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Abstract 

Background: Trace amounts of consumed alcohol are detectable within sweat and insensible 

perspiration. However, the relationship between ingested and transdermally emitted alcohol is 

complex, varying across environmental conditions and involving a degree of lag. As such, the 

feasibility of real-time drinking detection across diverse environments has been unclear. In the 

current research we revisit sensor performance using new tools, exploring the 

accuracy of a new generation of rapid-sampling transdermal biosensor for contemporaneous 

drinking detection across diverse environments via machine learning. 

Methods: Regular drinkers (N = 100) attended three laboratory sessions involving the 

experimental manipulation of alcohol dose, rate of consumption, and environmental dosing 

conditions. Participants further supplied breath alcohol concentration (BAC) readings in the field 

over 14 days. Participants wore compact wrist sensors capable of rapid sampling (20 sec 

intervals). Transdermal sensor data was translated into alcohol use estimates using machine 

learning, integrating only transdermal data collected prior to the point of BAC assessment.  

Results: A total of 5.39 million transdermal readings (28,615 hours) and 12,699 BAC readings 

were collected for this research. Models indicated strong transdermal sensor accuracy for real-

time drinking detection across both laboratory and field contexts (AUROC, 0.966, 95% CI, 

0.956-0.972; Sensitivity, 89.8%; Specificity, 90.6%). Models aimed at differentiating high-risk 

(≥0.08%) drinking levels yielded intermediate (AUROC, 0.738; 95% CI, 0.698-0.777; only 

drinking episodes) to strong (AUROC, 0.941, 95% CI, 0.929-0.954; all data) accuracy levels. 
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Conclusions: Results indicate a range of useful future applications for transdermal alcohol 

sensors including long-term health tracking, medical monitoring, and just-in-time relapse 

prevention. 

 Keywords: Alcohol, substance use, wearables, biosensor, transdermal  
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1.  Introduction 

The potential public health impact of a wearable alcohol monitor is large and growing 

(Fairbairn and Bosch, 2021). Deaths from alcohol have climbed steadily across the past two 

decades, surging an estimated 29% in the years since COVID-19 (Esser et al., 2024; Spencer 

et al., 2022). Simultaneously, adolescent and young adult drinkers show reduced binge 

drinking frequency compared to older cohorts (Substance Abuse and Mental Health Services 

Administration, 2022) and, with the increasing ubiquity of mocktails and dry-bars (Bowdring 

et al., 2024; World Health Organization, 2023), these populations demonstrate heightened 

awareness of health consequences of alcohol use (Gallup Inc, 2023). Across age cohorts, 

engagement with digital health monitoring technologies has burgeoned (Pew Research 

Center, 2024). The health impact of alcohol looms large, while unprecedented potential 

exists for intervention through technology-mediated care (Esser et al., 2024; Steinhubl et al., 

2013). 

Monitoring of active alcohol intake forms the backbone of alcohol use intervention 

(Epstein and McCrady, 1998; Miller, 1978; Miller and Rollnick, 2012), but the identification 

of effective monitoring methods has represented a formidable challenge (Swift, 2003). 

Alcohol exerts direct pharmacological effects on attentional, memory, and motivational 

resources required for self-monitoring (Fairbairn et al., 2021; Weissenborn and Duka, 2003; 

White, 2003), and knowledge of societal stigma surrounding alcohol use can bias users’ 

reports (Davis et al., 2010). For individuals seeking to abstain or moderate alcohol use, 

motivation to engage in active alcohol use monitoring naturally fluctuates over time and 

across divergent contexts (DiClemente and Prochaska, 1998; Marlatt, 1996; Miller and 

Rollnick, 2012). Wearable sensors have been identified as representing a solution to specific 
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challenges of alcohol self-monitoring (Barnett, 2015; NIAAA, 2015; Swift, 1993). While 

traditional monitoring methods require motivated action at the time of each alcohol use 

assessment, wearable sensors permit the disjuncture of the decision to engage in active 

monitoring from the drinking context itself, limiting demands on the drinker at times when 

cognitive and motivational resources are likely to be constrained (Barnett, 2015). Wearable 

sensors have the potential to provide passive and continuous monitoring of alcohol use, 

requiring minimal active engagement on the part of the drinker (Swift, 1993). These monitors 

might have far-ranging application, including the provision of real-time support among 

individuals in recovery (Barnett, 2015; Nahum-Shani et al., 2017), health monitoring by 

providers treating patients in medical contexts (Burton and Sheron, 2018), and prevention-

focused daily health tracking among broad populations of drinkers (Takacs et al., 2014). 

