
1 Eye-movements while debugging Python

Eye-movement indices of reading while debugging Python source code
1Jack Dempsey, 2Anna Tsiola, 1,3Nigel Bosch, 1,4Kiel Christianson, and 5Mallory Stites

1Department of Educational Psychology, University of Illinois Urbana–Champaign, Champaign,
IL, USA

2Department of Linguistics, University of Illinois Urbana–Champaign, Champaign, IL, USA
3School of Information Sciences, University of Illinois Urbana–Champaign, Champaign, IL, USA

4Beckman Institute for Advanced Science & Technology, University of Illinois Urbana–
Champaign, Urbana, IL, USA

5Sandia National Laboratories, Albuquerque, NM, USA

November 2024

Corresponding author:

Jack Dempsey

Department of Educational Psychology
Education Building, Rm. 226A
University of Illinois
1310 S. 6th St.
Champaign, IL 61820

E-mail: <jkdemps2@illinois.edu>
Dept. Tel: 217.333.2245

2 Eye-movements while debugging Python

ABSTRACT

 Unlike text reading, the eye-movement behaviors associated with reading Python, a

computer programming language, are largely understudied through a psycholinguistic lens. A

general understanding of the eye movements involved in reading while troubleshooting Python,

and how these behaviors compare to proofreading text, is critical for developing educational

interventions and interactive tools for helping programmers debug their code. These data may

also highlight to what extent humans use their underlying text reading ability when reading

source code. The current work provides a profile of global reading behaviors associated with

reading Python source code for debugging purposes. To this end, we recorded experienced

programmers’ eye movements while they determined whether 21 different Python functions

would produce the desired output, an incorrect output, or an error message. Some reading

behaviors seem to mirror those found in text reading (e.g., effects of stimulus complexity), while

others may be specific to reading code. Results suggest that semantic errors that produce

undesired outputs in programming source code may influence early stages of processing, likely

due to the largely top-down strategy employed by experienced programmers when reading

source code. The findings are framed to invigorate discussion and further exploration into

psycholinguistic analysis of human source code reading.

3 Eye-movements while debugging Python

INTRODUCTION

 When we think about reading in natural contexts, what usually comes to mind is a series

of sentences and paragraphs meaningfully connected in a discourse. For example, we might think

of reading a novel, reading instructions for assembling furniture, reading comments on an

internet video, or reading a menu at a restaurant, among other activities. Although the cognitive

approaches to reading these different types of print may differ, each task recruits processes

endowed by the naturally developed human language faculty. Beyond this, there are other

capacities that are often required to successfully read natural texts and extract contextually

appropriate meaning. Computer programs are an example of texts that require both reading

abilities and specialized knowledge to be able to interpret, and they are used by millions of

people around the world.

As educational programs continue developing curricula designed to increase computer

and programming literacy, it is important to consider exactly what this kind of literacy would

mean (Vee, 2017). When programmers write functions using source code—for example, Java or

Python—they are essentially writing instructions for a computer to complete some task given

some information. According to the Theory of Dual Channel Constraints proposed by

Casalnuovo and colleagues (2020), humans take advantage of two distinct sources of information

when reading code: the algorithm channel and the natural language channel. The algorithm

channel requires an understanding of the programming language being used (e.g., Python) and a

knowledgebase that computers have access to; however, the natural language channel is

supported by human reading ability, which therefore is not available for computers in processing

source code. This distinction highlights a major difference between programming languages and

human languages: syntactic constraints are typically less flexible in programming languages,

4 Eye-movements while debugging Python

whereas humans use heuristics and real-time strategies to interpret erroneous or complex input

(e.g., Christianson, 2016).

 Following its relative lack of structural flexibility, studies in the past decade have also

illustrated that source code is often more predictable than natural language text (Casalnuovo et

al., 2019, 2020abc; cf. Luke & Christianson, 2016), and subsequent investigations have shown

that programmers prefer predictable code (Casalnuovo et al., 2020c) and more efficiently

comprehend it (Casalnuovo et al., 2020b), as evidenced by offline judgments. These patterns are

similar to how predictability correlates with early reading behaviors for natural texts. Like

reading natural texts, reading source code can be framed as a cognitive exercise, likely as a top-

down hypothesis-driven process that differs in some key aspects from reading natural texts

(Brooks, 1983; Schneiderman & Mayer, 1979). This top-down process is plausibly developed

over years of experience in programming (Shaft & Vessey, 1995), meaning beginner

programmers likely use bottom-up processes, similar to those recruited for language processing

during reading, more often. It may seem somewhat trivial, then, that reading source code uses at

least some subset of the same cognitive processes used in reading; however, it is an important

area of research to better understand exactly where these two cognitive processes converge and

diverge (Fedorenko et al., 2019).

 To answer this question, it is first important to consider how cognitive processes are

captured in the eye-movements of readers while they read natural texts. For over half a century,

eye-tracking studies have shown that how long a reader fixates on a word, whether someone

even fixates on a word, and whether someone goes back to previous material after reading a

given word, among many other measures, are all positively correlated with cognitive processing

difficulty (for a review of eye-movements in reading research, see Clifton et al., 2016). This line

5 Eye-movements while debugging Python

of work depends on the so-called eye-mind link (e.g., Reichle & Reingold, 2013), which posits

that the cognitive processes of lexical access and retrieval are what trigger most eye-movements

during reading. Thus, characteristics of eye-movements reveal aspects of cognitive processes and

can be used to test many psycholinguistic questions of interest, like how different syntactic

structures are processed (e.g., Frazier & Rayner, 1982), how structural ambiguity is handled in

real-time (e.g., Traxler et al., 1998), how lexical characteristics like word length, frequency, and

predictability influence retrieval speed and quality of lexical representations during reading (e.g.,

Clifton et al., 2016; Rayner, 1998), or even what the overall complexity of a text is (Rayner et

al., 2006). In sum, examining eye-movement patterns when reading certain forms of texts and in

certain tasks can help us understand the cognitive processes recruited for those tasks.

For this study in particular, processing difficulty stems from either syntactic or semantic

sources, likened to the syntactic and semantic errors encountered in natural reading. Syntactic

and semantic error sources typically produce differential neural responses (Kutas & Hillyard,

1984; Osterhout & Holcomb, 1992), and semantic error sources often lead to later stages of

processing that involve integration and text wrap-up (e.g., Payne & Stine-Morrow, 2014).

Syntactic processing errors, on the other hand, have been shown to occur at earlier stages like

gaze duration and go-past times (the time it takes to read a word and reread previous material

before moving past said word, e.g., Frazier & Rayner, 1982), suggesting they are resolved or at

least detected at earlier processing stages in natural text reading.

 Recent work has sought to address the differences and similarities between reading of

natural texts and source code reading, although it is not entirely new. For example, Pennington

(1987) argued that programs are first procedurally understood before individual meaningful

chunks, which means that reading source code may be less incrementally structured compared to

6 Eye-movements while debugging Python

reading natural text. In terms of actual eye-movement behaviors, recent evidence suggests that

initial code segments are read longer than segments that appear later (Jbara & Feitelson, 2017),

there are more vertical eye movements when reading source code (Busjahn et al., 2015), and

experience increases both the rate of vertical eye movements (Turner et al., 2014) and time spent

looking at task-relevant code (Crosby et al., 2002; Peitek et al., 2020) and iterative loops

(Herman et al., 2021). In a similar line of work looking at the reading of mathematical proofs,

Inglis and Alcock (2012) found that experienced mathematicians spent more time moving their

eyes between different lines of proofs than undergraduate students, suggesting experience drives

these readers, like in the reading of source code, to focus more on integration between lines

rather than surface features of the lines themselves. Furthermore, these changes in reading

behaviors as programmers gain more experience are likely driven by some form of error-based

learning; for example, vertical eye movements when reading source code have been shown to

predict faster bug detection (Sharif et al., 2012), and this is also a characteristic of more

experienced programmers’ reading of source code.

Despite these recent advancements, there remain many unanswered questions regarding

how experienced programmers read source code, although some important work has been

conducted in the field of eye-movements in programming (EMIP). Perhaps most notably,

Bednarik and colleagues (2020) established an eye-movement in programming dataset that is

publicly available. Although also looking at an object-oriented language, most of the measures

collected differ from measures typically studied in the field of reading psychology and instead

focus on more global aspects of attention like saccade distance, average fixation duration, and

saccade amplitude, among others. Moreover, the dataset is comprised of only two items, which

limits its generalizability. A complementary dataset of more psycholinguistic eye-movement

7 Eye-movements while debugging Python

measures while reading source code could help move this research effort along. In particular,

there has yet to be 1) a descriptive psycholinguistic analysis of typical eye-movements when

reading source code for debugging, or 2) an analysis of how eye-movements around erroneous

code reflect debugging comprehension processes. The current study seeks to address this gap in

knowledge, focusing specifically on experienced programmers’ reading of Python source code

while debugging1.

