows an illustration of the interface used for retrospective 

affect judgment. 



 

Fig. 3. Retrospective affect judgment interface. 

Students were prompted to provide affect at 100 randomly chosen fixed points at which the 

videos automatically paused. Judgment points corresponded with to interaction events, such as key 

presses, running code, showing hints, and other such occurrences. Some periods of idle activity 

(longer than 30 seconds) were also chosen for affect judgments. In addition to the 100 fixed points, 

students could spontaneously pause the video streams and provide an affect judgment at any time.  

Students selected their affective states at each point from a randomly ordered list comprised of 

anger, anxiety, boredom, confusion/uncertainty (henceforth abbreviated as confusion), curiosity, 

disgust, fear, frustration, flow/engagement (henceforth abbreviated as engagement), happiness, 

sadness, surprise, and the neutral state (defined as no apparent emotion). These states are largely 

derived from Pekrun’s taxonomy of academic emotions (Pekrun & Stephens, 2012) and from previous 

work on affect during learning with technology (D’Mello, 2013). Students were required to choose a 

primary affective state at each judgment point. Students could also voluntarily provide a secondary 

judgment—a co-occurring affective state they were experiencing at that point. 

It is important to mention three points pertaining to the affect judgment methodology. This 

procedure was adopted because it affords monitoring students’ affective states at multiple points, with 

minimal task interference, and without students knowing that these states are being monitored while 

they complete the learning task. Second, this retrospective affect-judgment method has been 

previously validated (Rosenberg & Ekman, 1994). Analyses comparing these offline affect judgments 

with online measures including self-reports and observations by judges have produced similar affect 

profiles (Craig, D’Mello, Witherspoon, & Graesser, 2008; Craig, Graesser, Sullins, & Gholson, 2004). 

Third, the offline affect annotations obtained via this protocol correlate with online recordings of 

facial activity and body movements in expected directions (D’Mello & Graesser, 2010). Although no 

method is without its limitations, the present method appears to be a viable approach to track affect at 

a relatively fine-grained temporal resolution. 

 

 

 



Assessing Performance and Learning 
Students could complete as many exercises as possible within the time limit for the scaffolded phase 

before being automatically directed to the fadeout phase. On average, students completed 13.3 

scaffolded exercises (SD = 4.01). The students’ cumulative score (exercises completed + hints not 

used; see above) was used as a measure of performance in the scaffolded phase. The highest possible 

score was 67, while the lowest possible score was a 0. Mean scaffolded score was 41.4 (SD = 12.6). 

Scores for the fadeout phase were calculated differently since there was only one exercise and no 

hints. Instead, two trained judges considered the number of lines of code in a student’s solution that 

corresponded semantically to lines in a ―correct‖ solution (maximum = 11). The human judges 

independently scored every solution and resolved any differences via discussion. The mean fadeout 

score was 5.95 (SD = 3.41). 

 

RESULTS AND DISCUSSION 
The results are organized with respect to the five main research questions articulated in the 

Introduction. Due to their similarity and to increase the sample size, data from the two cohorts was 

pooled together for analysis. 

 

Affect Incidence 
A total of 9,696 affect judgments were obtained from the 99 students. The analyses proceeded by 

computing proportion scores for each student’s primary affective state reports only; secondary affect 

reports are examined in the co-occurrence analyses presented next. The distribution of affect 

proportions violated assumptions of normality, so nonparametric tests are used for the analyses 

reported below. That being said, students were not reporting the same affective state every time 

because the maximum proportion score was 0.74 (one student reported neutral 74% of the time). Table 

1 presents mean proportions of affect reports overall and across the two phases of the study. 

Table 1. Mean (SD) proportion of affective reposts 

Affective State Overall Scaffolded Fadeout 

Engagement .244 (.176) .210 (.174) .329 (.266) 

Confusion .206 (.114) .207 (.107) .205 (.187) 

Frustration .120 (.088) .118 (.096) .123 (.129) 

Boredom .090 (.122) .088 (.124) .100 (.182) 

Curiosity .071 (.062) .082 (.076) .043 (.070) 

    

Anxiety .032 (.042) .018 (.030) .068 (.097) 

Happiness .023 (.031) .030 (.042) .006 (.016) 

Anger .017 (.032) .018 (.037) .013 (.035) 

Surprise .014 (.016) .016 (.020) .008 (.017) 

Disgust .008 (.019) .009 (.021) .007 (.020) 

