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Automatic Detection of Mind Wandering from 
Video in the Lab and in the Classroom 

Nigel Bosch and Sidney K. D’Mello 

Abstract—We report two studies that used facial features to automatically detect mind wandering, a ubiquitous phenomenon 
whereby attention drifts from the current task to unrelated thoughts. In a laboratory study, university students (N = 152) read a 
scientific text, whereas in a classroom study high school students (N = 135) learned biology from an intelligent tutoring system. 
Mind wandering was measured using validated self-report methods. In the lab, we recorded face videos and analyzed these at 
six levels of granularity: (1) upper-body movement; (2) head pose; (3) facial textures; (4) facial action units (AUs); (5) co-
occurring AUs; and (6) temporal dynamics of AUs. Due to privacy constraints, videos were not recorded in the classroom. 
Instead, we extracted head pose, AUs, and AU co-occurrences in real-time. Machine learning models, consisting of support 
vector machines (SVM) and deep neural networks, achieved F1 scores of .478 and .414 (25.4% and 20.9% above-chance 
improvements, both with SVMs) for detecting mind wandering in the lab and classroom, respectively. The lab-based detectors 
achieved 8.4% improvement over the previous state-of-the-art; no comparison is available for classroom detectors. We discuss 
how the detectors can integrate into intelligent interfaces to increase engagement and learning by responding to wandering 
minds. 

Index Terms—Affective computing, computer vision, educational technology, human–computer interaction 

——————————   u   —————————— 

1 INTRODUCTION
ost of us can recall a time when we realized our at-
tention had drifted away from thinking about what 

we were trying to do towards something completely unre-
lated. For example, we might be reading a book or news 
article and suddenly realize that we have no idea what we 
were reading. Or we might find ourselves attending a lec-
ture but have no recollection of what the speaker just said. 
Such lapses in attention, known as mind wandering [1], are 
ubiquitous experiences. For example, one large-scale study 
that used experience sampling to track mind wandering of 
5,000 people in 86 countries found that it occurred 46.9% of 
the time during day-to-day life [2]. Mind wandering is not 
merely incidental; recent meta-analyses have confirmed 
that it is negatively related to performance across a variety 
of tasks [3], [4]. Here, our goal is to develop automated 
methods to detect mind wandering to support a variety of 
applications aimed at improving task performance. 

1.1 What is Mind Wandering? 
At its core, mind wandering is an attentional shift away 
from the processing of task-related information to the pro-
cessing of task-irrelevant thoughts or ideas [1], [5]–[12]. By 
task-related we mean thoughts that support the primary 
task objective. For example, during reading, inferences or 
memory retrievals that go beyond the textual content 
would not be considered mind wandering as long as they 
are related to the content, whereas reflecting on how bor-
ing the text is would. These shifts in the locus of attention 
usually occur without intention or even awareness [1], [9] 

but people can also intentionally go off task [13]. Mind 
wandering is related to, but not the same as, boredom [14] 
and aligns with the attentional subcomponent of the cog-
nitive component of tripartite (affective, cognitive, and be-
havioral [15]) models of engagement [16]. 

There are multiple hypotheses regarding the cognitive 
mechanisms underlying mind wandering (reviewed in 
[17]). According to the executive-resource hypothesis [10], 
when a task does not sufficiently consume all of one’s at-
tentional resources, unused resources are directed to task-
unrelated thoughts, leading the mind to wander. In con-
trast, the control-failure hypothesis posits that mind wander-
ing occurs when executive control fails to suppress task-
unrelated thoughts [11], [18]. Despite these differences, the 
basic idea is that both task-related and task-unrelated 
thoughts compete for consciousness, a limited resource, 
and mind wandering occurs when task-unrelated thoughts 
win the competition of consciousness [19].  

There are many antecedents of mind wandering (e.g., 
current concerns and prospective thoughts, aspects of the 
task stimulus, environmental distractions, introspection, 
semantic and autobiographical memory retrievals; see [20], 
[21]). It is also more likely to occur when a person is in a 
negative mood [22], [23] and among those diagnosed with 
dysphoria (depression) [24] or attention-deficit/hyperac-
tivity disorder [25]. Importantly, in semantically-rich tasks 
contexts, like reading, the stimulus itself is often a source 
of mind wandering due to the automaticity of memory as-
sociations (see [21]). 

1.2 Current Study 
We explore video-based detection of mind wandering as a 
step towards intelligent technologies that sense and re-
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spond to users’ mental states. We focus on mind wander-
ing detection during learning with technology, due its high 
incidence and negative consequences in this context. In 
particular, mind wandering is frequent during routine 
learning activities like computerized reading and video 
lecture viewing [10], [26], occurring between 20% to 40% of 
the time [4]. And although mind wandering does have 
some benefits [27], such as the association between trait 
day dreaming and creative problem solving [28], mind 
wandering during learning is consistently negatively re-
lated to learning outcomes (e.g., [5], [26] and recent meta-
analysis in [4]).  

There is considerable potential for intelligent learning 
environments (e.g., intelligent tutoring systems, e-text-
books, massive open online courses or MOOCs) to im-
prove engagement and learning by automatically detect-
ing and adapting the learning environment when minds 
wander [29]–[32]. For example, the technology might ask 
the student to take a short quiz when mind wandering is 
detected [33], encourage re-reading [34], change topics, or 
even suggest taking a break. Alternatively, instructors and 
instructional designers might be given feedback about in-
cidence of students’ mind wandering to identify course 
materials that could be made more engaging. Such strate-
gies necessitate methods for automatic mind wandering 
detection, which is the focus of this paper. 

1.3. Related Work 
There has been considerable work on automated engage-
ment detection in general [35]–[45] including research in 
the context of learning environments (see recent review 
[16]). However, these previous studies are different from 
mind wandering detection in that they either conceptual-
ize engagement as a holistic construct (e.g., [35], [43], [45]), 
or focus on different aspects of engagement, such as behav-
ioral engagement (e.g., going off-task) [38], [40] or affective 
states such as interest [46], curiosity [47], or boredom [48], 
[49]. In contrast, mind wandering is most closely related to 
attentional disengagement, which is related to boredom 
[14]. Further, whereas most previous work focuses on overt 
appearances of disengagement [35], [37], mind wandering 
reflects a covert state of inattention [31], making it particu-
larly challenging to detect.  

To illustrate, the left column in Fig. 1 depicts examples 
of facial expressions preceding mind wandering reports 
(i.e., when people catch themselves mind wandering – see 
Section 2.1) whereas the right columns depicts cases where 
people did not report mind wandering. The person on the 
bottom-left has her eyes closed and subsequently reported 
mind wandering, whereas the person on the bottom-right 
appears to be bored or uninterested due to a prolonged 
yawn but did not report mind wandering. Consider the top 
row – here the people may appear to be engaged in both 
cases (subjectively speaking), but reported mind wander-
ing for only the example on the left. Similarly, the middle 
row depicts two people who appear to be intently focused 
with eyes directed toward the screen. Here, the person on 
the left reported mind wandering while the one on the 
right did not. As these examples illustrate, facial indicators 
of mind wandering are nonobvious (to the extent that we 

can rely on self-reports as discussed in Section 2.1). Thus, 
research has mainly focused on alternate modalities for 
mind wandering detection, as reviewed below. 

 
Fig. 1. Examples of facial expressions for positive (left column) and 
negative mind wandering (right column) cases. 

Before proceeding, it is useful to point out that in all the 
studies reviewed below, and indeed in almost all of re-
search in this area, mind wandering is measured via self-
reports, either using thought probes (e.g., “were you zoned 
out [or attending] at the time of the probe?”) or relying on 
self-caught instances of mind wandering (e.g., “press the Z 
key every time you catch yourself zoning out”) – see Sec-
tion 2.1 for a methodological discussion. 