 Python is an imperative programming language, meaning that programmers write

sequences of instructions for the computer to achieve the desired outcome. The code that Python

programmers write is syntactically inflexible; for computers to successfully run the code in the

expected manner, the exact characters must be entered. A line of code is lexically constrained in

that the name of the function (e.g., len()) does not vary, while the variable it acts on can be given

a virtually infinite number of different labels (e.g., “qwerty” instead of “word”). Python contains

many functions that are disproportionately based on English words as well as programmer-

defined functions named with content words chosen by the programmer. Although these content

words could be almost anything, Python and other source code tends to be written by humans

with other humans in mind (Knuth, 1984), meaning that content words in source code are often

tailored to be easily understood both by the author of the code and other potential readers. An

example Python function is shown in Figure 1 below.

1 For the current study, we refer to “debugging” to mean reading through source code to identify potential errors.
This is different from the typical debugging process where programmers may also test run code as a means of better
identifying errors. Therefore, the current study is concerned with the general reading patterns associated with this
specific earlier stage in the typical debugging process.

8 Eye-movements while debugging Python

Figure 1. Example of a programmer-defined Python function that takes a string of characters as
input and tests whether that string is a palindrome.

 Debugging source code is a very common practice in computer programming, whether

the code was originally written by the reader or by someone else, and can essentially be viewed

as a type of proofreading in some capacity - a task which has been shown to elicit different eye-

movement and reading behaviors compared to natural reading for comprehension. For example,

Kaakinen and Hyöna (2010) showed that reading for proofreading resulted in more leftward

landing positions, shorter saccade lengths, longer fixation durations, and a higher probability of

rereading, broadly defined as fixating input that has already been fixated, compared to reading

for comprehension. Schotter and colleagues (2014) further developed these findings by showing

that different types of proofreading elicited different reading patterns. For example, when readers

are proofreading for spelling, they show heightened sensitivity to frequency effects that have

commonly been reported in language processing research (e.g., Inhoff & Rayner, 1986; Rayner

& Duffy, 1986). However, readers only experienced higher predictability effects when

proofreading for spelling errors that create real words. When spelling errors created nonwords,

predictability effects were uninfluenced by the proofreading task. A more recent similar study

conducted by Strukelj and Niehorster (2018) showed that reading thoroughly, skimming, and

looking for spelling errors all changed eye-movement behaviors in a similar fashion.

9 Eye-movements while debugging Python

Furthermore, many other research areas have shown that task demands can influence real-time

and post-interpretive reading behaviors (Binder et al., 2001; Dempsey & Brehm, 2020; Lim &

Christianson, 2015; cf. Christianson et al., 2022), making it a worthwhile endeavor to capture a

profile of reading behaviors when debugging Python source code as a unique task. Since

programmers likely also read source code for comprehension, future work should explore

whether reading source code for comprehension versus reading source code for debugging

results in different reading behaviors (Chung et al., in prep).

 To ground a descriptive analysis of reading while debugging Python source code, it is

first important to consider reading behaviors during the reading of natural texts. Schotter and

colleagues’ (2014) study provides such eye-tracking data for both reading for comprehension and

for reading for two kinds of proofreading, which are reported in Table 1. For example, the

authors report longer gaze duration times (330-375 msec compared to 240 msec) and a higher

probability of rereading (.28-.46 compared to .05) for both proofreading tasks. It is important to

note that these data offer us merely a glimpse of other normative datasets of eye-movements

across task-specific reading activities, and at no point is it our goal to introduce a statistical

comparison between their findings and our own.

10 Eye-movements while debugging Python

Table 1. Mean values of global word-level eye-tracking measures taken from Schotter et al., (2014)
by English-speaking participants reading English passages for comprehension. The same measures
are given for reading for proofreading of nonwords and reading for proofreading of wrong words,
as observed by Schotter et al., (2014). The number of participants in the reading for comprehension
group was double since these data were collected from two different experiments with identical
stimuli. We average across the two experiments for the reading for comprehension data. Rereading
time represents mean time spent rereading only in trials where rereading occurred.

Reading Task Eye-Tracking Measure Mean Value SD

 Skipping Rate .20 .02

Reading for Comprehension First Fixation Duration 221 4

 Gaze Duration 240 5

 Rereading Time 290 211

 Rereading Probability .05 .02

 Skipping Rate .11 .02

Reading for Proofreading: First Fixation Duration 281 7

Nonwords Gaze Duration 375 11

 Rereading Time 347 243

 Rereading Probability .28 .02

 Skipping Rate .11 .01

Reading for Proofreading: First Fixation Duration 264 5

Wrong Words Gaze Duration 330 8

 Rereading Time 622 544

 Rereading Probability .46 .03

We are also interested in how eye-movement patterns differ between these types of

reading tasks as a function of the type of bug present in the code. For example, when reading

11 Eye-movements while debugging Python

natural texts for comprehension, regressions are often used as an index for processing difficulty

(Christianson et al., 2024; Frazier & Rayner, 1982, 1987; Jacob & Felser, 2016; Pickering &

Traxler, 1998; Slattery et al., 2013). When readers encounter ungrammatical, infrequent, or

unpredictable words and structures, not only will they usually spend more time in first-pass

reading, but they will also perform a regressive saccade and reread earlier parts of the sentence.

So, the fact that readers spend more time rereading when given a task other than comprehension

is suggestive that reading source code for debugging purposes may also lead to higher amounts

of rereading. This potential difference is one of several that provide the key motivation behind

this study, along with providing a general profile of eye-movements when people are reading

source code with different kinds of bugs or none at all.

Current Experiment

The current study may help us understand how cognitive processes differ during source

code debugging. Specifically, we seek to address the following research questions:

1. What are the descriptive, non-inferential patterns of global eye-movements associated

with reading source code with no errors and how does this differ when there are errors in

the source code?

2. How do eye movements reflect the real-time detection of errors in source code

comprehension during debugging?

The first research question can be answered by aggregating eye-movement data across

participants and trials, thereby producing an aggregate distribution for each measure of interest.

Having this descriptive analysis can inform whether or not the same basic eye-movement

12 Eye-movements while debugging Python

patterns are found in reading of natural texts and reading while debugging source code, and, if

differences are found, we can observe how they differ. Crucially, we are not actually comparing

our descriptive findings to those found in Schotter and colleagues’ study or any other study for

that matter; rather, the inclusion of those data is meant as a reference to understand general

patterns found in studies of natural text reading. The second research question requires

inferential models, but it allows us to compare physiological responses to the detection of errors

in source code to similar errors in natural texts. This again will allow us to consider

commonalities and differences between the two cognitive tasks. Specifically, syntactic errors in

reading while debugging source code are expected to elicit immediate processing differences

(i.e., first fixation duration, gaze duration), compared to code with no bugs because these reflect

surface-level issues like mistakes in spelling or visually-cued syntax (i.e., punctuation and

indentations). On the other hand, semantic errors are predicted to elicit later measures of eye-

movements like rereading and go-past time because these errors stem from issues with

integrating one chunk of code with the larger context of the source code. These patterns follow

the assumption that reading between natural texts and source code is mostly similar, which may

not prove to be true.

The current study aims to first establish a profile of reading patterns from experienced

programmers debugging Python source code. Understanding these baseline patterns can help us

better understand how humans change reading strategies to fit a given task as well as provide a

reference point for future studies examining psychological processes of debugging source code.

Second, we seek to understand how reading patterns differ when encountering semantic and

syntactic errors, where a given chunk of source code would either produce an undesired result or

produce a runtime error, respectively. To this end, we inspected reading behaviors associated

13 Eye-movements while debugging Python

with the particular bugged region of code compared to that same region in working code as well

as general reading behaviors as a function of the code’s error type. This latter group of models of

global reading behaviors is important because the eye movements associated with debugging

may not be directly observable at the time at which the erroneous chunk is initially processed.

 In order to examine eye-movement indices while debugging Python source code,

experienced programmers were instructed to read through 21 different Python functions to

determine whether each function would 1) run without error, 2) run but yield an undesired result,

or 3) yield an error message. These latter error conditions were likened to source code versions

of semantic and syntactic errors in human text processing, respectively. It is important to note,

however, that this is not a perfect comparison. For example, although error messages are often

caused by improper syntax, they can also be caused by logical flaws such as incorrect list

indexing or acting on the wrong type of variable. It is also not the case that syntactic errors in

human text processing result in errors that stop the process (although see Drewnowski & Healy,

1980, and related work for instances where small errors do go by relatively unnoticed); for

example, humans are able to overcome impoverished input much better than computers can via

good-enough processing strategies (e.g., Christianson, 2016; Ferreira et al., 2002) and noisy-

channel updates (Gibson et al., 2013; Levy, 2008; Levy et al., 2009). Nevertheless, evidence

from EEG/ERP literature (Kutas & Hillyard, 1984; Osterhout & Holcomb, 1992) establishes

potentially differential processes for overcoming syntactic and semantic anomalies in reading

(indexed by heightened P600 or N400 effects, respectively), and these differences may also be

apparent in the reading of source code.