Sadness .004 (.010) .003 (.009) .006 (.024) 

Fear .001 (.005) .001 (.007) .001 (.007) 

    

Neutral .168 (.156) .199 (.175) .089 (.163) 

 



Overall affect. The results indicated that engagement, confusion, frustration, boredom, curiosity 

(henceforth referred to as frequent affective states) occurred at least 5% of the time and collectively 

accounted for approximately 73% of all affect judgments. The other affective states (anxiety, 

happiness, anger, surprise, disgust, fear, and sadness) were infrequent and summatively accounted for 

only 10% of the affect reports. Neutral (no affect) comprised 17% of the reports. Moreover, Wilcoxon 

signed rank tests (with a Bonferroni correction of p < .0012 [.05 / [6 frequent × 7 infrequent affective 

states]] to account for multiple tests) indicated that each frequent affective state and neutral occurred 

at significantly higher rates than the less frequent affective states. This finding is in line with previous 

research suggesting that boredom, engagement, confusion, and frustration are the affective states that 

routinely occur during learning with technology while curiosity occurs frequently in some contexts 

(D’Mello, 2013). The subsequent analyses focuses on these five states and neutral. 

Scaffolded vs. Fadeout phases. We compared the affective states reported during the two phases 

of the study (scaffolded and fadeout). Six Wilcoxon signed rank tests, one for each frequent affective 

state (and neutral), revealed that there were significant (p < .001) differences across phases for 

engagement, neutral, and curiosity. Results indicated there was more neutral reported in the scaffolded 

phase (M = .199, SD = .175) compared to the fadeout phase (M = .089, SD = .163), Z = -6.06, p < 

.001. Similarly, there was more curiosity reported in the scaffolded phase (M = .082, SD = .076) 

compared to the fadeout phase (M = .043, SD = .070), Z = -5.50, p < .001. However, there was more 

engagement in the fadeout phase (M = .329, SD = .266) compared to the scaffolded phase (M = .210, 

SD = .174), Z = -4.45, p < .001. 

 

Affect Co-occurrence 
Students were required to select the affective state they felt most strongly for each judgment (the 

primary state), but could also optionally provide a secondary affective state if they were experiencing 

more than one affective state. We examined co-occurring affective states by considering their 

secondary affect judgments in tandem with the primary judgments. Students that made no secondary 

judgments (N = 23) or made fewer than 10 secondary judgments (N = 30) were excluded. There were 

a total of 1,764 secondary affect judgments provided by the remaining 46 students. Table 2 shows the 

mean proportions of primary and secondary affect states for these students sorted by primary ratings. 

Only, anxiety, boredom, confusion, curiosity, engagement, and frustration were commonly (> 5%) 

reported as secondary affective states. Thus, only these states were considered for subsequent co-

occurrence analyses. Although, neutral was occasionally reported as a secondary judgment (5.4%), it 

was not considered in co-occurrence analyses because it is conceptually similar to a primary affective 

rating only. Considering only the frequent affective states and only students who reported at least 10 

co-occurrences resulted in 1,303 pairs of ratings for subsequent analysis. 

  



Table 2. Mean (SD) proportions of affective states reported. 

Affective State Primary Secondary 

Confusion .301 (.160) .222 (.156) 

Engagement .237 (.143) .150 (.109) 

Frustration .167 (.149) .186 (.085) 

Curiosity .085 (.092) .099 (.076) 

Boredom .056 (.084) .088 (.121) 

Anxiety .050 (.067) .115 (.150) 

   

Neutral .038 (.055) .053 (.074) 

Surprise .020 (.037) .022 (.030) 

Happiness .019 (.033) .017 (.030) 

Anger .019 (.046) .023 (.037) 

Sadness .004 (.015) .006 (.023) 

Disgust .004 (.010) .014 (.041) 

Fear .001 (.004) .004 (.022) 

 

What pairs of affective states co-occurred? An association rule learning metric called Lift 

(Equation 1) (Tan, Kumar, & Srivastava, 2002) was used to compare the observed probability of two 

co-occurring affective states (numerator) with the probability of those states co-occurring due to 

chance (denominator). A Lift value higher than 1 indicates a pair of affective states co-occurred more 

frequently than expected by chance. 