Mind Wandering Detection from Eye Gaze. In a pio-
neering reading study, Smilek et al. [50] found that partici-
pants blinked more frequently and fixated (focused their 
eyes on one spot) less frequently while mind wandering 
compared to normal reading. Thus, tracking the location of 
eye gaze, ostensibly in tandem with the words being read, 
should be diagnostic of mind wandering [51]. Conse-
quently, machine learning methods applied to eye gaze 
data have proven effective for automatic mind wandering 
detection, achieving above-chance accuracies ranging from 
28% to 45% [51]–[55] when validated in a person-inde-
pendent manner. Unfortunately, these studies were con-
ducted in laboratory contexts and utilized high-quality 
gaze trackers that cost tens of thousands of dollars, raising 
substantial scalability concerns. 

Hutt et al. [56] addressed this problem by using con-
sumer-off-the-shelf (COTS) gaze tracking in real-world 
classrooms, achieving 46% above-chance improvements. 
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However, they used a $99 USD1 eye tracker called the Eye-
Tribe which is no longer available after the company was 
acquired. A similarly priced gaze tracker, the Tobii 4C, re-
quires an additional license ($2000 USD when we last en-
quired) for research usage. Furthermore, most schools 
have very limited budgets, and even purchasing such rela-
tively inexpensive hardware is untenable at a large scale. 

Mind Wandering Detection from Physiology. Physio-
logical features (e.g., heart rate, skin conductance) have 
also been the basis of some mind wandering detection re-
search [57], [58]. Blanchard et al. [57] utilized the Affectiva 
Q wrist-mounted sensor to measure physiology during 
reading, achieving a 22% above-chance mind wandering 
detection accuracy. This and similar sensors are still pro-
hibitively expensive (about $1,700 USD2) for classroom use. 
Current COTS alternatives (e.g., Fitbit HR, $100 USD3) typ-
ically do not include the physiological channels utilized in 
costly research-grade physiological devices (e.g., Empat-
ica, Shimmer), do not provide the same fine-grained sam-
pling rates, and might still be prohibitively expensive for 
classroom use at scale. 

An alternative is to obtain physiological signals indi-
rectly from video. In particular, in a recent study [58], par-
ticipants watched online lectures while placing their fin-
gers over the camera lens of a smart phone with the flash 
on. Heart rate was measured from changes in color due to 
blood pumping through the finger (photoplethysmogra-
phy). They achieved a 22% above-chance accuracy for 
mind wandering detection via heart rate extracted from 
smart phone cameras. Though innovative, it is not clear 
how well their method works beyond mobile applications, 
or whether it would be effective outside a laboratory set-
ting when finger placement is harder to control, and bat-
tery life is of central concern. 

Mind Wandering Detection from Reading and Textual 
Features. Some researchers have adopted approaches to 
mind wandering detection based on reading activities 
(keypresses) alone. In one of the earliest studies, partici-
pants read a text one word at a time [59] and were classified 
as having mind wandered when they spent too little or too 
much time on difficult sections of the text, as determined 
by word length, number of syllables, and word familiarity. 
Despite achieving a 45% above-chance accuracy, this 
method is limited by the threshold-based approach and the 
unnaturalness of word-by-word reading. 

Mills and D’Mello [60] addressed these limitations by 
using machine learning to detect mind wandering from 
reading times and textual features (e.g., number of words, 
text difficulty) in more naturalistic reading paradigms. 
They achieved a 20.7% above-chance accuracy with per-
son-independent validation. Though promising in terms of 
scalability, an obvious limitation is that the detector cannot 
be applied to non-reading contexts.  

Mind Wandering Detection from Facial Features. Most 
similar to the present research are two of our own studies 
on mind wandering detection from video in the lab. In the 
first study [61], we recorded videos of participants’ faces 
as they watched a narrative film for approximately 35  

1 Price as of May 2016 
2 Empatica E4 REV2 price as of March 2018 

minutes. We extracted facial action units (AUs) with 
FACET, a commercial version of the Computer Expression 
Recognition Toolbox (CERT) [62], and body movement us-
ing a motion tracking algorithm [63]. We trained a variety 
of classifiers including support vector machines, logistic 
regression, naïve Bayes, and others to detect mind wander-
ing from the video features. The best-performing model 
achieved a person-independent mind wandering 𝐹" score 
of .390 – a 13% above-chance improvement. 

In a subsequent study [64], we analyzed the generaliza-
bility of this method across task contexts. One set of partic-
ipants watched a narrative film, while a separate set of par-
ticipants read a scientific text. The model trained on narra-
tive film data achieved a 25% above-chance accuracy and 
generalized to the scientific text reading task (21% above-
chance accuracy). The model trained on scientific text data 
also achieved a 25% above-chance accuracy, and after tun-
ing the mind wandering prediction threshold, also gener-
alized to the narrative film watching task (22% above-
chance accuracy). 

These studies study demonstrated the potential for 
video-based mind wandering detection and their general-
izability, but used basic facial features and achieved only 
low to moderate accuracy, which we improve on here. 

1.4 Novelty of Current Study 
Researchers have demonstrated the feasibility of automatic 
mind wandering detection, but with some drawbacks (see 
Section 1.3). To address these limitations, we propose mind 
wandering detection based on facial and movement fea-
tures derived from video. This offers several advantages 
over previous work. First, cameras are almost universally 
present on laptops and mobile computing devices used in 
schools, or can be purchased quite cheaply (for under $10 
USD4). Second, cameras require little to no expertise to set 
up and require no calibration compared to gaze trackers 
and some physiological sensors. Third, facial features are 
not strictly dependent on the task at hand and should gen-
eralize across domains. In contrast, gaze features are more 
dependent on the stimulus (e.g., fixation durations, scan 
paths, etc. are different for reading compared to scene 
viewing [65]), and are less likely to generalize. 

We also extend previous work [61], [64] on detecting 
mind wandering from video in the following five ways: 

Feature Engineering. Whereas previous work exclu-
sively relied on basic descriptives (mean, standard devia-
tion, max) of AUs and body movement, we propose a 
novel combination of features extracted at six levels of 
complexity: (1) gross body movement; (2) head pose; (3) 
facial texture patches; (4) individual AUs; (5) co-occurring 
AU pairs; and (6) temporal dynamics of AUs. We hypoth-
esize that such a multifaceted analysis is needed since 
mind wandering is a visually subtle phenomenon (as illus-
trated in Fig. 1) and its overt behavioral cues are unknown. 

Comparison and Fusion of Feature Types. We compare 
individual models trained using different feature to iden-
tify which feature sets capture facial cues that communi-

3 Price as of March 2018 
4 JESWELL USB2 webcam price as of March 2018 
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cate mind wandering. Furthermore, we show that a com-
bination of these different feature sets improves detection 
accuracy over previous approaches that relied on feature 
sets (1-2) and (4) from above. 

Classifiers. We also improve on previous work by con-
sidering more complex classification algorithms, including 
SVMs with a range of hyperparameters, and deep neural 
networks with varying structures. 

Feature Selection. We introduce a novel feature selec-
tion method for datasets with a large number of dimen-
sions and non-linear feature–label relationships. Such da-
tasets are commonly encountered in affective computing 
applications, where there may be many input features but 
few instances – thus necessitating feature selection. 