Another potential difference is that debugging is often performed with the programmer

knowing with some confidence that there is something wrong with the code. It is also worth

14 Eye-movements while debugging Python

pointing out that, although debugging for syntactic versus semantic errors may result in different

reading behaviors, participants in this experiment have to debug for both error types in addition

to the possibility that there is no bug at all. Therefore, the purpose of this study is not to examine

differences in strategic reading behaviors depending upon the type of error readers think they are

looking for, which would be a lucrative area of research for the future; rather, we are interested

in examining eye-movement behaviors associated with debugging in general, with no specific

bug type expected a priori by readers, as well as how readers of source code react to two types of

bugs in source code. For example, syntactic and semantic errors in natural text processing often

result in longer first-pass reading times and a higher probability of regressions out of the

erroneous region (e.g., Frazier & Rayner, 1982). It is therefore of interest to see whether this

profile of reading behavior is also observed upon encountering buggy code.

 In this study, we are interested in several commonly studied eye-movement measures of

both “early and late” processing. These measures include skipping rate (a binary measure of

whether an area of interest was fixated), first fixation duration (the amount of time spent during

the first fixation within an area of interest), gaze duration (the amount of time spent fixating an

area of interest before leaving that area in either the forward or backward direction), rereading

probability (a binary measure of whether an area of interest was fixated after initially leaving that

area for the first time), and rereading time (how much time was spent refixating an area of

interest). Each of these variables was chosen for a specific cognitive reason (cf. Rayner, 1998;

Rayner et al., 2012): skipping rate is predictive of processing depth and can change as a function

of text length and complexity (e.g., Slattery & Yates, 2018); first fixation duration and gaze

duration are both correlated with early cognitive processes like lexical retrieval, the former being

more sensitive to initial visual expectations and the second being more sensitive to linguistic

15 Eye-movements while debugging Python

expectations (Rayner & Reingold, 2015); rereading probability often speaks to the difficulty

during later, integrative stages of sentence processing that involve placing words into

semantically and syntactically plausible and acceptable roles (e.g., Frazier & Rayner, 1982); and

rereading time can often be an indicator of both uncertainty and difficulty in language processing

(e.g., Christianson et al., 2023, 2024). These variables were examined in the descriptive analysis

reported in the Results section. Additionally, full trial reading was also used as a dependent

variable in hierarchical models to determine differences in reading behaviors between different

bug types. Bug detection accuracy and self-reported confidence were also used as dependent

variables to offer insights into how the different types of errors influence confidence and ability

to successfully detect errors.

 The eye-tracking measures reported in the current study are hypothesized to reflect

similar processes between natural text reading and reading while debugging Python source code.

For instance, gaze duration, which is usually reflective of lexical retrieval processes, is

hypothesized to reveal processing difficulty in retrieving a chunk of code’s meaning, which is

sometimes contextually bound (i.e., object labels) and sometimes contextually independent (i.e.,

words in the basic Python package like “for” or “else”). Thus, one potential difference between

bugged and non-bugged AOIs may be found in global gaze duration behaviors such that gaze

duration times on average are shorter for bugged code because readers notice an error and then

skim the rest of the code to find information relevant to the error. Thus, even early measures of

reading behavior may elicit effects based on the bug condition of the source code. This is just

one possible finding to illustrate why these measures are worth investigating—as of now, we do

not know how these general reading patterns differ as a function of the source code’s bug status.

16 Eye-movements while debugging Python

METHOD

Participants

 Thirty participants were recruited from the University of Illinois community and received

$15 for participation in the experiment. All participants reported having at least two years of

experience programming in Python. There was no English language requirement, although all

participants were students at the University of Illinois, so a certain level of English proficiency

was assumed. Despite the lack of language requirement, only one student did not self-report as a

native English speaker. Participant demographic and relevant coding experience data are

reported in Table 2. There are a few patterns worth mentioning from the demographic data. First,

in terms of programming experience, most participants indicated having experience with at least

one additional programming language, and the variance in number of years of Python experience

was not very large (M = 3.2 years, SD = 2.1 years), meaning this study is measuring eye-

movement patterns of a rather specific range of programmers with about 2 to 5 years of Python

experience. The race and ethnicity of participants is representative of several groups (Table 2);

however, it is not exhaustive. Moreover, the majority of participants in this study were male,

which, although closely resembling some estimates of demographic breakdown in programming

disciplines (7.51% Female [GitLab, 2020]), makes it difficult for the findings to generalize to

diverse populations. Although we assume demographic differences to be minimal in their

influence on eye-movement behaviors, we acknowledge that the current sample is not fully

representative, and future work should aim to provide a more inclusive sample.

17 Eye-movements while debugging Python

Table 2. Demographic breakdown of study participants. Participants were told they must have at
least two years of experience programming in Python to participate. Python comfort was
assessed via a five-point Likert scale with 1 representing not comfortable at all and 5
representing completely comfortable. All other variables were open answer except for Language,
which was a binary choice of self-identification as a native speaker of English or not.

Participant variable Breakdown
Age M = 21.7

SD = 4.2
Gender 27 Males

3 Females

Race/ethnicity
12 South/Southeast Asian

8 Asian/East Asian
7 White

3 Hispanic

Major field of study

18 Computer Science/Engineering
5 Engineering

3 Statistics/Math
3 Physics/Biophysics

1 Psychology
Language 29 Native English

1 ESL
Programming experience M = 4.8 Years

SD = 2.1 Years
Python experience M = 3.2 Years

SD = 1.5 Years
Python comfort M = 4.1

SD = 0.7

Materials

 When designing the Python functions for this study, the goal was to include a diverse set

of functions with various bugs to understand general reading processes that are not constrained

by any particular type of function or bugged code. For that reason, we developed 21 Python

functions and created 3 versions of each function: no bug, syntactic bug, semantic bug. Syntactic

bugs were defined as bugs that would produce a run-time error, whereas semantic bugs would

produce an undesired result. This maps onto syntactic and semantic errors in natural text reading

in several ways, but is not a perfect match. Specifically, syntactic errors in source code stem

18 Eye-movements while debugging Python

from lower-level information like improper character usage or visual syntactic cues (e.g.,

improper indentations, spelling mistakes, incorrect punctuation). Thus, syntactic anomalies in

source code may be detected from earlier, lower-level visual processing stages compared to

syntactic errors in natural text that require integration across the sentence (e.g., subject–verb

agreement). However, these errors do map between different text types in that syntactic errors in

regular texts also do not usually require as much contextual support to detect (e.g.,

morphological errors or issues with word order in English) compared with semantic errors.

Semantic errors, on the other hand, often lead to conflict in terms of plausibility, which requires

evaluating the error with the greater context of the sentence and real-world expectations (e.g.,

interpreting “Hannah mowed the giraffe” requires understanding that giraffes are not usually

mowed).

Areas of interest (AOIs) were constructed by considering parts of code that may be

processed as a chunk, much like how a word may be processed as a unit. For example, Figure 2

shows how AOIs are constructed across three different versions of the same item. Importantly,

the bugged versions of items never changed these function properties. One item did not meet this

particular criterion after inspection following the conclusion of the experiment, and so it was

discarded prior to analysis. These AOIs differ particularly in terms of their length and their

complexity, defined in the current study as the number of characters and the number of

embedded arguments, respectively. Table 3 reports various statistical properties of the different

items used in this experiment. For each bug type, there were three different sub-types. For

syntactic conditions, bugs could be of three different types: incorrect indentation or punctuation,

omission of some required character(s), or spelling and terminology errors. For semantic

19 Eye-movements while debugging Python

conditions that yielded undesired results, bugs could be of three different types as well: incorrect

indexing, incorrect mathematical calculation or operator, or a wrong variable being used.

Figure 2. An example item with all three versions: no bug, semantic bug, and syntactic bug.
Because all content of the code is in some area of interest, we use the “\” characters to delineate
the areas of interest. These were not visible to participants. Participants saw the source code with
syntax highlighting (i.e., keywords, functions, comments, etc. shown in different colors to
delineate purpose), as is typical in source code editors.

20 Eye-movements while debugging Python

Table 3. Descriptive summary of item and area of interest properties. The area of interest types
are defined as follows: Variable includes chunks of code that create variables within the
function; Logic includes conditional statements like “if”; Instructions includes all lines
commented out of the code with “#”; Loop includes all lines that initiate an iterative loop;
Definition & Import includes all function definition and import lines; Return includes lines with
a return function; Function includes any line not previously categorized that uses a function (e.g.,
“print()”).