Transdermal sensors currently represent the most widely-researched technology for 

wearable alcohol use assessment (van Egmond et al., 2020; Yu et al., 2022). Approximately 

1% of consumed alcohol is emitted through the skin in the form of sweat and insensible 

perspiration (Nyman and Palmlöv, 1936; Swift and Swette, 1992). Thus, it is possible to 

assess the concentration of alcohol emitted via water vapor from the stratum corneum using a 

device that integrates basic fuel-cell technology and rests on the skin’s surface (Swift, 1993).  

Transdermal Alcohol Concentration (TAC) reflects the combined effects of passive 

alcohol diffusion within blood via skin capillaries (insensible perspiration) as well as active 

perspiration from sweat gland secretions (sensible perspiration), fluids that exhibit 

differential alcohol concentration and lag times to alcohol excretion (Anderson and Hlastala, 

2006). As such, output from transdermal alcohol sensors is complex, and based on prior 

research, it has been unclear whether contemporaneous transdermal detection of alcohol 
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consumption might be achieved with acceptable accuracy and temporal specificity for 

widespread application (Anderson and Hlastala, 2006; Luczak and Ramchandani, 2019; 

Marques and McKnight, 2009). More specifically, due to lag times between ingested and 

transdermally emitted alcohol, the capability of transdermal devices for real-time or near 

real-time detection of alcohol consumption is currently unknown (Anderson and Hlastala, 

2006; Marques and McKnight, 2009). Further, a variety of environmental factors can 

confound the relationship between ingested and transdermally emitted alcohol, including 

perspiration rate, variability in skin-sensor distance, and ambient alcohol, and the accuracy of 

new-generation transdermal sensors outside invariant/sterile lab settings is currently unclear 

(Fairbairn and Bosch, 2021; Luczak and Ramchandani, 2019). Therefore, perspiration-based 

alcohol sensors have been siloed for niche application as retroactive abstinence monitors 

within the criminal justice system (Alcohol Monitoring Services, 2018), where real-time data 

is non-essential and moderate accuracy can support applications that maximize specificity at 

a cost to sensitivity (van Egmond et al., 2020). In contrast, broader populations of drinkers as 

yet lack a wearable alcohol biosensor.  

Yet the limitations of transdermal assessment more broadly have been challenging to 

separate from the limitations associated with the technology and analytic tools available to 

previous generations of researchers (Fairbairn and Bosch, 2021; Yu et al., 2022). Prior 

research has predominantly examined output from transdermal bracelets featuring a bulky 

ankle-worn design and a relatively sparse sampling interval (30-minutes; Yu et al., 2022). 

This work has been further characterized by small datasets (average N = 17, see Yu et al., 

2022), subjective reports of drinking as “ground truth,” and laboratory-based testing 

conditions (see Yu et al., 2022 for a review). Within this work, considerable delays between 
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ingested and transdermally diffused alcohol have been evident (e.g., Marques and McKnight, 

2009), interference posed by environmental factors has been difficult to analytically remove 

(Fairbairn and Bosch, 2021; Gunn et al., 2023; Luczak and Ramchandani, 2019), and even 

retrospective accuracy metrics have often emerged as moderate in magnitude (Ash et al., 

2022; Kianersi et al., 2023; Richards et al., 2023; Croff et al., 2021; although see Didier et 

al., 2023).  

Here we report results of a large-scale validation study of a wearable alcohol 

biosensor integrating real-time objective alcohol use assessment and variable environmental 

testing conditions. Recent decades have seen advances in both hardware and computational 

tools with the potential to advance transdermal alcohol measurement, including the 

introduction of a new generation of compact, rapid-sampling alcohol biosensor (NIAAA, 

2015; Wang et al., 2021), and analytic approaches capable of analysis and forecasting based 

on complex time-series trends (Fairbairn et al., 2020; Fairbairn and Bosch, 2021). In the 

current study we assess the accuracy of a transdermal wrist sensor against objective alcohol 

use data collected among participants examined across variable environmental conditions. 