Classroom Context. Finally, we also explore video-
based mind wandering detection in an authentic classroom 
environment, where participants interacted with a com-
puterized biology tutor. The classroom environment is es-
pecially challenging due to privacy concerns (no videos 
could be recorded), thereby incurring the added constraint 
of real-time feature extraction. Additionally, all processing 
had to be performed on budget hardware already available 
in the school classroom, which required a simplification of 
the feature set. Our results indicate that our approach was 
successful despite these challenging constraints. 

2 STUDY 1: SELF-CAUGHT MIND WANDERING 
DETECTION DURING READING IN THE LAB 

We reanalyzed video data previously reported in [64] to 
enable comparisons of the proposed approach with previ-
ous work. The data itself was collected as part of a larger 
study – see [66] for full details. 

2.1 Data Collection 
Participants (152 university students) read the introduc-
tory chapter of Soap Bubbles: Their Colors and the Forces that 
Mould Them by C.V. Boys [67]. The text is about the physical 
behaviors of soap bubbles, how surface tension enables 
bubble formation, and how chemical composition affects 
bubble formation. We used this text because it is likely to 
be unfamiliar to most participants but is written to be un-
derstandable without prior knowledge of the topic. 

The text was presented on 57 screens (called pages) with 
about 114 words per page. Participants used the right ar-
row key to advance to the next page. Videos of partici-
pants’ faces were recorded with a Logitech C270 webcam 
($20 USD5) at 12.5 frames per second. Of the 152 partici-
pants, 10 were removed due to video recording errors and 
three were removed because they did not sign a data re-
lease agreement, leaving 139 participants in the dataset. 

Participants used pre-designated keys to report when-
ever they caught themselves zoning out – a colloquial term 
for mind wandering. These served as “ground-truth” la-
bels for supervised machine learning. Zoning out was de-
fined as: At some points during reading, you may realize that 
you have no idea what you just read. Not only were you not 
thinking about what you are actually reading, you were thinking 
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about something else altogether. This is called “zoning out”. Par-
ticipants were further instructed to distinguish between 
two types of zone outs – task-related interferences vs. task-
unrelated thoughts – as part of a larger study. However, 
both these types of zone outs were grouped because they 
are related, and multiclass detection was infeasible given 
the dataset size.  

We used the self-caught method here vs. the probe-
caught method (Study 2) because we were interested in 
tracking mind wandering without task disruptions and 
were focused on mind wandering with meta-awareness [1] 
(i.e., people are consciously aware that they are mind wan-
dering).  

It is important to emphasize a few points about this 
method to track mind wandering. First, the method relies 
on self-reports because mind wandering is an inherently 
internal phenomenon, which requires conscious aware-
ness for reporting [20]. At this time, there are no reliable 
neurophysiological or behavioral markers that can accu-
rately substitute for the self-report methodology [20]. Sec-
ond, self-reports of mind wandering have been objectively 
linked to a host of theoretically-grounded behavioral and 
physiological signals [6], [8], [57]–[60], [68]–[78], providing 
convergent validity for this approach. Self-reports also 
consistently correlate with objective outcome measures, 
which provides evidence for their predictive validity [3]. 
Finally, our reliance on self-reports to measure mind wan-
dering is consistent with the state of the art in the psycho-
logical and neuroscience literatures [20]. 

2.2 Extracting Video Clips 
There were a total of 2,577 mind wandering reports across 
7,923 pages of text (about one report every 3 pages). On 
average, each participant provided 18.5 reports (SD = 13.5) 
As shown in Fig. 2, the number of reports was quite varia-
ble across participants, which makes person-independent 
mind wandering detection quite challenging.  

Participants reported mind wandering an average of 16 
seconds into the page. Accordingly, we extracted video 
clips in 10s windows leading up to each mind wandering 
report; these corresponded to positive instances of mind 
wandering. We used 10s as a compromise between having 
longer, potentially more informative clips, while maximiz-
ing the number of clips that could be extracted. Of the 2,577 
clips, 1,339 clips overlapped across pages and were dis-
carded because of the concern that the action of leaning for-
ward and looking at the keyboard to find the page-turn key 
might have influenced facial feature tracking.  

We also added a 4s buffer before the mind wandering 
report to ensure that clips did not capture the movements 
associated with the self-report key press. We chose a 4s 
buffer length based on a pilot study where four raters 
made judgments on whether the keypress was visible in 
540 randomly-selected video clips with buffer lengths 
ranging from 0-6s. Raters were instructed to report “if there 
is apparent hand or eye movement at the end of the clip as 
participants look and reach for the MW key.” Two raters 
initially coded 250 clips with 0s-4s buffers. They reported 
apparent hand movements in 73% of clips with a 0s buffer 
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(eye movements in 93%), down to 4% hand movements 
and 5% eye movements for 4s clips. We increased the 
buffer lengths to 5s and 6s, and obtained ratings from the 
same raters and two new raters, finding no further de-
crease in apparent hand or eye movements with longer 
buffers. Thus, we proceeded with a 4s buffer length. 

A further 207 clips were removed because the face could 
not be automatically detected for at least 1 second of the 
clip, which was our minimum threshold for usable data. A 
real-time application of our methods could also discard 
such clips, so removing them does not harm validity. In to-
tal, there were thus 1,031 usable mind wandering clips of 
which 64% were task-unrelated mind wandering reports. 
These served as positive instances for the classifiers, 

Negative instances were extracted from periods of time 
between mind wandering reports (see Fig. 3). We divided 
each video into 14s instances (10s window of data + 4s off-
set to avoid including page turn movements) and removed 
any instances that coincided with page turn events. We 
also removed any negative mind wandering instances that 
fell within a 30s period before each mind wandering re-
port, because the participant might have been mind wan-
dering but had not yet realized or reported it. The duration 
of mind wandering is an open question [20], but is hypoth-
esized to not exceed 20s (see [79]); the 30s buffer was taken 
out of an abundance of caution. 

We randomly selected 2,406 negative mind wandering 
instances from the remaining instances to obtain a 30% 
mind wandering rate, which is consistent with previous re-
search on the incidence of mind wandering during learn-
ing, especially during reading (see meta-analysis in [4]). 
The dataset comprised a total of 3,437 instances (1,031 pos-
itive mind wandering). 

 

 
Fig. 2. Histogram of the number of self-caught mind wandering reports 
made by participants. 

 
Fig. 3. Instance extraction scheme illustrating how we selected posi-
tive and negative instances of mind wandering. We eliminated in-
stances that overlapped with page turn events, because body and 
head movements due to page turn actions are tangential to mind wan-
dering in general. We selected negative instances of mind wandering 
that were at least 30 seconds before mind wandering self-reports. 

2.3 Feature Extraction 
We extracted features at five levels of granularity, ranging 
from a simple measure of upper-body motion to complex 
patterns in AU temporal dynamics. 

Upper-body Movement Features. We used a validated 
motion silhouetting method [63], where each video frame 
is compared to a continuously-updated background image 
formed by the weighted average of the previous four 
frames. Gross body movement was estimated as the pro-
portion of pixels that changed compared to the back-
ground motion silhouette (Fig. 4A). This movement esti-
mation method also serves as an accurate proxy for pres-
sure-sensitive posture sensors [63]. We extracted the fol-
lowing statistical features from the body movement time 
series in each 10s clip: mean, median, standard deviation, 
minimum, maximum, and range. 

Head Pose Features. We utilized head pose features as 
a proxy for gaze direction, motivated by the link between 
eye gaze and mind wandering [79], [80]. Specifically, we 
extracted head yaw (looking to the side), pitch (looking up 
or down), and roll (tilting to the side; Fig. 4B), summariz-
ing each with mean, median, standard deviation, mini-
mum, maximum, and range across the 10s clips – yielding 
18 head pose features in total. 