Item variable BREAKDOWN
Number of lines M = 14.8 Lines

SD = 3.0 Lines
Number of area of interests M = 23.7 AOIs

SD = 6.1 AOIs
Average area of interest complexity M = 1.2 Levels

SD = 0.1 Levels
Average area of interest length M = 3.2 Characters

SD = 0.7 Characters

Distribution of AOI types

Variable = 42%
Logic = 15%

 Instructions = 14%
Loop = 10%

Definition & Import = 9%
Return = 7%

Function = 3%

 All items contained at least three lines of comments directly underneath the definition

line. The first line (or multiple lines, depending on the complexity of the function’s intended use)

explained the desired goal of the function. The last two lines were always an example input and

example output. AOIs were coded into one of several different categories depending on their

purpose (e.g., “Variable” if the AOI’s purpose was to create a variable within the function).

Some items imported packages before the definition line, but no information about those specific

packages was given. In general, there was always the chance that participants may not be

familiar with a given function that appeared in the code, although only functions and packages

from the standard library of Python were included to improve the chances that participants would

be familiar with them. To better inform the data patterns we collected, all items included

21 Eye-movements while debugging Python

confidence ratings immediately following the bug detection prompt (see Procedure section).

Lastly, the items retained typical syntax highlighting (i.e., color coding) from the source code

editor they were created in; however, in many editors, syntactic bugs result in color changes to

cue programmers that some line of code is erroneous. Therefore, we retained the color that the

bugged AOI would appear in assuming there was no error. This decision was necessary to

prevent participants from immediately using text color information to find bugs while still

retaining visual color cues that experienced programmers use on a daily basis. Participants were

warned of this before starting the experiment.

Procedure

 Participants first signed consent and completed a written questionnaire about their Python

and programming experience. Next, they were read instructions followed by three practice items

showcasing a trial with no bug, a trial with a syntactic bug, and a trial with a semantic bug. For

each trial, participants first saw a screen reminding them of the three bug categories an item

could appear in. Participants were instructed to use a button to proceed to the next screen that

contained the item’s code, where they were instructed to read the code silently until they

determined whether there was no bug, a semantic bug, or a syntactic bug. After this

determination, participants were instructed to proceed with the button to the next screen, where

they would indicate their answer. Immediately following their response, participants indicated

whether they were very confident, somewhat confident, or not at all confident in their response.

After indicating their confidence level, the next trial would begin. Participants were told three

additional pieces of information about the task: 1) they should not rely solely on the example

input and output for determining if a function would work, 2) the color scheme is not designed to

22 Eye-movements while debugging Python

aid in debugging (see previous section), and 3) they should try their best to figure out what

unfamiliar functions do based on context. Participants did not receive feedback about their

responses. About halfway through the experiment, participants were given a break no longer than

two minutes to rest their eyes. At the end of the experiment, participants filled out a demographic

survey before receiving compensation.

 After participants completed the practice items, they were calibrated using a 9-point

calibration procedure on the desktop SR Research EyeLink 1000+ eye-tracker system2.

Calibration was deemed acceptable if validation showed less than .1o divergence from the initial

calibration. Viewing was binocular, but only the left eye was tracked. For some participants, the

right eye was instead used due to calibration difficulties. Text was presented in 14-pt Courier

New monospace font on a 20-inch LCD monitor with a 120 Hz refresh rate, and areas of interest

bordered this text with an additional buffer of blank space extending about one character above

and below. The monitor was 60 cm away from participants’ eyes, which corresponds to about 1o

of visual angle spanning approximately 3.5 characters. Eye-movements were recorded with a

sampling rate of 1000Hz and spatial resolution of 0.01o. After the break, participants were

calibrated again, and calibration was sometimes necessary if the tracker lost track of their eyes.

The task took on average 30 minutes to complete.

Data Availability Statement

 All data and analysis code are available online at https://osf.io/49wga/.

2 For eye tracker specifications, see SR Research, ExperimentBuilder 2.4.77 User Manual. The default event
detection algorithm used by SR Research is an Identification by Velocity Threshold (IVT) algorithm. For cognitive
experiments, the velocity threshold is set to 30 degrees/sec by default.

https://osf.io/49wga/

23 Eye-movements while debugging Python

Results

Data Cleaning Procedures

 No participants were removed based on qualifying criteria or inattentiveness. Each trial

from each participant was inspected in SR Research DataViewer software. Minimal manual edits

were made for fixations that systematically appeared slightly above or below areas of interest.

Fixations that appeared outside any area of interest and did not belong to any systematic pattern

were removed prior to analysis. Next, remaining fixations that lasted less than 80 msec were

removed from the dataset, resulting in a loss of less than 5% of fixations. These data cleaning

guidelines were meant to be less strict than is commonly used in psycholinguistic studies of

reading, since we did not have a priori expectations for durational distributions. Following this

logic, no participants were removed prior to analysis due to low accuracy since these bugs were

not necessarily easy to find, even for experienced programmers. Furthermore, although we treat

accuracy as binary (i.e., correct or incorrect) for our analyses, the chance rate for accurate

responses was 33%, not 50%. Lastly, outliers were not removed from the dataset because we had

no a priori expectation beyond the aforementioned parameters of how the distributions should

look. In other words, we wanted to be as conservative as possible with the data because our prior

knowledge was not sufficient to make a decision regarding outlier cutoffs, and one of the main

goals of the paper was to illustrate what those distributions looked like.

Descriptive Analysis of Reading Measures

 Means and standard deviations for these measures by experimental condition are reported

in Table 4 below. AOIs that contained instructions were not included since these items were

24 Eye-movements while debugging Python

essentially read for comprehension—the computer does not read them. Although AOIs in the

current study were constructed to isolate chunks that represented conceptual units, there is likely

not a one-to-one correspondence here with word-level reading patterns, like in Schotter et al.

(2014). However, there are still many parallels. For example, oculomotor function should behave

similarly since the eyes need to move in the same fashion when reading any kind of character-

based information. Second, although the task is different in reading natural vs. programming

languages, we are assuming the same general mechanism of early eye-movement behaviors

during both types of reading as a function of text predictability, frequency, and length, as

described for example in the E-Z Reader model (Reichle et al., 2003).

Table 4. Means and standard deviations of globally averaged reading behaviors by experimental
condition while reading for debugging Python source code, rounded to nearest msec for
continuous measures and nearest hundredth for probabilistic measures.

Reading measure No Bug Mean (SD) Syn Bug Mean (SD) Sem Bug Mean (SD)
First fixation duration 228 (97) 230 (101) 228 (94)

Gaze duration 387 (524) 396 (541) 378 (487)

Rereading time 2392 (3305) 1949 (2679) 2066 (2869)

Rereading probability .76 (43) .74 (.44) .74 (.44)

Skipping probability .53 (.50) .54 (.50) .53 (.50)

Although mean first fixation duration while debugging Python source code was close to

what we might see for reading for comprehension as reported by Schotter et al. (2014) (Table 1),

its standard deviation, like all of the variables reported in the current study, was much larger. On

the other hand, mean gaze duration while debugging Python source code was substantially longer

25 Eye-movements while debugging Python

than that of either type of proofreading for natural texts. The same was true for rereading time,

suggesting participants spent substantially more time rereading while debugging Python source

code compared to either type of proofreading or reading for comprehension of natural texts.

Additionally, there was a higher probability of rereading compared to natural texts (72%

compared to 5% [reading for comprehension], 28% [reading for proofreading spelling errors],

and 46% [reading for proofreading nonwords]). Participants skipped nearly half the AOIs in this

experiment on average compared to about 20% during reading for comprehension and 10% for

either type of proofreading of natural texts. These findings are discussed further in the General

Discussion.

Global Reading Models

To assess whether there were significant differences in these eye-movement measures

between bug conditions, we fit a series of Bayesian hierarchical models (also known as mixed

effects models or nested models) to the data using the brms package (Bürkner, 2017) in R

version 4.0.3 (R Core Team). For each model with a continuous dependent variable, log-

transformed data were regressed onto a fixed effect of condition (treatment coded with no-bug

baseline). Since there were three contrasts of interest, two separate models were run for each

dependent measure with either the no-bug condition or the syntactic bug condition as the

baseline. The choice to use this contrast scheme may cause issues with multiple comparisons

(but see Gelman et al., 2012 for why Bayesian models are more robust to these issues); however,

Helmert contrasts were not deemed suitable for the current analysis because there was no a

priori expectation for a baseline against which both treatment conditions would similarly

compare. Nevertheless, this modeling approach may still lead to an inflated Type I error rate;

26 Eye-movements while debugging Python

however, we find no concerning contradictions between models, suggesting this is not the case.