Transdermal data is translated into “real time” alcohol use estimates using machine learning 

algorithms aimed at addressing lags between ingested and transdermally emitted alcohol. 

More specifically, aims of the current project were as follows: 1) To assess transdermal 

alcohol sensor accuracy in predicting drinking vs. sobriety in real-time across variable 

environmental conditions; 2) To assess moderators of transdermal drinking detection 

accuracy, including person-level and within-person factors theorized to impact transdermal 

sensor output; and 3) To assess transdermal sensor accuracy for detecting binge or “high-

risk” (≥0.08% BAC) drinking (National Institute on Alcohol Abuse and Alcoholism., 2004). 
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2.  Materials and Methods 

2.1.  Participants 

Participants were recruited via social media advertisements and posted notices in the 

local community. Individuals were excluded if they were especially light or infrequent drinkers 

(≤ 1 drinking day/week), reported a history of medical conditions for which alcohol consumption 

would be contraindicated, reported taking medications or other drugs with the potential to 

interact with alcohol, or indicated a history of adverse reactions to the type or amount of 

beverage administered in the study (see National Advisory Council on Alcohol Abuse and 

Alcoholism, 1989). Individuals actively seeking treatment for alcohol problems, those with a 

history of severe psychiatric illness, non-English speakers, individuals with medical conditions 

contraindicating moderate aerobic exertion, and women who reported being pregnant or trying to 

become pregnant were also excluded. Participants consisted of 100 regular drinkers aged 21+ 

(Mage = 24.20; SD = 4.36; Range=21-46). Participants were 50% female, and 41% White. 

Participants reported drinking an average of 9.39 (SD = 5.06) and binge drinking 4.18 (SD = 

3.87) days/month (see Table 1). 

2.2.  Procedure 

2.2.1.  Study Overview and Design: Study procedures took place over the course of 14 

days and employed a hybrid laboratory-ambulatory design integrating observations drawn from 

both precisely controlled (laboratory) as well as ecologically valid (ambulatory) consumption 

contexts. Participants attended three experimental laboratory visits, held at 1-week intervals over 

the course of the study (Figure 1). Laboratory visits also served as ambulatory orientation, check-

in, and close-out visits. A detailed description of study methods is provided in Supplemental 

Materials.  
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2.2.2. Laboratory Procedures: The laboratory study arm permitted the acquisition of 

precise data surrounding quantity and timing of alcohol ingestion while also facilitating 

systematic manipulation of environmental factors theorized to impact transdermal sensor 

readings, so ensuring adequate variability along these factors in the broader dataset (Anderson 

and Hlastala, 2006; Luczak and Ramchandani, 2019). Breath alcohol concentration (BAC) 

readings were taken at baseline and at 10-minute intervals following beverage administration. 

All participants received low (.03%), moderate (.06%), and high (.09% target BAC) alcohol 

doses across the three laboratory sessions (Figure 2). To simulate environmental factors with the 

potential to confound TAC readings, laboratory sessions integrated an aerobic bicycle workout to 

induce perspiration (mild/8-minutes; moderate/20-minutes), timed arm/wrist movement to 

induce variability in skin-sensor distance (two 90-second bursts), and exposure to alcohol-

containing products (e.g., hand sanitizer; See Figures 1-2 and Supplemental Methods). Finally, to 

simulate variable consumption patterns, approximately equal numbers of participants were 

randomized to consume study beverages at a relatively rapid (.01% BAC/3-minutes) or slow 

(.01%/6-minutes) pace (see Table 1). The transdermal sensor employed in this study was the 

BACtrack Skyn, a compact, wrist-worn device (37g; 4.7x2.5x0.6cm) that links with a 

smartphone via Bluetooth and features passive TAC, motion, and temperature sensing (20-second 

sampling interval; Fairbairn and Bosch, 2021; NIAAA, 2015). Devices employed in this research 

were originally shipped from the manufacturer 9/2021-5/2023. See also Supplemental Methods 

and Figure S1. 

2.2.3. Ambulatory Procedures: Participation involved a 14-day intensive assessment 

period aimed at capturing transdermal device performance in real-world drinking environments. 