Local Binary Pattern (LBP) Texture Features. We ex-
tracted texture patch features with local binary patterns 
[81], which have been shown to be effective for engage-
ment classification [35], [37]. LBP features capture texture 
patterns, which are indicative of changes in facial expres-
sions changes. For example, texture patches near the 
mouth change during smiles as wrinkles appear on the 
skin, lips widen, and teeth become visible. 

LBP features were computed following the uniform, ro-
tation invariant method [81]. Features were computed for 
individual pixels in a patch (see below) by measuring 
brightness in a ring around that pixel. Pixels brighter than 
the central pixel were coded as 1 while dimmer pixels were 
coded as 0, producing an eight-digit binary pattern for the 
pixel (e.g., 00001111 – see Fig. 4C). The method then counts 
the frequency of the various patterns in the patch. Uniform 
LBP features are those with one consecutive area of bright-
ness (e.g., 01110000 but not 01010100). All non-uniform 
patterns were grouped together before counting pattern 
frequencies. Rotation-invariant LBP features are those that 
were equivalent after bit-shifting so that orientation of the 
pattern did not matter (e.g., 1110000 and 00011100 were 
counted together, since both have three consecutive bright 
pixels). All rotations of the same pattern were grouped to 
yield 10 patterns in all: a non-uniform pattern, a sequence 
of all 0’s, and 8 possible sequences of consecutive 1’s. 

We extracted LBP features from fifteen 16 × 16 pixel 
patches from both eyes and the center of the mouth, auto-
matically located with OpenFace [82]. We selected eye re-
gions to capture events such as blinking and general eye 
movement patterns (e.g., horizontal saccades should be in-
dicative of normal reading), which have both been linked 
to mind wandering [50], [80]. The mouth regions were cho-
sen to capture movements such as yawning that would re-
sult in texture changes (e.g., as the teeth became visible).  

We extracted ten LBP features from each patch in each 
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frame, and aggregated over frames in each clip with mini-
mum, maximum, mean, median, range, and standard de-
viation functionals to obtain a total of 900 LBP features (15 
patches × 10 features/patch × 6 functionals/feature). 

Basic Action Unit (AU) Features. Facial action units 
(AUs) represent specific muscle activations; the AUs we 
considered were AU1 (inner brow raiser), AU2 (outer brow 
raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU6 
(cheek raiser), AU7 (lid tightener), AU9 (nose wrinkler), 
AU10 (upper lip raiser), AU12 (lip corner puller), AU14 
(dimpler), AU15 (lip corner depressor), AU17 (chin raiser), 
AU18 (lip puckerer), AU20 (lip stretcher), AU23 (lip tight-
ener), AU24 (lip pressor), AU25 (lips part), AU26 (jaw 
drop), and AU28 (lip suck). We detected AUs with Emo-
tientSDK, an updated commercial version of the Computer 
Expression Recognition Toolbox (CERT) [62]. CERT has 
been previously validated against human annotations of 
facial expressions on thousands of video frames [36], [83]. 
It recognizes AUs by extracting the responses of 72 two-
dimensional Gabor filters and uses support vector ma-
chines (SVMs) for AU classification. AU intensity is esti-
mated by measuring the distance from the decision bound-
ary of the SVM [84]. Fig. 4B illustrates time series of exam-
ple AUs. We extracted the mean, median, standard devia-
tion, minimum, maximum, and range across the 10s clips, 
resulting in 114 AU features (6 functionals × 19 AUs). 

Co-occurring AU Features. We captured co-occurrence 
relationships between AUs to model more complex expres-
sions. For example, co-occurring muscle movements near 
both the mouth and eyes when smiling can indicate genu-
ine smiles compared to smiles involving the mouth only 

[85]. We estimated AU co-occurrences based on the simi-
larity between their distributions within each clip using 
Jensen-Shannon divergence (JSD) [86], which is an exten-
sion of Kullback-Leibler divergence (KLD) [87]. KLD 
(Equation 1) measures the information lost by using a prior 
distribution Q to approximate a posterior distribution P, 
given probability density functions p and q for P and Q re-
spectively. JSD (Equation 2) is a modification of KLD that 
is symmetric, which allows measurement of symmetric re-
lationships between AUs (e.g., co-occurrence of eyebrow + 
mouth movements is equivalent to mouth + eyebrow 
movements). JSD was chosen over other measures (e.g., 
correlation-based measures) because it captures non-linear 
relationships [86]. Furthermore, JSD measures expressions 
that consist of multiple AUs activating in the same clip, 
even if they do not activate at exactly the same moment. 
For example, JSD features can measure a mouth movement 
that is accompanied by an eyebrow movement within the 
same clip. We computed a total of (19 × [19 – 1] / 2) = 
171 JSD features for each AU pair. 

 
𝐾𝐿𝐷(𝑃||𝑄) = ∫ 𝑝(𝑥)log2(3)

4(3)
d𝑥6

76   (1) 

𝐽𝑆𝐷(𝑃||𝑄) = "
:
𝐾𝐿𝐷(𝑃|| "

:
[𝑃 + 𝑄]) + "

:
𝐾𝐿𝐷(𝑄|| "

:
[𝑃 + 𝑄])  (2) 

 
AU Temporal Dynamics Features. We captured 

changes in AUs over time to model facial expression dy-
namics that might be obscured by mean aggregation as 
with the basic AU features. We applied one-dimensional 
Gabor filters to AU time series using an existing method 
[88]. Gabor filters capture responses in specific frequencies 

 
Fig. 4. Feature extraction examples illustrating: A) upper-body motion, B) estimates of action units (AUs) and head pose provided by 
EmotientSDK, C) local binary patterns extracted from key areas of the face, D) Jensen-Shannon divergence measuring similarity between 
pairs of AU estimates, and E) counting positive and negative responses of a Gabor filter convolved across an AU estimate. 
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and can thus distinguish between static facial expressions 
(such as an open mouth) and dynamic facial expressions 
(such as a yawn) if tuned to the right frequency [88].  

Gabor filters consist of a cosine wave multiplied by a 
Gaussian envelope. From a filter wavelength λ and sample 
frequency f (i.e., frames per second), a frequency multiplier 
k scales sample indices to the appropriate domain (Equa-
tion 3). Then a filter G is defined with the same width w as 
the number of frames in the video (Equation 4). 
 

𝑘 = :?
@A

         (3) 

𝐺[𝑡] = cosFG𝑡 − I
:
J 𝑘K 𝑒7

M
NGO7

P
QJ
Q
RQ    (4) 

Filters were convolved across the frame-by-frame AU 
time series with missing values (failed face tracking) line-
arly interpolated. Filter responses indicate changes in AUs 
that occurred over a period of time similar to the period of 
the cosine wave. Following the method of [88], we squared 
the filter response to emphasize larger values and counted 
regions of both positive and negative responses. We ap-
plied a bank of 8 filters with periods ranging from 1 to 12 
seconds (Fig. 5), because the specific duration of any facial 
expressions associated with mind wandering is unknown 
but similar periods have been effective in previous re-
search [88]. Periods much shorter than 1 second would be 
unlikely to work for our videos since they were recorded 
at 12.5 frames per second; filters would have few samples 
from which to recognize short periods (e.g., just 5 frames 
for a period of 0.4 seconds). 

The temporal filter features were counts of positive and 
negative responses for each filter (i.e., the number of times 
the filter produced a positive or negative response within 
a clip). We then grouped counts into bins (number ranges) 
according to size of response (area under the squared filter 
response curve), ranging from -6 to 6 in accordance with 
previous research [88]. With 19 AUs, 8 filter wavelengths, 
and 12 bins, there were 1,824 temporal filter features. 
 