For instance, comparing the syntactic and semantic bugs with each other and then comparing

their mean with a no bug baseline would rely on the assumption that we expect the directionality

of differences between each treatment group and the no-bug condition to be the same. For this

reason, we report the output of two models with different treatment contrasts. An additional

control of Python experience (in years) was entered as a fixed effect as well, and number of

AOIs was entered as a length control for the full trial reading time model. Similarly, chunk

count, or the number of word-like chunks in a given AOI, was entered as a fixed effect for

skipping and regression-in rate since these dependent measures were not aggregated to maintain

their binary distribution. These control fixed effects are not reported in tables but are in the

supplemental code. Random intercepts were entered by Participant and by Item and maximal

random slopes were included in all models. All models with continuous dependent measures

were fit to a Gaussian distribution aggregated across AOIs within each item. This means that

each measure was aggregated such that each individual trial of an item by a specific participant

produced one mean value. This approach was taken to analyze general behaviors when reading

for debugging and avoid by-trial influences, further controlled for in our random effects

structure. Models with binary dependent measures were instead fitted with models using a

Bernoulli distribution.

Models were run with mildly informative priors that allow for a wide variation of mean

reading behaviors as well as effect sizes, and these are reported in all model output tables.

Models were run for 7500 iterations, 2500 of which were warmup, with 4 chains. To interpret

models, we used 95% credible intervals (CrIs) as a heuristic cutoff for identifying effects that

may be meaningful. If a 95% CrI does not contain 0, that indicates that at least 97.5% of

27 Eye-movements while debugging Python

posterior estimates showed an effect in that given direction. Accuracy and confidence

distributions by participant and by bug type are illustrated in Figure 3 below. First fixation

duration, gaze duration, rereading time, and full trial reading time were all fit using a Gaussian

distribution aggregated across AOIs within each trial, whereas skipping rate and regression in

probability were fit using a Bernoulli distribution to unaggregated AOI data. For the Gaussian

models, priors included an intercept prior [normal(0,10)], beta prior [normal(0,1)], and group-

level standard deviation prior [normal(0,1)]. For the Bernoulli models, including accuracy and

confidence models, the intercept prior was changed [normal(0,2)] for sampling efficiency.

Figure 3. Mean accuracy and confidence by participant across experimental conditions.
Raincloud plots throughout the paper adapted from Allen et al., 2019. Individual points represent
mean values, violin plots show the shape of the distribution, and the boxplots represent the
median and 25% to 75% quartiles.

28 Eye-movements while debugging Python

Model outputs for global reading measures are reported in Table 5 below, accuracy and

confidence model outputs are reported in Table 6, and distributions of select measures are

reported in Figures 4, 5, and 6 below. First, experimental condition seemed to have no effect on

accuracy rate, whereas syntactic conditions elicited lower levels of confidence overall compared

to both no-bug and semantic-bug conditions. The eye-movement models revealed simple effects

between syntactic bug and no-bug conditions such that syntactic bugs led to a lower probability

of rereading, less time spent rereading, and less time spent reading the full trial. The only

difference between no bug and semantic bug conditions was that the latter resulted in slightly

less overall rereading, just like the syntactic bugs did. These results suggest that no-bug

conditions led to more rereading than syntactic trials, which is likely due to the uncertainty

involved in deciding no bug exists versus finding a bug, particularly when that bug is syntactic in

nature. This is seemingly in contrast with the finding that confidence is higher in no-bug

conditions versus syntactic bug conditions; however, it could be that the additional time spent

rereading the no-bug trials led to greater confidence in answers. Finally, higher rates of skipping

and lower rates of regressions-in were observed for AOIs with fewer chunks, similar to length

effects found during reading of natural texts, and longer trials unsurprisingly led to longer overall

reading times.

29 Eye-movements while debugging Python

Tables 5. Model outputs for global reading behaviors. Simple effects for all comparisons were
obtained by running two identical models, the first with a no bug baseline and the second with a
syntactic bug baseline. Bolding denotes effects where the 95% CrI does not cross 0.

Dependent Measure Baseline Effect Estimate SE 95% CrI

 No Bug Semantic Condition .01 .01 [-.01, .04]

 No Bug Syntactic Condition .01 .01 [-.02, .04]

First Fixation Duration No Bug Python Experience -.01 .02 [-.04, .02]

 Syntactic No-bug Condition -.01 .01 [-.03, .02]

 Syntactic Semantic Condition .01 .01 [-.02, .03]

 Syntactic Python Experience -.01 .02 [-.05, .02]

 No Bug Semantic Condition -.01 .03 [-.07, .06]

 No Bug Syntactic Condition .03 .04 [-.04, .11]

Gaze Duration No Bug Python Experience .22 .32 [-.43, .84]

 Syntactic No-bug Condition -.04 .04 [-.11, .04]

 Syntactic Semantic Condition -.04 .03 [-.11, .02]

 Syntactic Python Experience .21 .31 [-.47, .80]

 No Bug Semantic Condition -.01 .07 [-.14, .12]

 No Bug Syntactic Condition .02 .06 [-.10, .13]

 No Bug Python Experience .03 .06 [-.08, .14]

Skipping Rate No Bug Chunk Count -.35 .01 [-.38, -.32]

 Syntactic No-bug Condition -.02 .06 [-.15, .10]

 Syntactic Semantic Condition -.03 .06 [-.15, .10]

 Syntactic Python Experience .03 .06 [-.08, .14]

 Syntactic Chunk Count -.35 .01 [-.38, -.32]

30 Eye-movements while debugging Python

 No Bug Semantic Condition -.08 .07 [-.21, .05]

 No Bug Syntactic Condition -.14 .07 [-.28, .00]

 No Bug Python Experience -.02 .05 [-.13, .06]

Regression In Prob. No Bug Chunk Count .07 .01 [.05, .10]

 Syntactic No-bug Condition .15 .07 [.01, .29]

 Syntactic Semantic Condition .06 .06 [-.07 ,.20]

 Syntactic Python Experience -.03 .04 [-.12, .06]

 Syntactic Chunk Count .07 .01 [.05, .10]

 No Bug Semantic Condition -.17 .10 [-.38, .04]

 No Bug Syntactic Condition -.28 .12 [-.51, -.05]

Rereading Time No Bug Python Experience -.02 .09 [-.22, .15]

 Syntactic No-bug Condition .28 .11 [.07, .49]

 Syntactic Semantic Condition .11 .12 [-.15, .35]

 Syntactic Python Experience -.02 .09 [-.21, .15]

 No Bug Semantic Condition -.12 .06 [-.25, .00]

 No Bug Syntactic Condition -.25 .08 [-.40, -.10]

 No Bug Python Experience .03 .06 [-.17, .09]

Full Trial Reading Time No Bug Number of AOIs .03 .01 [.01, .05]

 Syntactic No-bug Condition .25 .07 [.11, .39]

 Syntactic Semantic Condition .12 .08 [-.04, .29]

 Syntactic Python Experience -.04 .06 [-.17, .08]

 Syntactic Number of AOIs .03 .01 [.01, .05]

31 Eye-movements while debugging Python

Table 6. Model outputs for accuracy and confidence. Simple effects for all comparison were
obtained by running two identical models, the first with a no bug baseline and the second with a
syntactic bug baseline. Bolding denotes effects where the 95% CrI does not cross 0.

Dependent Measure Baseline Effect Estimate SE 95% CrI

 No Bug Semantic Condition .09 .29 [-.48, .67]

 No Bug Syntactic Condition .16 .40 [-.63, .96]

Accuracy No Bug Python Experience .16 .12 [-.06, .42]

 Syntactic No-bug Condition -.13 .36 [-.84, .59]

 Syntactic Semantic Condition -.03 .38 [-.79, .73]

 Syntactic Python Experience .18 .12 [-.04, .43]

 No Bug Semantic Condition .02 .08 [-.13, .17]

 No Bug Syntactic Condition -.15 .07 [-.30, .00]

Confidence No Bug Python Experience -.07 .05 [-.17, .04]

 Syntactic No-bug Condition .15 .09 [-.03, .32]

 Syntactic Semantic Condition .16 .07 [.03, .29]

 Syntactic Python Experience -.07 .05 [-.18, .04]

32 Eye-movements while debugging Python

Figure 4. Mean rereading probability by participant across experimental conditions.

Figure 5. Mean log-transformed rereading time by participant across experimental conditions.

33 Eye-movements while debugging Python

Figure 6. Mean log-transformed full trial reading time by participant across experimental
conditions.