      
  (       )

  ( )   ( )
 (1) 

Lift was separately calculated for each student for all pairs of affective states that were frequently 

reported as both primary and secondary affective states. Table 3 shows the average Lift across all 

students for each pair of states. Only the confusion + frustration and curiosity + engagement affective 

state pairs occurred at levels above what was expected by chance (Lift = 1). It should be noted that 

these two co-occurring pairs are theoretically consistent, while pairs such as boredom + engagement or 

boredom + confusion do not make theoretical sense. 

Table 3. Mean lift (SD) for every pair of frequently reported affective states. 

 Anxiety Boredom Confusion Curiosity Engagement Frustration 

Anxiety -      

Boredom .280 (.480) -     

Confusion .550 (.428) .600 (.474) -    

Curiosity .214 (.343) .490 (.798) .507 (.538) -   

Engagement .758 (.690) .447 (.659) .583 (.323) 1.33 (.984) -  

Frustration .495 (.488) .569 (.659) 1.14 (.593) .072 (.166) .221 (.262) - 



Does one affective state in a co-occurring pair imply the other? The dependence of one 

affective state on the other in these co-occurring pairs may provide some additional information for 

interpreting their presence. To examine the dependence we used another association rule learning 

metric called confidence (Equation 2) (Tan et al., 2002). Confidence measures the probability of an 

affective state Y occurring, given the presence of another affective state X (i.e., to what extent does X 

imply Y). 

            (   )  
  (       )

   ( )
 (2) 

The confidences of both possible orderings of the affective states in the two frequently co-

occurring pairs were compared to determine if one state in the pair was more likely to imply the other 

state than vice versa. Table 4 presents the results of comparing the confidences for the two affective 

state pairs that occur more often than chance with paired-samples t-tests. We note that the affective 

states in a co-occurrence pair did not imply each other equally. Specifically, confusion was more 

likely to imply frustration than vice versa (p < .001) and curiosity was more likely to imply 

engagement than vice versa (p < .001). 

Table 4. Comparisons of confidence for affective state pairs. Standard deviations are in parentheses. 

Primary → Secondary Mean (SD) t 

Confusion → Frustration .419 (.225) -5.71* 

Frustration → Confusion .672 (.263)  

   

Curiosity → Engagement .495 (.359) 4.53* 

Engagement → Curiosity .259 (.190)  
Note. * p < .001 

 

Affect Transitions 
We previously introduced a theoretical model of affect dynamics that specified a number of 

transitions between affective states (see Fig. 1). To test this model, we used a previously developed 

metric (Equation 3) to compute the likelihood of the occurrence of each transition relative to chance 

(D’Mello, Taylor, & Graesser, 2007). This likelihood metric computes the conditional probability of a 

particular affective state (next), given the current affective state. The probability is then normalized to 

account for the overall likelihood of the next state occurring. If the affective transition occurs as 

expected by chance, the numerator is 0 and so likelihood is as well. Thus we can discover affective 

state transitions that occurred more (L > 0) or less (L < 0) frequently than expected by chance alone. 

  (            )  
  (    |       )    (    )

     (    )
 (3) 

Transition likelihoods were computed across from time series of affect sequences (one per 

student) across both scaffolded and fadeout phases. We removed self-transitions (transitions from a 

state to the same state) before computing L scores. For example, a sequence of affective states such as 

confusion, frustration, frustration, boredom would be reduced to confusion, frustration, boredom. This 

was done because our focus is on transitions between different affective states, rather than on the 

persistence of each affective state (D’Mello & Graesser, 2012; Inventado et al., 2012). Furthermore, 

we only focus on transitions between states specified by the theoretical model (boredom, confusion, 



engagement, and frustration), which also happen to be among the most frequent affective states in the 

present data. More specifically, the likelihoods were computed with respect to all affective states 

(except for removal of self-transitions), but we only analyze transitions involving the four affective 

states specified in the theoretical model. 

We identified the transitions that occurred significantly more than chance (L = 0) by computing 

affect transition likelihoods for individual students and then comparing each likelihood to zero 

(chance) with a two-tailed one-sample t-test. Significant (p < .05) transitions are shown in Fig. 4 and 

are aligned with the theoretical model on affect dynamics. A Bonferroni correction was not applied 

because we were testing transitions involving states specified by a theoretical model (Fig. 1) rather 

than all possible transitions. 