 
Fig. 5. Gabor filters that were convolved over AU intensity time series. 

2.4 Supervised Classification 
We build models with two commonly-used classifiers: 
SVMs and feed-forward deep neural networks (DNNs). 
We used SVMs because of their flexibility and general effi-
cacy in related computer vision research [89], [90]. Further-
more, they are well-suited to the high-level features we ex-
tracted and the relatively small size of the dataset. We also 
explored DNNs given their efficacy [91], [92] – though their 

full potential is typically only realized with large amounts 
of data. For the same reason, we did not consider convolu-
tional neural networks (CNNs). Pre-trained CNNs could 
be applied to extract feature maps from individual video 
frames, but would yield tens of thousands of dimensions 
when applied across clips with up to 125 frames per clip. 
We thus restricted analyses to the relatively low-dimen-
sional feature types described above. 

We trained individual SVM and DNN models for each 
feature set (motion, head pose, LBP textures, AUs, co-oc-
curring AUs, and temporal AU dynamics) and also consid-
ered fusion of feature sets so that the predictive power of 
different types of facial features could be compared (e.g., 
static versus dynamic facial expressions). 

We used person-independent four-fold cross validation 
[93]. By person-independent, we mean that all data from a 
participant was either in the training or testing data, but 
never both, thereby increasing the likelihood of generaliza-
tion to new participants (at least within similar popula-
tions and interaction contexts). We used data from three of 
the four folds (data from 75% of participants) for training, 
while models were tested on the remaining fold (25% of 
participants). We further split training data to select fea-
tures, weigh instances, and select hyperparameters with 
two-fold nested cross-validation (see Fig. 6). These proce-
dures were only applied to the training data. 

Feature Selection. For DNN models, we added 𝐿"regu-
larization to the first layer, thereby minimizing the influ-
ence of ineffectual features. For SVM models, we applied 
feature selection to reduce the dimensionality of the fea-
ture space. We initially experimented with forward feature 
selection (FFS) [94], given that model-free alternatives such 
as RELIEF-F and correlation-based feature selection (CFS) 
do not capture the same nonlinear patterns in data that our 
classifiers do [95], [96]. However, FFS was computationally 
impractical due to the large number of LBP features and 
hyperparameter combinations (described below).  

Thus, we developed a new two-step variation of FFS 
(test-correlate feature selection; TCFS) as a compromise be-
tween the model-specific advantages of forward feature se-
lection and the computational simplicity of model-free 
methods. In TCFS, we trained an SVM on each feature and 
then ranked features based on the accuracy of these indi-
vidual feature models, as measured by the area under the 
receiver operating characteristic curve estimated from a 
single point (minimum proper curve [97]). We eliminated 
any feature that was correlated (Spearman’s rho > .6) with 
a better ranked feature. The final models were trained on 
up to 50 (if there were that many) of the highest-ranked re-
maining features. The 50-feature maximum was informed 
by recommendations that the square root of the number of 
instances per training fold (3437 × 3 4⁄ = 2578	in our case) 
is an appropriate conservative limit on the number of fea-
tures [98]. 

Instance Weighting and Hyperparameter Tuning. Ini-
tial experiments with unweighted instances yielded mod-
els that exclusively predicted the majority class. Thus, we 
weighted training instances such that the sum of weights 
for positive and negative mind wandering instances were 
equal. SVM models fit the decision boundary according to 
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these weights, setting the decision boundary further from 
higher weight (minority class) instances. Similarly, DNN 
models made larger parameter adjustments for minority 
class instances. 

We trained SVM models with radial basis function 
(RBF) kernels, which require a regularization hyperparam-
eter C and a support vector radius of influence hyperpa-
rameter γ. We varied C and γ via grid search; values of C 
varied from 107: to 10: and values of γ varied from 107^ 
to 10: by powers of 10. We selected hyperparameters for 
each feature set individually because each captures differ-
ent behavioral expressions and has different distributions. 

We also varied DNN hyperparameters via grid search, 
including the number of hidden layers (1, 2, 4, or 8), num-
ber of neurons in each hidden layer (4, 8, 16, or 32), dropout 
[99] applied before each hidden layer (0%, 25%, 50%, or 
75%), 𝐿" regularization applied to the input layer (0, .001, 
.01, or .1), and learning rate for the Adam [100] optimizer 
(.01, .001, or .0001). The DNN decision threshold was ini-
tially set to a typical default of .5, but this resulted in very 
few positive mind wandering predictions (e.g., < 5% for 
four of the six individual feature set models) Thus, we in-
stead chose DNN decision thresholds to match the SVM 
predicted rate of mind wandering as closely as possible 
(since DNNs produced continuous predictions while 
SVMs did not) to enable unbiased model comparisons. 

Fusion Methods. We considered three methods to fuse 
the individual feature sets. For feature-level fusion, we 
concatenated the selected features from each set, per-
formed another round of feature selection to reduce the 
feature set size, and trained a new model. For majority vot-
ing, we classified an instance as mind wandering if at least 
three of the six individual SVM models classified it as such, 
or if the sum of DNN prediction probabilities exceeded a 
threshold tuned to match SVM prediction rates. We also 
trained a Classification and Regression Tree (CART) model 
on the predictions of the individual feature set models 
[101]. We cross-validated fusion models with the same 
training and testing folds as the individual models, thus 
preserving person-independence.  

 

 
Fig. 6. Illustration of SVM model training procedure showing which 
portions of data we trained and tested on at each step 

2.5 Study 1: Mind Wandering in the Lab Results 

2.5.1 Classification Results 
We measured accuracy primarily with the 𝐹" score of mind 
wandering. 𝐹" is the harmonic mean of precision (propor-
tion of instances classified as mind wandering that were 
truly mind wandering) and recall (proportion of true mind 
wandering instances that were classified as mind wander-
ing). As a baseline, chance-level mind wandering 𝐹" (.300) 
was defined as the mind wandering 𝐹" obtained by ran-
domly assigning positive mind wandering labels to 30% of 
the instances (i.e., the base rate) and negative to the rest. 
We also computed area under the receiver operating char-
acteristic curve (AUC), where .500 represents chance level 
and 1 represents perfect classification. For SVMs we uti-
lized the distance of each instance from the separating hy-
perplane as a measure of confidence (which is required to 
calculate AUC) while DNNs naturally yield continuous 
confidence predictions. The results in Table 1 indicate that 
detection accuracy was modest, but better than chance in 
terms of both 𝐹" and AUC (for SVM models more so than 
DNNs). 

TABLE 1 
MIND WANDERING (MW) DETECTION RESULTS IN THE LAB 

 MW 𝐹" MW Precision MW Recall AUC  

Feature Set SVM DNN SVM DNN SVM DNN SVM DNN Predicted MW Rate 

Body Motion .429 .356 .355 .295 .541 .449 .565 .495 .457 
Head Pose .330 .412 .269 .335 .429 .534 .557 .514 .478 

LBP Textures .458 .421 .361 .332 .626 .575 .600 .552 .520 

Basic AUs .430 .352 .358 .293 .536 .439 .576 .476 .449 
Co-occurring AUs .380 .353 .339 .315 .433 .402 .545 .525 .383 

Temporal AUs .389 .356 .312 .285 .518 .473 .513 .474 .498 
          

Feature-level Fusion .362 .366 .303 .306 .448 .453 .499 .506 .443 

Majority Vote .454 .420 .368 .324 .545 .598 .580 .518 .445 

CART Fusion .478 .376 .360 .283 .711 .562 .603 .481 .593 
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We compared models using mixed-effects logistic re-
gression to predict agreement between the model outputs 
and the self-reports (1 for agree; 0 for disagree). We in-
cluded participant as an intercept-only random effect for 
all comparisons, due to the repeated and nested structure 
of the data – one or more instances nested within a partic-
ipant. We also included participant-level predicted mind 
wandering rates as a fixed effect covariate, because pre-
dicted mind wandering rates were correlated with model 
accuracy (Pearson rs between -.158 and -.409). For this rea-
son, comparisons might not align with 𝐹" scores in the table 
since those do not adjust for prediction rates. We used the 
lme4 [102] package in R [103] for model fitting, the car pack-
age [104] for significance testing, and the emmeans package 
[105] for pairwise comparisons. 