Bug Identification Models

 To investigate the profile of eye movements during the reading of bugged source code,

we fit Bayesian hierarchical models to the target AOI (the bug) for all items. Model outputs are

reported in Table 7. Since the syntactic bug and semantic bug often occurred on different lines

from one another, two sets of analyses investigated how each type of bug differed from the

reading of the same AOI with no bug. This allowed us to use sum contrasts instead of treatment

contrasts (no-bug condition = -.5, syntactic/semantic condition = .5). We also entered length in

non-punctuation characters and the number of embedded levels within an AOI as fixed effects,

referred to henceforth as AOI length and AOI complexity respectively, and we used the same

random intercepts by Participant and by Item as in the other models. Since binomial responses

34 Eye-movements while debugging Python

were not averaged like for the global models, we fit models with binomial response dependent

variables to a Bernoulli distribution and used slightly adjusted mildly informative priors

accordingly (i.e., we changed the SD of the intercept parameter from 10 to 2 for more efficient

sampling). From these models, the only text characteristic effect found was a main effect of AOI

Complexity such that higher complexity predicted a higher probability of regressing out of the

AOI. In addition, a main effect of condition was found in gaze duration times such that semantic

conditions elicited longer gaze duration times compared with no-bug conditions. This suggests

that semantic information is processed to some degree during early stages of processing.

35 Eye-movements while debugging Python

Table 7. Model outputs for reading behaviors of bugged AOIs. Main effects for all comparison
were obtained by running two identical models, the first including only no bug and semantic bug
trials and the second including only no bug and syntactic bug trials. Bolding denotes effects
where the 95% CrI does not cross 0.

Dependent Measure No-bug Contrast Effect Estimate SE 95% CrI

 Semantic Condition .03 .06 [-.09, .16]

 Semantic Python Experience .01 .02 [-.03, .05]

 Semantic Chunk Count .02 .03 [-.03, .08]

First Fixation Duration Semantic Complexity -.09 .08 [-.26, .08]

 Syntactic Condition .01 .05 [-.08, .10]

 Syntactic Python Experience -.02 .02 [-.07, .03]

 Syntactic Chunk Count .00 .01 [-.02, .03]

 Syntactic Complexity -.02 .04 [-.11, .06]

 Semantic Condition .23 .10 [.03, .42]

 Semantic Python Experience -.03 .05 [-.12, .06]

 Semantic Chunk Count .20 .05 [.09, .30]

Gaze Duration Semantic Complexity .05 .15 [-.25, .36]

 Syntactic Condition .09 .10 [-.11, .29]

 Syntactic Python Experience -.01 .05 [-.10, .08]

 Syntactic Chunk Count .04 .04 [-.03, .12]

 Syntactic Complexity .12 .12 [-.11, .35]

 Semantic Condition .10 .34 [-.56, .76]

 Semantic Python Experience .00 .17 [-.34, .33]

 Semantic Chunk Count -.58 .24 [-1.07, -.14]

Skipping Rate Semantic Complexity -.08 .56 [-1.17, 1.03]

36 Eye-movements while debugging Python

 Syntactic Condition -.15 .33 [-.80, .51]

 Syntactic Python Experience .04 .16 [-.28, .35]

 Syntactic Chunk Count -.37 .22 [-.84, .02]

 Syntactic Complexity -.70 .49 [-1.72, .24]

 Semantic Condition .09 .32 [-.54, .73]

 Semantic Python Experience .01 .16 [-.32, .34]

 Semantic Chunk Count .28 .25 [-.22, .76]

Regression Out Prob. Semantic Complexity -.24 .66 [-1.51, 1.08]

 Syntactic Condition .11 .32 [-.53, .74]

 Syntactic Python Experience -.12 .13 [-.37, .12]

 Syntactic Chunk Count .20 .17 [-.11, .57]

 Syntactic Complexity 1.09 .45 [.22, 1.98]

 Semantic Condition .16 .15 [-.13, .45]

 Semantic Python Experience -.01 .08 [-.17, .15]

 Semantic Chunk Count .19 .10 [.00, .38]

Rereading Time Semantic Complexity .45 .29 [-.15, 1.00]

 Syntactic Condition -.12 .17 [-.47, .22]

 Syntactic Python Experience .01 .08 [-.15, .17]

 Syntactic Chunk Count .07 .05 [-.04, .18]

 Syntactic Complexity .21 .18 [-.13, .58]

37 Eye-movements while debugging Python

GENERAL DISCUSSION

 The goals of the current study included first establishing eye-movement indices of

reading while debugging Python source code before examining reading patterns associated with

different types of bugs. This section focuses on each of these goals in turn before putting forth a

proposal that psycholinguistic analysis can and should inform advances in our understanding of

source code reading. Finally, a few outstanding questions are highlighted to showcase the

directions we believe are most critical for developing educational interventions and real-time

strategies for readers of source code at all levels of expertise.

Eye-Movement Indices of Reading for Debugging Python Source Code

 The global reading patterns observed in the current experiment, reported in Table 4,

illustrate a descriptive pattern that appears distinct from the reading of natural texts both for

comprehension and for different types of proofreading. In turn, first fixation duration, gaze

duration, rereading time, rereading probability, and skipping probability together form a unique

index of eye movements during the reading for debugging of Python source code. First fixation

duration seems to be in line with reading natural texts, perhaps most closely with reading natural

texts for comprehension. This perhaps makes sense since the longer first fixation durations for

reading natural texts for proofreading likely reflect a lower-level, bottom-up strategy that would

be beneficial for detecting spelling errors, whereas the kind of troubleshooting in Python source

code reading was necessarily vaguer in terms of the source of the bug. For example, there could

be a misspelled word; however, there could also be incorrect logic, incorrect indentation levels,

the wrong variable called, etc., which would all require higher-level, top-down reasoning to

38 Eye-movements while debugging Python

detect. Therefore, it follows that first fixation durations, an early measure of processing more

indicative of visual, graphemic, or lexical processing, would be closer to that of reading natural

texts for comprehension.

 Global gaze duration times show a clear pattern, where reading for debugging Python

source code elicits longer gaze durations than reading natural texts for both comprehension and

proofreading. A potential caveat could be that the length of the AOIs is modulating this

difference; however, the mean AOI length is only 3.2 characters, which does not differ

meaningfully from the average length of English words in most texts, for example 4.75

characters in the Brown corpus (Francis & Kucera, 1979; von der Malsburg, 2022). It is therefore

more likely that, although reading source code does not differ in terms of initial fixation

duration, the relatively lower regularity of its form compared to natural texts may necessitate a

higher number of fixations (e.g., Stites et al., 2013).

 The differences grow larger when we look at rereading patterns. For example, areas of

interest are reread on average for one full second longer than reading for proofreading of natural

texts from Schotter et al.’s study, and rereading is 1.5 times more likely for reading for

debugging Python source code. Reading for debugging Python source code also elicits more

skipping. The increased rate of rereading may reflect a greater need for referencing earlier parts

of the input than is present in reading natural language texts. The increased rate of skipping, on

the other hand, might show that source code reading for debugging does not require as strictly an

incremental processing strategy as reading natural texts for comprehension or for

troubleshooting. For instance, experienced programmers may go through the function in a mostly

vertical manner first to understand the global structure of the function (Busjahn et al., 2015;

Turner et al., 2014), whereas such a strategy would not prove as fruitful in natural text reading. It

39 Eye-movements while debugging Python

is also possible that, like in natural reading, reading source code utilizes parafoveal processing to

inform skipping behaviors (see Schotter et al., 2012 for a review on parafoveal processing in

reading natural texts). For example, when reading a variable assignment line such as “my_list =

[]”, experienced programmers may process the empty brackets in their parafoveal view and then

decide to skip to the next line. However, such parafoveal preview effects require future studies to

confirm.

Lastly, it is important to note that these comparisons are not backed by statistical models;

that is, we cannot say with certainty that these differences are significant or reliable. However,

we argue that, by providing a profile of reading behaviors or a specific task much like Schotter et

al. (2014) did, we are allowing for observational patterns to be assessed. Nevertheless, future

work should focus on directly comparing these reading contexts within an experimental design to

more concretely assess the degree of these differences.

Bug-Type Differences in Global Reading Measures

The only set of findings from the models of global reading behaviors linked to specific

bugs indicated that syntactic bugs elicited less rereading than the no-bug condition. Since no

difference was found between the no-bug condition and semantic bug condition, it is likely that

this finding stems from a lack of rereading in syntactic bug conditions specifically. One reason

why this is likely the case is that syntactic bugs, once perceived, do not require integration into

the broader context of the code to determine whether they are truly bugs or not. For example, if a

function word is misspelled, then you do not need to understand what that line of code was trying

to do to know that it would produce a runtime error. Interestingly, syntactic bugs led to lower

40 Eye-movements while debugging Python

confidence despite a lack of rereading, which on the surface may seem contradictory since

rereading is often an index of uncertainty; however, rereading in this particular case would not

help participants since syntactic errors often hinge on one single, relatively small cue. This is

perhaps why confidence is low for syntactic bugs even though there is not much rereading. The

lack of effect between semantic and no-bug conditions was also unexpected, but this is perhaps

driven by the fact that both conditions require a thorough reading of the code to understand

whether it will produce the desired output or not.