Participants were instructed to wear the transdermal device throughout this period except for 
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times when they were bathing or charging the device. During ambulatory assessment, 

participants provided prompted BAC readings via smartphone-connected breathalyzers (Ariss et 

al., 2023) in response to random smartphone prompts 4-6 times/day, as well as at 30-minute 

intervals during drinking episodes. To ensure high-quality ambulatory BAC readings, participants 

underwent laboratory training in mouth alcohol effects and received mid-study feedback and, 

ultimately, compensation commensurate with the validity and completeness of their ambulatory 

data. At the final study visit, after the completion of ambulatory assessment, participants reported 

on transdermal device acceptability, including their level of social and physical comfort in 

wearing the bracelet (1= extremely comfortable; 9=extremely uncomfortable) and their 

willingness to wear the bracelet beyond the end of the study (yes/no; see Supplemental 

Methods). Participants received $200 for attending all three laboratory visits and wearing the 

transdermal device throughout ambulatory assessment, and an additional $100 for responding to 

at least 70% of all ambulatory prompts. 

2.3.  Data Processing and Analysis 

All data required for the replication of results in this article, together with code permitting 

researchers to use the transdermal translation algorithms developed here with their own data sets, 

are provided here: https://osf.io/bdthf/?view_only=3554401322674c3ab33cecff2b7c27c9.  Time-

series features extracted from transdermal sensor output (e.g., TAC rise rate, quantiles) were 

entered into Extra-Trees machine learning algorithms (Geurts et al., 2006).  To produce a model 

that might be applied for real-time BAC estimation, models included only transdermal sensor 

data preceding (not following) BAC readings (Fairbairn et al., 2020). We used 5-fold, 

participant-independent cross-validation to ensure that predictions were not over-fit to specific 

data points or participants. Model performance was evaluated on testing sets using area under the 

https://osf.io/bdthf/?view_only=3554401322674c3ab33cecff2b7c27c9
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receiver operating characteristic curve (AUROC) calculated using nonparametric models 

accounting for the clustering of observations within participants. Moderators of device accuracy 

were examined at the within- (device wear time, device ship date) and the between- (sex, age, 

race, drinking history) participant level, selected as factors theorized to impact transdermal 

sensor output (Ash et al., 2022; Fairbairn and Kang, 2020; Luczak and Ramchandani, 2019). 

Diagnostic thresholds were determined using the maximum Youden index, and sensitivity and 

specificity values were calculated using bootstrapping. Drinking episode start time was estimated 

at the timestamp of the first positive BAC reading. Finally, for models differentiating no (0.00%), 

low-risk (>0.00%, <0.08%), and high-risk (≥0.08%) drinking levels,1 predictions were jointly 

estimated in a single model, and resulting test statistics were averaged for models predicting each 

risk category to yield an omnibus AUROC value. See Supplemental Materials for the complete 

data analysis plan and details of data processing. 

3.  Results 

3.1. Descriptives, Compliance, and Acceptability 

3.1.1. BAC and Alcohol Use Descriptives: A total of 12,699 unique BAC readings (6,349 

from field contexts; 8,054 >0.00%) were collected for the purposes of the current study. 

Regarding ambulatory data, participants on average provided breathalyzer readings in response 

to 69% of prompts.  Each participant provided an average of 63.49 (SD = 31.28) BAC readings 

across the 14-day assessment interval, engaging in 7.41 drinking episodes lasting on average 

148.2 minutes (SD = 126.7) in duration. Peak BAC levels in the field ranged from 0.01%-0.27% 

 
1 For the purposes of the current research, a high-risk drinking episode is operationalized as one where BAC meets 
or exceeds NIAAA’s binge threshold of .08% (National Institute on Alcohol Abuse and Alcoholism., 2004). BAC 
levels that do not meet these criteria are designated low-risk events. We adopt these labels for ease of reference and 
to reflect research documenting adverse drinking consequences linked with drinking episodes that meet or exceed 
the binge drinking threshold (e.g., Jones et al., 2018). Note, however, that episodes that are truly “low” vs “high” 
risk in terms of their potential for negative effects will inevitably depend on context and individual.  
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(M = 0.095%, SD = 0.054). Within the laboratory study arm, achieved peak BACs on low, 

moderate, and high-dose sessions were 0.032% (SD = 0.011), 0.057% (SD = 0.012), and 0.084% 

(SD = 0.015) respectively. Additional BAC descriptives are provided in Figure 3. 