We first compared SVMs versus DNNs across all six in-
dividual feature sets by regressing accuracy on the classi-
fier type (two-level categorical variable for SVM or DNN) 
× self-reported mind wandering label (1 or 0) interaction 
term, with feature set included as a fixed effect. The classi-
fier type × label interaction term allows us to examine 
model accuracy for positive vs. negative instances of (self-
reported) mind wandering, the former being of interest 
here. The results indicated a significant interaction term, 𝜒: 
(1) = 5.11, p < .05, which suggests that relative model accu-
racies varied for positive vs. negative instances of mind 
wandering. Focusing on the positive instances, estimated 
marginal means comparison showed that SVMs yielded 
statistically better results than DNNs, on average. 

Focusing on SVM models only, we compared individual 
feature sets by regressing correctness on the feature set 
(six-level categorical variable for the individual feature 
sets) × label interaction term. The interaction was signifi-
cant (𝜒: (5) = 183, p < .001), so we conducted pairwise com-
parisons between feature sets with false discovery rate ad-
justed for 15 comparisons. The results yielded the follow-
ing overall pattern for positive mind wandering instances: 
LBP Textures > [Basic AUs = Body Motion = Temporal 
AUs] > [Co-occurring AUs = Head Pose]. Notably, Basic 
AUs and Temporal AUs features were more effective than 
Co-occurring AUs – perhaps because Basic and Temporal 
AUs capture simpler, first-order expressions of a single fa-
cial muscle, while Co-occurring AUs capture subsets of 
these facial expressions, which might have been too sparse 
given available data. 

Finally, comparing the best individual feature set (LBP 
Textures) to SVM fusion models yielded a significant 
model × interaction term (𝜒: (3) = 281, p < .001). Compari-
sons for positive mind wandering instances indicated the 
models were statistically ranked as follows: CART Fusion 
> [Majority Vote = LBP Textures] > Feature-level Fusion. 
Thus, results indicate that the CART model was most ac-
curate, though its tendency to predict high levels of mind 
wandering might be undesirable in some applications, in 
which case the Majority Vote model may be a better choice. 

2.5.2 Comparison Across Mind Wandering Types 
Students could report mind wandering incidents that were 
either task-related or task-unrelated thoughts. We repli-
cated individual SVM models described above (Section 

2.4) as a three-class classification task (task-unrelated 
thought, task-related interference; not mind wandering).  
We computed accuracy by combining predictions of either 
mind wandering type and re-computing 𝐹", so that we 
could directly compare accuracy to the binary model. 
However, 𝐹" scores were ≈ .300 (chance level) with the ex-
ception of Body Motion (𝐹" = .336), which was not higher 
than the binary classification 𝐹" (.429). This is likely due to 
the fact that the class imbalance for the binary classification 
gets much more severe for the three-way classification. 

To further examine differences across mind wandering 
types, we inspected the proportions of each mind wander-
ing type that were correctly classified (recall) by the binary 
classifiers. We first compared recall across each mind wan-
dering type for each feature channel (Table 2). Overall, re-
call was similar across the two types of mind wandering. 
Next, focusing on the positive mind wandering instances 
only, we regressed model correctness (correct or incorrect) 
on the mind wandering type and feature set interaction. 
Neither the mind wandering type main effect nor the fea-
ture set × mind wandering type interaction were signifi-
cant, indicating that models were similarly accurate for 
both types of mind wandering. 

2.5.3 Comparison Across Genders 
Students (39% male) reported their gender following the 
text reading portion of the study. We compared mind wan-
dering reports and classification accuracies across genders, 
regressing agreement on the gender × mind wandering la-
bel interaction term, again including feature set as a fixed 
effect. The interaction term was significant (𝜒: (1) = 73, p < 
.001), and pairwise comparisons revealed that the individ-
ual feature set models were significantly more accurate for 
male than female students – despite the fact that we con-
trolled for individual mind wandering rates in this com-
parison. This difference was primarily due to higher recall 
for male students (.797 versus .665), especially since preci-
sion was higher for the female students (.326 for females; 
.386 for males). 

2.5.4 Including Undetectable Face Instances 
We removed 207 positive mind wandering instances be-
cause no face could be detected in the video clips (Section 
2.2). These could also be removed in a real-time application 
of our detectors, but gaps in predictions might need to be 

TABLE 2 
COMPARISON OF RECALL FOR TASK-RELATED AND TASK- 

UNRELATED TYPES OF MIND WANDERING 

 Feature Set Task-related 
recall 

Task-unrelated 
recall 

 Body Motion .542 .541 
 Head Pose .439 .423 
 LBP Textures .574 .655 
 Basic AUs .501 .556 
 Co-occurring AUs .423 .438 
 Temporal AUs .507 .524 
    
 Mean .477 .506 
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filled in – for example, to create uniform time series predic-
tions. We thus examined the influence of making random 
predictions for these instances, with additional negative 
mind wandering instances sampled to maintain the 30% 
mind wandering base rate. We set the randomly-predicted 
mind wandering rate equal to that of the best model 
(CART Fusion; .593 predicted rate), appended the random 
predictions to the list of CART Fusion predictions, and 
recomputed accuracy to simulate a scenario where the 
CART Fusion predictions are supplemented with random 
predictions when needed. Given the small number of un-
usable positive instances, this approach has minimal detri-
ment to accuracy – the newly calculated 𝐹" was .466, preci-
sion was .351, and recall was .694 (versus .478, .360, and 
.711, respectively; Table 1). 

2.6 Comparison to Human Observers 
Some visual perception tasks are relatively easy for hu-
mans but difficult for computers (e.g., recognizing faces, 
following gaze directions). To assess the difficulty of recog-
nizing mind wandering from facial expressions, we re-
cruited human observers from Amazon’s Mechanical 
Turk's [106] crowdsourcing platform to each code a ran-
dom subset of 100 video clips (30 of which corresponded 
to self-reported mind wandering) for mind wandering. We 
recruited nine different human observers per clip and used 
majority voting to determine the final observer mind wan-
dering label for each clip.  

Observer achieved mind wandering precision, recall, 
and 𝐹" scores of .333, .467, and .389, respectively. On the 
same subset of 100 clips, the CART decision-level fusion 
model yielded precision, recall, and 𝐹" scores of .421, .800, 
and .552 with a predicted mind wandering rate of 57% 
compared to 42% for human observers. Accuracy varied 
considerably across observation rounds (Fig. 7), though 
none exceeded the accuracy of the CART model (𝐹" of .552 
on this sample). 

Despite the small sample size, this result illustrates the 
difficulty of the task for humans. It also highlights the po-
tential for automatic mind wandering detectors to outper-
form humans, though more formal validation with a larger 
sample is needed. 
 