Bug Detection Reading Patterns

 When looking at how reading patterns of buggy AOIs differed between conditions, the

first takeaway is that complexity of the AOI influenced the probability of rereading just as is

reported in natural text reading where the complexity of words influences rereading behavior.

Interestingly, the only effects of bug type found were between semantic bug trials and no-bug

trials such that bugged AOIs in semantic trials elicited longer gaze durations. It seems, then, that

semantic bugs may influence early, first-pass measures of reading. When compared with

semantic and syntactic error processing while reading natural texts, this is the opposite of what

would be expected. This finding is perhaps indicative of the heavier reliance on top-down

strategies when reading source code compared to natural texts, as proposed in previous research

(Brooks, 1983; Schneiderman & Mayer, 1979). Bugs such as erroneous indexing, calling the

wrong variable, or incorrect mathematical operations may interrupt logical predictions made by

experienced programmers. This would be consistent with the large extant body of

psycholinguistic literature showing that readers can make predictions in constrained contexts that

cause processing disruptions if they do not match the eventual input (e.g., Federmeier, 2007;

41 Eye-movements while debugging Python

Kuperberg & Jaeger, 2016). When coupled with recent research showing that programming

language is more predictable than written language, it seems a likely case that experienced

programmers learn to rely more on semantic information at earlier stages of processing than is

typical in natural text reading; however, more work is needed to determine the interplay of

predictability and bug detection-related behaviors.

Limitations and Future Directions

 Perhaps the most obvious limitation of the study is that we cannot speak to the

generalizability of these Python source code findings to reading while debugging other

programming languages. Future work is needed to determine if such differences between

languages exist and to what extent they differ, if at all. Moreover, although we refer to the source

code reading activity in the current study as debugging, debugging in the real world is different

in several ways. First, the color coding can be used as a cue to syntax errors in most source code

editors, whereas we did not allow for this to ensure the errors required a somewhat thorough

reading of the code. Second, participants were not able to actually run the code to see either an

inappropriate output or a runtime error, both of which could help programmers find the particular

issue if there is one. Third, functions only represent a part of a programming language and

therefore do not represent all types of materials that are being read and debugged by experienced

programmers. Although these discrepancies were necessary in the current study for the sake of

limiting variability between items and avoiding certain caveats, future work is needed to

ascertain how these conditions contribute to eye-movements during debugging of source code.

42 Eye-movements while debugging Python

Another limitation of the current study is that even experienced programmers may not

know whether a bug they find will yield an error or simply produce the wrong result, especially

when they are not given the option of running the code to find out. Although the models reported

in this manuscript treat accuracy as a binary, participants reported a semantic bug in 30% of

inaccurate trials for syntactic bug conditions and reported a syntactic bug in 45% of inaccurate

trials for semantic bug conditions. Since the current experiment had participants decide between

three options, it makes the most sense to treat accuracy as accurate only if the correct choice was

selected. However, to investigate whether participants were better at detecting a bug in general

versus determining the type of bug, we reran the accuracy model with this more general version

of accuracy and found simple effects such that both types of bug condition elicited higher

accuracy than the no-bug condition. This can be found in the supplemental code. That is,

participants were more successful at detecting a bug than determining that there was no bug,

although their ability to determine whether the bug was syntactic or semantic was less

successful. Moreover, participants were significantly better at determining that a bug was

semantic in nature than determining that it was syntactic (i.e., would produce a runtime error).

This may also be due to the fact that there was no way for participants to check if the code would

run in the current experimental design. One might argue that this lack of ability to discern

between bug types means that the manipulation was not salient enough for these programmers;

however, the ability to explicitly classify types of errors and the ability to identify errors in

general are different cognitive skills. One potential avenue for future research would be to limit

the type of bugs to either semantic or syntactic. Since having participants decide between bugs

creates additional noise, which is arguably more generalizable to the debugging process in the

43 Eye-movements while debugging Python

real world, it still may obfuscate how patterns of reading influence successful detection of

particular bugs.

 Although we chose the data reported by Schotter et al. (2014) as an example of a similar

psycholinguistic dataset of task-specific eye-movements, we did not make any sort of statistical

comparison between our data and theirs, and no single study should suffice to capture the

variability that goes into the process of reading. Thus, future studies are needed to extend those

reported in the current manuscript. Additionally, as has been found in reading for natural texts

and for reading of source code, the reading strategies and processes used by programmers are

likely different depending on level of experience, and there are likely differences within a given

reader with how they read and proofread text and how they read and debug code. The current

sample likely represents an intermediate population who are familiar with code but have spent

much less than a decade coding on average. By controlling other factors of the current

experimental paradigm, more precise comparisons between populations would be achievable,

including comparison between populations with differing levels of expertise, different linguistic

backgrounds, and different neurological profiles.

 Lastly, the AOIs we constructed for these items were designed to capture what we

conjectured to be minimal “chunks” of processing that could be likened to words in natural texts;

however, more work is needed to truly understand if programming languages have such an

equivalent. For example, we treat the chunk “range(len(word))” as a single AOI, but it may be of

interest to researchers to delineate this even further such that “range,” “len”, and “word” are all

separate AOIs. Indeed, at some level each word in this chunk likely requires lexical access

similar to language processing (e.g., Duffy et al., 1988), but we decided to analyze this as one

coherent chunk since it is quite commonly found in Python source code programming.

44 Eye-movements while debugging Python

Moreover, even in the reading of natural texts, words are not always the base unit of processing

since they themselves are made up of morphemes, which are subsequently made up of letters.

Therefore, a future line of work could establish whether source code reading indeed uses the

same cognitive categorization of linguistic chunks as is theorized to be used in natural reading.

Conclusion

 Reading Python source code for debugging is a distinct cognitive process that utilizes

many of the mechanisms underlying natural language text reading while also relying on

knowledge of a separate, human–computer interaction system to transfer human instructions to

something a computer can execute. The global reading patterns reported here can inform future

research and updates in improving troubleshooting strategies and educational interventions while

simultaneously providing a baseline for future source code reading research. More than anything,

the current work presents the case for continued research investigating the real-time processes at

work while programmers read source code, both for troubleshooting and for comprehension.

45 Eye-movements while debugging Python

ACKNOWLEDGMENTS

This work was supported by the Laboratory Directed Research and Development program at

Sandia National Laboratories, a multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell

International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525. This written work is authored by an employee of NTESS. The

employee, not NTESS, owns the right, title and interest in and to the written work and is

responsible for its contents. Any subjective views or opinions that might be expressed in the

written work do not necessarily represent the views of the U.S. Government. The publisher

acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-

wide license to publish or reproduce the published form of this written work or allow others to

do so, for U.S. Government purposes. The DOE will provide public access to results of federally

sponsored research in accordance with the DOE Public Access Plan.

46 Eye-movements while debugging Python

REFERENCES

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International
 Journal of Man-Machine Studies, 18(6), 543-554.

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal
 of Statistical Software, 80, 1-28.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., ... & Tamm, S.
 (2015, May). Eye movements in code reading: Relaxing the linear order. In 2015 IEEE
 23rd International Conference on Program Comprehension (pp. 255-265). IEEE.

Casalnuovo, C., Barr, E. T., Dash, S. K., Devanbu, P., & Morgan, E. (2020a, October). A theory
 of dual channel constraints. In 2020 IEEE/ACM 42nd International Conference on
 Software Engineering: New Ideas and Emerging Results (ICSE-NIER) (pp. 25-28).
 IEEE.

Casalnuovo, C., Lee, K., Wang, H., Devanbu, P., & Morgan, E. (2020b). Do programmers prefer
 predictable expressions in code?. Cognitive Science, 44(12), e12921.

Casalnuovo, C., Morgan, E., & Devanbu, P. (2020c). Does surprisal predict code comprehension
 difficulty. In Proceedings of the 42nd Annual Meeting of the Cognitive Science Society.
 Toronto, Canada: Cognitive Science Society.

Casalnuovo, C., Sagae, K., & Devanbu, P. (2019). Studying the difference between natural and
 programming language corpora. Empirical Software Engineering, 24(4), 1823-1868.

Christianson, K. (2016). When language comprehension goes wrong for the right reasons: Good-
 enough, underspecified, or shallow language processing. Quarterly Journal of
 Experimental Psychology, 69(5), 817-828.

Christianson, K., Dempsey, J., Tsiola, A., & Goldshtein, M. (2022). What if they're just not
 that into you (or your experiment)? On motivation and psycholinguistics. In Psychology
 of Learning and Motivation-Advances in Research and Theory. Academic Press Inc.