3.1.2. Transdermal Compliance and User Acceptability: A total of 5.39 million 

transdermal readings (28,615 hours of TAC data) were collected across the course of the study. 

Regarding compliance, application of wear-detection thresholds (<26° Celsius) indicated that 

participants wore transdermal devices for the majority (Mdn = 92.79%; SD = 15.54) of the 

ambulatory assessment period (Mdn = 12.99 days estimated wear time/participant). Participants 

rated transdermal devices as moderately physically comfortable (M = 4.72, SD = 1.91) and 

highly socially comfortable (M = 2.84, SD = 2.08). Of participants, 80.4% indicated they would 

be willing to wear the transdermal device beyond the end of the study (see Supplemental 

Measures).  

3.1.3.  Transdermal Devices and Device Failures: A total of N = 38 transdermal devices 

were employed across all study participants. During the course of the study, devices were 

returned to the manufacturer and replaced in response to anomalies observed in the data (n = 5) 

and/or larger hardware updates from the manufacturer (n = 20). Median usage time for each 

transdermal device employed in the study was 666.83 hours (SD = 392.51; Range 130.57-

1707.73). Gaps in transdermal recording occurred attributable to both protocol consistent and 

non-consistent causes, including when devices were turned off for charging (freq: ~4-6 days) as 

well as due to device malfunction and user non-compliance (e.g., devices not charged as 

instructed). Across 14 days of assessment, the median total duration of recording gaps per 

participant was 19.31 hours (SD = 52.61; Range 0-311), with gaps lasting a median of 3.19 hours 

(SD = 26.71; Range 0-121).  
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3.2.  Transdermal Sensor Accuracy 

3.2.1. Accuracy in Detecting Drinking vs. Sobriety: Analyses assessed accuracy for 

transdermal alcohol monitors in predicting drinking (>0.00% BAC) vs. sobriety (0.00% BAC) in 

real time. We first explored transdermal sensor accuracy in analyses including all data collected 

across study contexts, including laboratory and field settings. The accuracy of transdermal 

sensors in distinguishing episodes of alcohol consumption emerged as excellent (AUROC, 0.966, 

95% CI, 0.956-0.972; Figure 4A). Analyses yielded strong sensitivity and specificity, indicating 

the algorithm capable of correctly detecting 89.8% (95% CI, 88.6%-90.8%) of true drinking and 

90.6% (95% CI, 89.5%-91.7%) of true sober moments. Regarding the time course of detection, 

approximately 70% of drinking episodes were correctly identified for readings provided 0-30 

minutes after the first positive BAC value, 92.2% for minutes 30-120, and 93.6% for minutes 

120+. When data from field (i.e., real world) contexts was examined independent of laboratory 

data, accuracy metrics were also strong (AUROC, 0.941, 95% CI, 0.927-0.955; Sensitivity 

84.2%, 95% CI, 83.1%-87.8%; Specificity 88.8%, 95% CI, 86.3%-89.8%; Figure 4B).  

3.2.2. Moderators of Detection Accuracy: We next explored moderators of transdermal 

sensor accuracy in detecting drinking vs. sobriety for data collected across study contexts (Figure 

4D-I). Accuracy decreased with transdermal device usage as days of wear progressed within 

participants, with AUROC values decreasing from 0.976 (day 0-5) to 0.961 (days 5-10) to 0.944 

(days 10+; see Figure 5). No significant differences emerged with respect to participant sex, race, 

age, drinking patterns, and transdermal device age (i.e., ship date; see Figure 5).  