 
Fig. 7. Observer accuracy (F1) for all nine rounds of human mind wan-
dering ratings 

 

3 STUDY 2: PROBE-CAUGHT MIND WANDERING 
DETECTION WITH AN INTELLIGENT TUTORING 
SYSTEM IN THE CLASSROOM 

We followed up on the lab study with a classroom study, 
using a different participant sample (high-school stu-
dents), a different method to obtain mind wandering re-
ports (probe-caught) and with a more interactive task: 
learning from an intelligent tutoring system called Guru 
[107]. We also used a different method to extract facial fea-
tures as elaborated below. These methodological differ-
ences were due to practical constraints, but provide an op-
portunity to test core components of our approach in a 
vastly different context. Finally, participant-level de-
mographics were not available for these data, so we could 
not compare model accuracy by gender as in Study 1. 

3.1 Guru Tutor 
Guru is an intelligent tutoring system designed to teach bi-
ology topics (e.g., osmosis; protein function) aligned with 
state curriculum standards. It engages students in one-on-
one collaborative conversations in natural language [107]. 
It was modeled after interactions with expert human tutors 
and has been shown to be effective at promoting learning 
at levels compared to small group human tutoring [107]. 

Guru utilizes an animated pedagogical agent that refer-
ences a multimedia workspace (see Fig. 8). The tutor com-
municates via synthesized speech and gestures, while stu-
dents communicate by typing their responses, which are 
analyzed using natural language processing. Guru main-
tains a dynamic model of student progress (called a stu-
dent model [108]), which it uses to adapt instruction to in-
dividual students. 

A topic in Guru involves interrelated concepts and facts, 
which are covered in 15- to 40-minute tutoring sessions. 
Guru begins with an introduction to motivate the topic, 
which is then followed by a five-phase tutorial session (see 
[107] for details of each phase). 

3.2 Data Collection 
Data were collected from 135 (41% male) high-school fresh-
men and sophomores enrolled in an introductory biology 
course. Students provided written assent to participate, 
while their parents provided written consent. The study 
was approved by the university institutional review board, 
and by the high school’s principal. Students were given a 
$10 gift card for participating. 

The study occurred over the course of two days in stu-
dents’ regular biology classroom with students sharing a 
desk (Fig. 9). There were seven class periods per day, with 
enrollment ranging from 14 to 30 students per class. Stu-
dents used a school-provided laptop to interact with Guru, 
which we equipped with an inexpensive (Logitech C270) 
external webcam. The cameras for the two students at each 
desk were connected to a third laptop, which was used 
solely for facial feature processing and was synchronized 
to the Guru laptops via an internet time server. 

Upon providing assent, students were introduced to the 
study, followed by a 30-minute Guru learning session on 
one topic, a short break, and another 30-minute Guru ses-
sion on a different topic.  
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We used the probe-caught method [9] to monitor mind 
wandering during the two Guru sessions. Specifically, we 
defined mind wandering to students before their first in-
teraction with Guru, provided instructions on how to re-
port mind wandering to the probes, and also administered 
a brief quiz to verify their understanding.  

Thought probes occurred pseudorandomly every 90-
120 seconds. The 90-120s time range was selected based on 
previous research which tracked mind wandering during 
interactions with Guru [109]. The probes automatically 
paused the tutoring session. If the tutor was speaking at 
the time the probe was to be triggered, the probe was de-
layed until the tutor finished speaking. The probe con-
sisted of an auditory beep along with an opaque overlay 
on screen, instructing the participant to press the “N” key 
if they were not mind wandering, “I” if they were inten-
tionally (deliberately) mind wandering, or “U” if they were 
unintentionally (spontaneously) mind wandering. Here, 
we do not differentiate between intentional and uninten-
tional mind wandering in order to maximize the number 
of instances for machine learning. 

Participants encountered an average of 12 probes over 
the course of each session; they reported mind wandering 
for an average of 27.6% (SD = 23.5%). There was consider-
able variability in the mind wandering distribution across 
participants as noted in Fig. 10. 

As expected, the classroom environment was much less 
controlled than the lab environment. Students interrupted 
and distracted each other, left to go to the bathroom, and 
occasionally even used their cellphones. Due to computer 
failures (e.g., power supply failure, unexpected software 
updates), data from 10 students were unusable, resulting 
in data from 125 students. 

 

 
Fig. 8. Screenshot of Guru in the CGB phase. 

 
Fig. 9. Example classroom layout. 

 
Fig. 10. Histogram of mind wandering rates. 

3.3 Automatic Mind Wandering Detection 
Real-Time Feature Extraction. Due to privacy considera-
tions, videos of students could not be recorded for later fea-
ture extraction and analysis. Therefore, features were ex-
tracted in real-time. We could not extract features with 
EmotientSDK, as we did in the lab study, due to licensing 
constraints. Instead, we extracted AUs and head pose with 
OpenFace [82]. The feature extraction frame rate was vari-
able because of external computational resource demands 
(e.g., system processes) and varying demands of the fea-
ture extraction process itself (e.g., when face tracking is lost 
the entire image must be searched to rediscover the face – 
a computationally expensive process). For this reason, 
frame rate was also relatively low (mean = 4.6 frames per 
second) compared to the lab study (exactly 12.5 frames per 
second). Additionally, temporal filter features could not be 
extracted from AU estimates because of the variable timing 
and sparsity of frames. Body motion and LBP features 
were also not extracted since they add additional compu-
tational complexity. Thus, we extracted head pose and AU 
features real-time, and calculated AU co-occurrence fea-
tures (JSD features) offline. 

Instance Extraction. We extracted 2,888 instances, each 
10s long, from the 125 students. We discarded 502 instances 
because they contained fewer than 5 frames of data (ap-
proximately 1s), leaving 2,386 instances (25.9% positive 
mind wandering instances, 62.5% of which were uninten-
tional). 

Supervised Classification. As in the lab study, we 
trained SVM and DNN classifiers for the individual chan-
nels (Basic AUs, Co-occurring AUs, and Head Pose only) 
using the exact same cross-validation, feature selection, in-
stance weighting, and hyperparameter tuning procedures 
from Study 1. We also trained similar feature-level fusion, 
decision-level fusion (CART), and majority vote models as 
in Study 1.  
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3.4 Results 
Mind wandering detection was accurate above chance 
level (up to 𝐹" = .414, 20.9% above chance of .259 for the 
feature-level fusion model; Table 3). AUC results indicated 
a possible advantage for SVMs over DNNs, which we fol-
lowed up via statistical comparisons of accuracy in the 
same manner as Study 1 (see Section 2.5.1 Classification 
Results) to rigorously investigate this possibility. We found 
a similar trend toward SVM models outperforming DNNs 
overall for the individual feature sets, but it was not signif-
icant (p = .154). Follow-up analysis of pairwise compari-
sons for the individual feature sets for SVMs (as in Study 
1) revealed the statistical ordering: Basic AUs > Co-occur-
ring AUs > Head Pose. Interestingly, the results show that 
the feature-level fusion model had the highest overall 𝐹", 
exceeding the individual feature sets and even the deci-
sion-level fusion methods (statistical ordering: Feature-
level Fusion > CART Fusion > Basic AUs > Majority Vote. 
Once again, however, it is worth noting that the most accu-
rate model predicts mind wandering at a high rate, so other 
models may be preferable if this is of concern. 

3.4.1 Comparison Across Mind Wandering Types 
We further analyzed each feature set, comparing recall for 
intentional and unintentional mind wandering report 
types (Table 4). We focused on the SVM models, given their 
higher accuracies. Similar to Study 1, there were no signif-
icant differences in detector accuracies between the two 
types of mind wandering included in Study 2. Recall was 
similar as well: .369 for intentional versus .345 for uninten-
tional (Table 4) mind wandering. 