The results (see Fig 4 and Table 5) indicated that five of the six predicted transitions, engagement 

↔ confusion, confusion ↔ frustration, and frustration → boredom, were significant and aligned with 

the theoretical model. The predicted boredom → frustration transition was not significant in the 

present data. Instead of transitioning to frustration, boredom was likely to transition to engagement 

even though the boredom → engagement transition was not predicted by the theoretical model. It is 

possible that the nature of our computerized learning environment encouraged this transition more 

than expected. This might be due to the fast-paced nature of the learning session, which included 19 

exercises and an in-depth programming task, so boredom might have quickly dissipated. Furthermore, 

students had some control over the learning environment in that they could use bottom-out hints to 

move to the next exercise instead of being forced to wallow in their boredom. 

 

 

Fig. 4. Frequently observed affective state transitions. Edge labels are mean likelihoods L of affective 

state transitions. The grey edge represents a transition that was predicted by the theoretical model but 

was not significant. The dashed edge represents a transition that was not predicted but occurred in our 

data. 

  

Equilibrium
(Engagement)

Disequilibrium
(Confusion)

Stuck
(Frustration)

Disengagement
(Boredom)

.081 -.067

.451

.226



Table 5. Details of frequently observed affective state transitions. 

Transition Mean L (SD) t 

Engagement → Confusion *.451 (.358) 12.0 

Confusion → Engagement *.226 (.289) 7.76 

Confusion → Frustration *.226 (.276) 8.16 

Frustration → Confusion *.165 (.387) 4.20 

Frustration → Boredom *.081 (.266) 3.02 

Boredom → Frustration -.067 (.343) -1.79 

   

Boredom → Engagement *.260 (.466) 5.08 

   

Boredom → Confusion .057 (.507) 1.02 

Confusion → Boredom .027 (.219) 1.22 

Engagement → Boredom .022 (.231) 0.91 

Engagement → Frustration -.012 (.296) -0.39 

Frustration → Engagement .036 (.348) 1.01 

Note: * indicates p < .05 

 

Interestingly, boredom was likely to transition to engagement (mean L = .260, p < .05) even 

though the boredom → engagement transition was not predicted by the theoretical model. It is 

possible that the nature of our computerized learning environment encouraged this transition more 

than expected. This might be due to the fast-paced nature of the learning session, which included 19 

exercises and an in-depth programming task in a short 35-minute session. Furthermore, students had 

some control over the learning environment in that they could use bottom-out hints to move to the next 

exercise instead of being forced to wallow in their boredom, unlike a previous study that tested this 

model using a learning environment (AutoTutor) that did not provide any control over the learning 

activity (D’Mello & Graesser, 2012). 

 

Transitions Between Interaction Events and Affective States 
The analyses so far have examined affective phenomena (incidence, co-occurrence, and transitions) 

independent of the events occurring in the learning environments. Additional insights can be learned 

by considering the interaction events that precede and follow affective states. Toward this end, 

affective states were interleaved with the interaction events shown in Table 6 according to timestamp 

to provide a continuous sequence of interaction events and affective states. States (either interaction or 

affect) that repeated were coalesced to a single instance as in the affect-only transition analysis (e.g., 

ShowHint, ShowHint becomes simply ShowHint). This step was especially important because 

interaction events such as Coding (triggered with every key press in the code box) occur far more 

frequently than others.  

The L metric was applied in order to compute transitions between interaction events and affective 

states. Student-level L values for each event-affect pair were compared to chance (zero) using a two-

tailed independent samples t-test. Students (N = 29) from cohort 1 could not be used in this analysis 

because they did not have interaction states logged with enough context to disambiguate activities like 



reading from hint viewing or thinking during coding. Thus, only the data from the 70 students in 

cohort 2 were used in this analysis.  

We calculated transitions separately for scaffolding vs. fadeout phases because of the different 

interaction events in the two phases. For example, there was only one exercise in the fadeout phase, 

and no correct solution was generated, so events like ShowProblem and SubmitSuccess were not 

relevant in the fadeout phase. Additionally, hints were available in the scaffolding phase but not in the 

fadeout phase. 

Table 6. Description of interaction events. 