Christianson, K., Dempsey, J., M. Deshaies, S. E., Tsiola, A., & Valderrama, L. P. (2023). Do
 readers misassign thematic roles? Evidence from a trailing boundary-change paradigm.
 Language, Cognition and Neuroscience, 38(6), 872-892.

Christianson, K., Dempsey, J., Tsiola, A., Deshaies, S. E. M., & Kim, N. (2024). Retracing the
 garden-path: Nonselective rereading and no reanalysis. Journal of Memory and
 Language, 137, 104515.

Clifton Jr, C., Ferreira, F., Henderson, J. M., Inhoff, A. W., Liversedge, S. P., Reichle, E. D., &
 Schotter, E. R. (2016). Eye movements in reading and information processing: Keith
 Rayner’s 40 year legacy. Journal of Memory and Language, 86, 1-19.

Crosby, M. E., Scholtz, J., & Wiedenbeck, S. (2002, June). The Roles Beacons Play in
 Comprehension for Novice and Expert Programmers. In PPIG (p. 5).

47 Eye-movements while debugging Python

Dempsey, J., & Brehm, L. (2020). Can propositional biases modulate syntactic repair processes?
 Insights from preceding comprehension questions. Journal of Cognitive Psychology,
 32(5-6), 543-552.

Drewnowski, A., & Healy, A. F. (1980). Missing-ing in reading: Letter detection errors on word
 endings. Journal of Verbal Learning and Verbal Behavior, 19(3), 247-262.

Duffy, S. A., Morris, R. K., & Rayner, K. (1988). Lexical ambiguity and fixation times in
 reading. Journal of Memory and Language, 27(4), 429-446.

Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language
 comprehension. Psychophysiology, 44(4), 491-505.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The language of programming:
 a cognitive perspective. Trends in Cognitive Sciences, 23(7), 525-528.

Ferreira, F., Bailey, K. G., & Ferraro, V. (2002). Good-enough representations in language
 comprehension. Current Directions in Psychological Science, 11(1), 11-15.

Francis, W. N., & Kucera, H. (1979). Brown corpus manual. Letters to the Editor, 5(2), 7.

Frazier, L., & Rayner, K. (1982). Making and correcting errors during sentence comprehension:
 Eye movements in the analysis of structurally ambiguous sentences. Cognitive
 Psychology, 14(2), 178-210.

Frazier, L., & Rayner, K. (1987). Resolution of syntactic category ambiguities: Eye movements
 in parsing lexically ambiguous sentences. Journal of Memory and Language, 26(5), 505-
 526.

Gibson, E., Piantadosi, S. T., Brink, K., Bergen, L., Lim, E., & Saxe, R. (2013). A noisy-channel
 account of crosslinguistic word-order variation. Psychological Science, 24(7), 1079-1088.

GitLab (2021). Mapping the DevSecOps Landscape. https://about.gitlab.com/developer-
 survey/previous/2020/.

Herman, G. L., Meyers, S., & Deshaies, S. E. (2021, July). A Comparison of Novice Coders'
 Approaches to Reading Code: An Eye-tracking Study. In 2021 ASEE Virtual Annual
 Conference Content Access.

Inhoff, A. W., & Rayner, K. (1986). Parafoveal word processing during eye fixations in reading:
 Effects of word frequency. Perception & Psychophysics, 40(6), 431-439.

Jacob, G., & Felser, C. (2016). Reanalysis and semantic persistence in native and non-native
 garden-path recovery. Quarterly Journal of Experimental Psychology, 69(5), 907-925.

Jbara, A., & Feitelson, D. G. (2017). How programmers read regular code: a controlled
 experiment using eye tracking. Empirical Software Engineering, 22(3), 1440-1477.

Kaakinen, J. K., & Hyönä, J. (2010). Task effects on eye movements during reading. Journal of
 Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1561.

Knuth, D. E. (1984). Literate programming. The computer Journal, 27(2), 97-111.

48 Eye-movements while debugging Python

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language
 comprehension?. Language, Cognition and Neuroscience, 31(1), 32-59.

Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and
 semantic association. Nature, 307(5947), 161-163.

Levy, R. (2008, October). A noisy-channel model of human sentence comprehension under
 uncertain input. In Proceedings of the 2008 conference on empirical methods in natural
 language processing (pp. 234-243).

Levy, R., Bicknell, K., Slattery, T., & Rayner, K. (2009). Eye movement evidence that readers
 maintain and act on uncertainty about past linguistic input. Proceedings of the National
 Academy of Sciences, 106(50), 21086-21090.

Lim, J. H., & Christianson, K. (2015). Second language sensitivity to agreement errors: Evidence
 from eye movements during comprehension and translation. Applied Psycholinguistics,
 36(6), 1283-1315.

Lovric, M. M. (2020). Conflicts in Bayesian statistics between inference based on credible
 intervals and Bayes factors. Journal of Modern Applied Statistical Methods, 18(1), 14.

Luke, S.G. & Christianson, K. (2016). Limits on lexical prediction during reading. Cognitive
Psychology, 88, 22-60.

Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic
 anomaly. Journal of Memory and Language, 31(6), 785-806.

Peitek, N., Siegmund, J., & Apel, S. (2020, July). What drives the reading order of
 programmers? An eye tracking study. In Proceedings of the 28th International
 Conference on Program Comprehension (pp. 342-353).

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension
 of computer programs. Cognitive Psychology, 19(3), 295-341.

Pickering, M. J., & Traxler, M. J. (1998). Plausibility and recovery from garden paths: An eye-
 tracking study. Journal of Experimental Psychology: Learning, Memory, and Cognition,
 24(4), 940.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.
 Psychological Bulletin, 124(3), 372.

Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye movements as reflections of
 comprehension processes in reading. Scientific Studies of Reading, 10(3), 241-255.

Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of
 word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14(3),
 191-201.

https://www.r-project.org/

49 Eye-movements while debugging Python

Rayner, K., Pollatsek, A., Ashby, J. & Clifton, C. E., Jr. (2012). The psychology of reading.
 New York: Psychology Press.

Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The EZ Reader model of eye-movement
 control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26(4),
 445-476.

Reichle, E. D., & Reingold, E. M. (2013). Neurophysiological constraints on the eye-mind link.
 Frontiers in Human Neuroscience, 7, 361.

Rayner, K., & Reingold, E. M. (2015). Evidence for direct cognitive control of fixation durations
 during reading. Current Opinion in Behavioral Sciences, 1, 107-112.

Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. Attention,
 Perception, & Psychophysics, 74, 5-35.

Schotter, E. R., Bicknell, K., Howard, I., Levy, R., & Rayner, K. (2014). Task effects reveal
 cognitive flexibility responding to frequency and predictability: Evidence from eye
 movements in reading and proofreading. Cognition, 131(1), 1-27.

Shaft, T. M., & Vessey, I. (1995). The relevance of application domain knowledge: The case of
 computer program comprehension. Information Systems Research, 6(3), 286-299.

Sharif, B., Falcone, M., & Maletic, J. I. (2012, March). An eye-tracking study on the role of scan
 time in finding source code defects. In Proceedings of the Symposium on Eye Tracking
 Research and Applications (pp. 381-384).

Schneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer behavior:
 A model and experimental results. International Journal of Computer & Information
 Sciences, 8(3), 219-238.

Slattery, T. J., Sturt, P., Christianson, K., Yoshida, M., & Ferreira, F. (2013). Lingering
 misinterpretations of garden path sentences arise from competing syntactic
 representations. Journal of Memory and Language, 69(2), 104-120.

Slattery, T. J., & Yates, M. (2018). Word skipping: Effects of word length, predictability,
 spelling and reading skill. Quarterly Journal of Experimental Psychology, 71(1), 250-
 259.

Stites, M. C., Federmeier, K. D., & Stine-Morrow, E. A. (2013). Cross-age comparisons reveal
 multiple strategies for lexical ambiguity resolution during natural reading. Journal of
 Experimental Psychology: Learning, Memory, and Cognition, 39(6), 1823.

Strukelj, A., & Niehorster, D. C. (2018). One page of text: Eye movements during regular and
 thorough reading, skimming, and spell checking. Journal of Eye Movement Research,
 11(1).

Turner, R., Falcone, M., Sharif, B., & Lazar, A. (2014, March). An eye-tracking study assessing
 the comprehension of C++ and Python source code. In Proceedings of the Symposium on
 Eye Tracking Research and Applications (pp. 231-234).

50 Eye-movements while debugging Python

Von der Malsburg, T. (2022). Python script that uses NLTK to calculate the average length of
 English words across token and types in the Brown corpus.
 https://gist.github.com/tmalsburg/366e167f80f76dca5ea2e68d858ee845

Vee, A. (2017). Coding literacy: How computer programming is changing writing. MIT Press.

https://gist.github.com/tmalsburg/366e167f80f76dca5ea2e68d858ee845