3.4.2 Including Undetectable Face Instances 
There were 502 instances in which the face could not be 
detected for at least 1 second (see Section 3.3). As in Study 
1, we generated random mind wandering predictions with 
the same predicted rate as the feature-level fusion SVM 
(highest 𝐹" model). We found that 𝐹" was only slightly di-
minished at .396 (recall was .545, and precision was .311) 
with these instances included compared to them being ex-
cluded (𝐹" = .414, recall = .573, precision = .324). 

4 DISCUSSION 
We review the main findings, discuss limitations, and 

point to opportunities for future research. 

4.1 Main Findings 
Automatic mind wandering detection is a challenging 
problem, especially given the lack of prototypical mind 
wandering facial expressions (Fig. 1), variance in mind 
wandering reports across participants (in fact, 25% of par-
ticipants reported no mind wandering at all in Study 1 [Fig. 
2] and 29% in Study 2 [Fig. 10]), and the difficulty of the 
task for human observers (Section 2.6). Despite these chal-
lenges, we found that automatic computer vision methods 
detected mind wandering at better than chance-levels in 
both a laboratory reading context (decision-level fusion 𝐹" 
= .478 versus .300 chance) and in a noisy biology classroom 
with real-time feature extraction (feature-level fusion 𝐹" = 
.414 versus .259 chance). 

Although these results reflect a modest improvement 
over chance level predictions (25.4% for the lab study and 
20.9% for the classroom study), the models surpassed pre-
vious state-of-the-art face-based mind wandering during 
reading in a lab context. Specifically, mind wandering de-
tection accuracy using all six feature sets was 𝐹" = .478, 
compared to 𝐹" = .441 previously reported using basic AU 
and head pose features [64] – an improvement of 8.4%. This 
finding demonstrates a slight advantage for considering 
multiple feature sets when detecting subtle facial expres-
sions associated with mind wandering. In fact, LBP fea-
tures (a feature set not previously considered for mind 
wandering detection) were the most accurate at the task. 
Additionally, our analysis of decision-level and feature-
level fusion models in both studies showed a statistically 

TABLE 3 
OVERVIEW OF MIND WANDERING (MW) DETECTION RESULTS IN THE CLASSROOM 

 MW 𝐹" MW Precision MW Recall AUC  

Feature Set SVM DNN SVM DNN SVM DNN SVM DNN Predicted MW Rate 

Basic AUs .379 .340 .314 .282 .477 .429 .568 .528 .394 

Co-occurring AUs .320 .285 .312 .278 .328 .293 .536 .510 .273 

Head Pose .248 .272 .240 .263 .257 .282 .511 .502 .277 
          

Feature-level Fusion .414 .331 .324 .259 .573 .458 .584 .487 .458 

Majority Vote .326 .292 .313 .280 .341 .306 .547 .499 .283 
CART Fusion .385 .311 .304 .246 .523 .422 .566 .530 .444 

 

TABLE 4 
COMPARISON OF DETECTOR RECALL FOR INTENTIONAL VERSUS 

UNINTENTIONAL MIND WANDERING CASES 

Feature Set Intentional 
recall 

Unintentional 
recall 

Basic AUs .517 .453 
Co-occurring AUs .310 .339 
Head Pose .280 .244 
   
Mean .369 .345 
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significant increase in accuracy compared to the best indi-
vidual feature set, though with high mind wandering pre-
diction rates. 

These results showed a notable advantage for SVM 
models versus DNNs in both studies. In Study 1, the best 
SVM model yielded a 9.8% improvement over the best 
DNN model; the improvement was 11.2% for Study 2. The 
SVM advantage in these studies comes despite a thorough 
hyperparameter search for DNNs. DNNs may have suf-
fered from the relatively small size (3,437 instances in 
Study 1 and 2,386 in Study 2) and high-level feature sets, 
compared to machine learning problems where DNNs typ-
ically excel: millions of instances and low-level features. 

We also investigated model accuracies for two different 
types of mind wandering in each study. In Study 1, we 
found no statistical difference in accuracy for task-related 
and task-unrelated mind wandering instances. Similarly, 
Study 2 showed no difference in accuracy for intentional 
versus unintentional mind wandering, indicating that 
mind wandering is not easier to detect across these types, 
and may be associated with similar facial expressions. 

There were some instances where facial expressions 
could not be detected (207 in Study 1 and 502 in Study 2). 
However, for some applications it may be necessary to 
make predictions for all instances. We therefore computed 
accuracy with random predictions set to match the classi-
fier prediction rate for these instances, and found that 
model accuracy was not drastically diminished in Study 1 
(𝐹" decreased from .478 to .466) nor in Study 2 (𝐹" changed 
from .414 to .396), thus indicating models could be de-
ployed in such applications without notable decreases in 
accuracy. 

4.2 Limitations and Future Work 
The most notable limitation of the current paper is the 
modest accuracy achieved for mind wandering detection. 
However, this is expected since the problem of mind wan-
dering detection has been shown to be exceedingly diffi-
cult with other modalities as well, such as eye gaze and 
physiology. That said, gaze-based mind wandering detec-
tors do appear to outperform video-based detectors (see 
[110]) on the same data. Thus, future work should strive to 
improve these results through additional feature engineer-
ing methods and additional deep learning methods which 
have been successful in other domains. 

Additionally, the features that could be extracted in the 
classroom environment were limited by the processing 
power of the computers available. While this is a realistic 
constraint that must be dealt with, future work with in-
creased processing power for real-time feature extraction 
will be necessary for determining performance upper lim-
its in this context. 

It is also possible that facial expressions of mind wan-
dering differ in contexts with more or less social pressure 
to appear engaged. Participants read alone in Study 1, but 
were still aware (at least initially) that they were being rec-
orded, which might have increased self-regulatory behav-
iors. Thus, one possible avenue for future work is to com-
pare facial expressions in contexts where individuals do 
not know they are being observed. Similarly, participants’ 

interest in reading or learning about a topic might influ-
ence their rate of mind wandering [109], [111]–[113]. Our 
results also indicated that models in Study 1 were signifi-
cantly more accurate for male than female students, an ef-
fect driven by differences in recall, which implies that de-
mographic differences are worthy of further exploration. 

Another limit pertains to our instance extraction scheme 
in Study 1, which required discarding a large number of 
clips (1,339) because they contained a page turn event. This 
process limits the mind wandering detectors to function 
only in situations with no such events. However, this limi-
tation is necessary to avoid the possibility of models 
simply detecting movement associated with page-turn 
keypresses (a trivial task), which in turn might be related 
to mind wandering, but only in a highly task-specific way. 
On the other hand, data discarded due to undetectable fa-
cial features might be improved upon in future work, by 
imputing missing values (e.g., with a Kalman filter). 

4.3 Applications 
The mind wandering detection approach reported here 
represent the first automatic face-based mind wandering 
detection in a laboratory and in a classroom. The results we 
presented indicate that mind wandering can be detected at 
levels above chance – though far from perfectly. Although 
more research is needed to ascertain a plausible upper-
bound for mind wandering detection accuracy, the current 
level of accuracy is likely sufficient to support fail-soft, 
probabilistic interventions that utilize these detectors in 
computerized learning environments. For example, a com-
puterized reading environment with an automated mind 
wandering detector could recommend a break if repeated 
mind wandering is detected. Similarly, brief test questions 
could be inserted into a learning session for occasional in-
stances of detected mind wandering. The learning environ-
ment can also sense mind wandering passively and pro-
vide class-level aggregates (by leveraging the principle of 
aggregation to improve reliability of noisy signals [114]) of 
students' attentional levels to teachers of instruction de-
signers to guide pedagogy. Thus, the next critical step is to 
use the detectors in these and other ways in order to pro-
vide a more enjoyable, efficient, and effective learning ex-
perience for all students. 
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