Interaction 

Event 

Description 

Coding Editing or viewing the solution to the current exercise 

Reading Viewing the instructions and/or problem statement for the current exercise 

ShowHint Viewing a hint for the current exercise 

ShowProblem Starting a new exercise (occurs automatically after SubmitSuccess) 

SubmitError Code submitted for correctness checking and produced an error or wrong answer 

SubmitSuccess Code submitted and was correct 

TestRunError Code was run and encountered a syntax or runtime error 

TestRunSuccess Code run without syntax or runtime errors (but was not checked for correctness) 

 

Affective states were interleaved with the interaction behaviors according to timestamps, 

providing a continuous sequence of interaction events and affective states as they occurred during the 

learning session. States (either interaction or affect) that repeated were coalesced to a single instance 

as in the affect-only transition analysis (e.g., ShowHint, ShowHint becomes simply ShowHint). This 

step is especially important when considering interaction behaviors because interaction behaviors such 

as Coding (triggered with every key press in the code box) occur far more frequently than others. L 

was then computed and the resulting transitions were compared using a two-tailed independent 

samples t-test against a test value of 0 to find transitions that occurred more frequently than expected 

by chance. 

Transitions in the scaffolded phase. There were 14 total states (8 interaction events and 6 

affective states), resulting in 14 × 13 = 182 potential transitions as self-transitions such as Coding → 

Coding were not considered. Fig. 5 illustrates the significant transitions in the scaffolding phase at p < 

.000275 (.05/182 after applying a Bonferroni correction). 

 



 
Fig. 5. Significant transitions between affective states and interaction events during scaffolded 

learning. Solid lines indicate transitions including affect. Dashed lines indicate transitions not 

involving affective states. Numbers represent L for transitions. 

 

Several patterns are evident in Fig. 5. First, the directed graph of transitions formed a strongly 

connected component. That is, every affective state and interaction event can be reached from every 

other. Second, the Coding state that had a much larger degree (the number of transitions to or from 

that state) than any other in the graph. Coding was the central activity in the learning session, so it is 

not surprising that other interaction events and affective states interacted with coding. 

There were some frequent transitions between interaction events that did not include an affective 

state (dashed lines). This was likely due to the infrequency of affect sampling (every 15 seconds) 

relative to other interaction events (as frequent as 1 second) and the nature of the learning environment 

that guarantees that some of these transitions will almost always occur (e.g., SubmitSuccess always 

leads to ShowNewProblem). These transitions are not of interest here and are not discussed further. 

The more interesting transitions include affective states. They can be subdivided into transitions 



involving (a) confusion and frustration and (b) engagement, curiosity, and boredom. In particular, 

confusion and frustration were both preceded by an incorrect solution submission (SubmitError; L = 

.07, p < .000275 for confusion, L = .09, p < .000275 for frustration) and were followed by a hint 

request (ShowHint; L = .07, p < .000275 for confusion, L = .09, p < .000275 for frustration) or coding, 

which itself triggered confusion (L = .06, p < .000275) and frustration (L = .04, p < .000275). Reading 

was a precursor of confusion (L = .05, p < .000275) but not frustration (L = -.01, p > .000275). These 

transitions align with the aforementioned theoretical model of affect dynamics in that assimilation (i.e. 

Reading; L = .05, p < .000275 transitioning to confusion), generation (Coding; L = .06 to confusion, L 

= .04 to frustration, p < .000275), evaluation (SubmitError; L = .07 to confusion, L = .09 to frustration, 

p < .000275), and help-seeking (ShowHint; L = .07 from confusion, L = .09 from frustration, p < 

.000275) activities continually interact with confusion and frustration. On the other hand, curiosity (L 

= .20 to reading, L = .22 to coding, p < .000275), engagement (L = .09 from reading, L = .51 to 

coding, p < .000275), and boredom (L = .07 from reading, L = .44 to coding, p < .000275) were 

mainly associated with assimilation (Reading) and generation (Coding) activities but not with 

evaluation (SubmitError; all p > .000275) and help-seeking (ShowHint; all p > .000275) activities. 

Finally, the transitions to and from boredom may shed some light on the unexpected boredom to 

engagement transition that was contrary to the theoretically model (Fig. 4). Boredom transitioned into 

coding (L = .44, p < .05), which may have in turn led the student to become re-engaged rather than 

staying bored. 

Transitions in the fadeout phase. Fig. 6 illustrates the frequently occurring transitions in the 

fadeout phase. The ShowHint and SubmitSuccess events could not occur in the fadeout phase, so 6 

affective states and 6 interaction events yielded 132 (12 × (12 – 1)) possible transitions. A Bonferroni 

correction was applied to test the significance of the fadeout transitions resulting in a significance 

threshold of .00038 (i.e., .05/132).  

We note fewer significant transitions in the fadeout phase compared to the scaffolded phase. We 

suspect that two factors led to the sparseness of fadeout graph shown in Fig 6. First, as discussed 

above, there were two fewer interaction events, leading to fewer possible transitions. Second, the 

fadeout phase was only 10-minutes long, resulting in fewer affect observations and a smaller sample 

size for some transitions. For example, some students reported no boredom during the fadeout phase, 

leading to a reduced sample size, which provides less statistical power. This might also explain why 

two expected transitions, TestRunError → frustration (L = .03) and SubmitError → frustration (L = 

.04), were positive but not significant. Nevertheless the key pattern evident in the fadeout phase 

involves the following cycle: Coding → TestRunSuccess → SubmitError → Coding. This cycle aptly 

illustrates the exceedingly difficulty of the fadeout exercise, where students were able to run their code 

without syntax or runtime errors, but could not get the correct answer.  



 
Fig. 6. Transitions between affect and interaction events in the fadeout phase. Solid lines indicate 

transitions including affect. Dashed lines indicate transitions not involving affective states. Numbers 

represent L for transitions. 

 

Correlations Between Affect and Learning 
Our final analysis focused on understanding the relationship between affective phenomena and 

learning outcomes. Specifically, we correlated affective phenomena (incidence and transitions) 

observed in the scaffolded phase with performance during the fadeout phase. The later was taken to be 

a measure of learning because it involved unscaffolded coding of a complex novel problem that 

required application of previously learned concepts. 

A number of analytic decisions need to be clarified before presenting the results. First, we 

partialled out demographics (gender) and scholastic aptitude (self-reported SAT scores that are shown 

to correlate with actual scores - Cole & Gonyea, 2010) as these variables are known to correlate with 

performance. Second, we also partialled out the overall score and the number of hints used in the 

scaffolded phase in order to target unique variance (net of scaffolded performance) in fadeout 

performance. Third, co-occurring affective states were not considered in these correlations because co-

occurrences were derived from both scaffolded and fadeout phases combined in order to maximize the 

sample size.  

The first set of analyses (see Table 6) consisted of partial correlations between affect incidence 

during scaffolded phase (proportional occurrence of frequent affective states and neutral) and fadeout 

score (learning measure) after controlling for gender, SAT (Scholastic Aptitude Test, a standard test 

for university admission in the USA), scaffolded score, and hints used during scaffolded phase. Due to 

small sample size, we consider correlations around .100 (consistent with a small effect size; Cohen, 



1988) as suggestive trends rather than focusing on significance. Consistent with expectations, 

boredom and frustration were negatively correlated with fadeout score. Engagement, confusion, and 

neutral showed positive but weak trends. 

 

Table 6. Correlations between scaffolded affect and fadeout performance. 

Affective State Partial Correlation 

Boredom -.149 

Confusion  .087 

Curiosity -.026 

Engagement  .093 

Frustration -.218 

Neutral  .091 

  

Affect Transition  

Engagement → Confusion  .058 

Confusion → Engagement -.007 

Confusion → Frustration  .103 

Frustration → Confusion  .105 

Frustration → Boredom -.039 

Boredom → Engagement  .282 

 

 

Next we studied correlations between significant affective transitions in the scaffolded phase and 

fadeout performance. Here, proportions of individual affective states were also partialled out in 

addition to gender, SAT, and scaffolded performance and hint usage. For example, proportions of 

engagement and confusion in the scaffolded phase were partialled out for the engagement → 

confusion transition. The resulting partial correlations are in Table 6. We note that confusion → 

frustration (partial r = .103) and frustration → confusion (partial r = .105) transitions positively 

correlated with performance. These transitions are indicative of students being in the throes of 

problem solving where they experience impasses, challenges, and failure. The boredom → 

engagement transition was also positively correlated with fadeout performance, indicating that the 

ability to re-engage from boredom is positively predictive of performance.  

 

GENERAL DISCUSSION 
Computer programming is a challenging but essential skill for computer science education. 

Understanding the experience of novice students will be helpful for developing adaptive computerized 

learning environments. This paper takes a step in this direction with an emphasis on student affect. We 

performed fine-grained analyses on student affect during their first programming lesson in order to 

advance basic research and apply any insights gleaned to develop automatic interventions that respond 

to affect in addition to cognition. Our emphasis was on identifying frequent affective state and 

understanding how these states are related to each other, to events in the learning session, and to 



performance in the learning task. In this section we discuss our main findings with respect to the five 

research questions posed, and discuss implications, limitations, and future work. 

 

Main Findings 
Our first research question concerned the incidence of affective states. A recent meta-analysis found 

that engagement occurred more frequently than chance during learning with technology (D’Mello, 

2013), while confusion, frustration, boredom, curiosity, and happiness varied across studies. Affective 

states such as contempt, anger, and others were infrequent. In the current study, we found that 

engagement, confusion, frustration, boredom, and curiosity were the dominant affective states reported 

by novice programming students. This finding aligned with previous research outside of programming 

and suggests that future research should primarily focus on these states.  

Our second research question concerned co-occurring affective states. We discovered that the co-

occurrence was infrequent in general. When affect did co-occur there were two stable co-occurrence 

patterns: confusion + frustration; curiosity + engagement. These findings suggest that there might be a 

need to revise the aforementioned theoretical model to incorporate co-occurrence relationships 

between confusion and frustration and between curiosity and engagement. 

Our third research question concerned transitions between affective states. We tested a theoretical 

model of affective dynamics during complex learning (D’Mello & Graesser, 2012). The model focuses 

on the role of impasses in triggering confusion and other affective states. Impasses commonly arise in 

computer programming, particularly when novices encounter unfamiliar concepts, syntax errors, and 

unexpected output. The model posits that unresolved impasses can lead to frustration, which can and 

eventually lead to boredom. The observed affect transitions largely aligned with this theoretical model, 

although there were two exceptions (i.e., no evidence for the expected boredom → frustration 

transition and evidence for the unexpected boredom → engagement transition). This suggests that our 

theoretical model might need to be revised to incorporate a possible re-engagement link from boredom 

in lieu of the boredom to frustration link. Fig. 7 presents an updated theoretical model incorporating 

the new affect transition as well as co-occurrences. 

 



 
Fig. 7. Updated model of affect transitions and co-occurrence based on findings. Dashed line 

represents new transition between affective states. Arcs represent co-occurring affective states. 

 

Our fourth research question focused on contextualizing the affective transition by incorporating 

interaction events into the analysis. We expected to find positive affective states such as engagement 

and curiosity following successful interactions such as TestRunSuccess, and vice versa for negative 

affective states. We found that all key affective states were related to knowledge assimilation (reading) 

and construction (coding) activities but only the confusion and frustration accompanied failure 

(Submit Error) and subsequent help seeking behaviors (ShowHint). In general, this analysis led to a 

more nuanced understanding into antecedent-consequent relationships between affective states, 

systems actions, and student actions. 

Our fifth research question concerned correlations between affect and learning. We expected 

alignment with previous computer programming education research, where negative affective states 

including boredom, confusion, and frustration negatively correlated with performance while 

engagement positively correlated with performance (Rodrigo, Baker, Jadud, et al., 2009; Rodrigo & 

Baker, 2009). Our results confirmed that boredom and frustration during the scaffolded learning phase 

negatively correlated with performance on the fadeout phase. As expected engagement and boredom-

engagement transitions during scaffolding was also positively correlated with learning (performance 

on the fadeout phase). Importantly, confusion and reciprocal confusion-frustration transitions during 

scaffolding positively correlated with fadeout performance. This is consistent with impasse-driven 

theories of learning, which suggest that confusion provides an opportunity to learn and challenging 

impasse resolution activities that accompany confusion (and can even lead to frustration) can be 

beneficial to learning (D’Mello & Graesser, 2014a, 2014b; D’Mello, Lehman, Pekrun, & Graesser, 

2014; VanLehn, Siler, Murray, Yamauchi, & Baggett, 2003). 

Equilibrium
(Engagement)

Disequilibrium
(Confusion)

Stuck
(Frustration)

Disengagement
(Boredom)

Lack of Control/
Forced Effort

Persistent 
Failure/

Hopelessness

Impasse 
Detected

Impasse 
Resolved

Novelty
(Curiosity)

Engagement with 
New Material



 

Implications for Intelligent Learning Environments 
Our findings can inform the development of more effective education technologies for computer 

programming. One way to increase the effectiveness of these technologies is to design them to be 

responsive to student affect (D’Mello, Blanchard, et al., 2014; D’Mello & Graesser, 2015). Affect-

aware learning technologies require affect detection in order to determine what states to track and 

when to intervene. Our findings on affective incidence suggest that these technologies should focus on 

engagement, confusion, frustration, boredom, and curiosity. Three of these four states (confusion, 

frustration, and boredom) and experiences as being negatively valenced, so it might be particularly 

important to focus on those states. 

Our findings on co-occurring affective states can be used to inform affect detectors about which 

states are likely to be confused together (i.e., confusion-frustration; curiosity-engagement). In 

particular, might the somewhat lower accuracies (see Calvo & D’Mello, [2010]; S. D’Mello & Kory 

[2012] for reviews) of state-of-the-art affect detection systems be attributed to co-occurring affect? 

Should these affect detectors focus on detecting affective blends? If so, what is the appropriate 

response? Should an affect-aware learning technology respond to confusion, frustration, or both, if 

these states co-occur?  

The results on transitions between affective states and interaction events are important because 

they provide insight into the events that precede and follow affective states. Affect-aware learning 

technologies for computer programming may be able to leverage this information in many ways. For 

example, interaction events can be used to develop log-file based affect detectors that can complement 

face-based affect detection (Bosch, Chen, Baker, Shute, & D’Mello, in press). They can be used to 

design affect-aware interventions, such as recommending a hint when excessive frustration is detected. 

Additionally, knowledge of affective states and events may lead to better curriculum development for 

computer programming education. For example, events such as submission errors (which correlate 

with frustration) could be monitored for different programming exercises in order to determine which 

would be likely to lead to excessive frustration. 

Implications of the findings for other domains are less clear. On one hand, the results frequently 

aligned with findings from other domains involving complex problem solving (learning computer 

literacy with an ITS). The results were also instrumental in advancing theory on affect and learning 

and theories are intended to be generalizable. On the other hand, the results might not generalize to 

other contexts, such as reading a computer programming text because one might not observe the same 

levels of confusion and frustration in a text comprehension task. In essence, further research is needed 

to test generalizability more explicitly. 

 

Limitations and Future Work 
There are some limitations with the present study that need to be addressed in future work. One set of 

limitations stems from how the data were collected. First, self-reports are biased by the honesty of the 

students, so future studies should consider alternate methods in addition to or in lieu of self-reports. 

Possible methods include online observations (Ocumpaugh, Baker, & Rodrigo, 2015), video coding by 

trained judges (Graesser et al., 2006), or sensor-based affect measurement (Calvo & D’Mello, 2010). 

Second, the sample size was small, which limited the statistical power required to detect smaller 

effects. Third, the students were sampled from a single university, so the results might not generalize 

to the larger population of novice computer programmers. Fourth, data collected in a lab study may 

not generalize to more realistic educational scenarios. Future work might benefit from data collection 



in an ecologically valid learning experience (e.g., when students complete their own programming 

homework). 

An additional limitation of this study is the potential for the results being specific to the learning 

environment. In particular, the incidence of curiosity and engagement varies across scaffolded and 

fadeout phases. This finding can be attributed to key differences in the activities and affordances 

across these phases. It also suggests that differences are to be expected when different learning 

environments are considered because these will likely involve different activity types and interface 

affordances (e.g., access to hints, availability of feedback). Therefore, future work should include 

plausible variations in learning environments and instruction formats to further explore the potential 

relationships between those factors and student affect. 

Future work should also consider more nuanced relations between affect, interaction events, and 

learning than the partial correlations reported in this paper. For example, moderation analysis might be 

used to uncover possible moderators (e.g., individual differences such as gender or SAT score) of the 

affect-learning relationship. Similarly, separately examining high and low performing students might 

yield different relationships between affect and learning. Students might also be grouped based on 

patterns in their affect over time and then analyzed separately. For example, as seen in Table 1, there 

was a tendency for students to report more engagement in the fadeout phase. However, this effect 

might not be observed in all students. Finally, a fine-grained exercise-level analysis might also yield 

insights about what materials or concepts are more difficult to grasp than others. 

 

Concluding Remarks 
A working knowledge of computer programming might soon be as critical of a skill as reading or 

writing in the digital age. But learning computer programming is an intellectually challenging and 

difficult endeavor – factors that yield to a complex interplay between affect and cognition. The present 

research focused on developing a better understanding of the affective experience of novices who are 

attempting to learn computer programming for the first time. The next step is to leverage the insights 

gleaned in this research to develop more effective next-generation learning technologies for computer 

programming education. 
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