3.2.3. Accuracy in Determining Drinking Risk Category: Models next examined drinking 

according to three risk categories: high-risk drinking, low-risk drinking, and sobriety. Results 

yielded an averaged omnibus AUROC value of 0.957. Models differentiating high-risk drinking 
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from a combined comparison group of low-risk drinking and sobriety indicated excellent 

accuracy (AUROC, 0.941, 95% CI, 0.929-0.954; Figure 4C), correctly identifying 89.3% (95% 

CI, 85.4%-92.8%) of true instances of high-risk drinking, and 86.4% (95% CI, 82.2%-88.1%) of 

instances of sobriety/low risk drinking. Models differentiating between low- and high-risk 

drinking levels while excluding 0.00% BAC values yielded moderate accuracy (AUROC, 0.738, 

95% CI, 0.698-0.777; Sensitivity 58.8%, 95% CI, 50.6%-76.9%; Specificity 77.3%, 95% CI, 

58.4%-84.1%). 

4.  Discussion  

Wearable sensors are unique in that they provide objective alcohol use data while 

placing minimal demands on the drinker, so lifting engagement burden at times when 

cognitive and motivational resources are likely to be scarce. The current research indicates 

high accuracy for contemporaneous alcohol use detection via wearable alcohol biosensor 

across variable environmental conditions. Rates of detecting true consumption and 

differentiating from non-consumption ranged from 84-91%. Models isolating drinking risk 

levels specifically within drinking episodes (>0.00% BAC) produced intermediate accuracy 

levels for distinguishing low- from high-risk drinking. Accuracy was strong for models 

differentiating high-risk drinking (≥0.08% BAC) from a combined comparison group of non-

drinking and low-risk drinking. The new-generation sensors employed in this research were 

rated as acceptable by participants for longer-term wear. 

Output yielded by perspiration-based alcohol sensors is complex (Anderson and 

Hlastala, 2006). On the basis of prior work, it has been unclear the extent to which 

transdermal estimates of drinking could be achieved with adequate accuracy and temporal 

specificity to permit widespread application (Fairbairn and Kang, 2020; Yu et al., 2022). 
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Here we revisit transdermal sensor accuracy using machine learning methods applied to 

dense time-series data from new-generation, rapid-sampling sensors. Time-series represent a 

key tool for addressing problems of prediction lags, containing information on over-time 

trends and so potentially indicating not only where a signal currently is but also where it is 

going (e.g., time-series forecasting techniques; Box et al., 1994; Fairbairn et al., 2020). 

Further, as environmental confounds can yield over-time patterns that diverge from those 

linked to true alcohol ingestion, time-series can further be leveraged to parse TAC signal 

from noise. For example, a sudden spike in TAC is more likely indicative of environmental 

confound than is a gradual rise (Fairbairn and Bosch, 2021). Yet in examining individual, 

decontextualized TAC readings such over-time information is lost. Here we translate 

transdermal data using machine learning algorithms capable of capturing complex, non-linear 

patterns in time-series data (Geurts et al., 2006). Algorithms are trained using a large sample 

of precise BAC readings collected across diverse environmental conditions, producing 

models that display strong accuracy levels for transdermal sensors in contemporaneous 

alcohol use detection. 

In the future, as larger transdermal datasets accrue, application of data-hungry methods 

such as transformer neural networks might facilitate transdermal measurement of still more 

detailed drinking metrices, including precise BAC values, while also providing increased ability 

to discriminate low- from high-risk drinking. Even in the absence of such fine-grained measures, 

however, a range of potential applications exist for a compact sensor capable of passive, 

objective drinking and sobriety detection, especially in light of links between sensor output and 

alcohol-related consequences (Russell et al., 2022). For example, a preventative health tracker 

capable of keeping a long-term record of drinking and high-risk drinking days could increase 
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health awareness among broad populations of drinkers (Takacs et al., 2014). A medical monitor 

might serve to provide an objective record of consumption for healthcare providers in treating 

patients with conditions requiring the cessation or moderation of alcohol use (e.g., cardiovascular 

disorders, diabetes; Burton and Sheron, 2018; Howard et al., 2004). Finally, a sensor with the 

potential for contemporaneous drinking detection might provide a range of supports for 

individuals with alcohol use disorders, including by triggering real-time intervention in response 

to relapse (Nahum-Shani et al., 2017). 

Gaps in transdermal device recording tended to be brief and were generally consistent 

with protocol-compliant behaviors on the part of participants (e.g., device powered off for 

charging). These results stand in contrast to findings for early new-generation sensor prototypes, 

where sensor failure was relatively frequent (Fairbairn and Kang, 2019). Potential for sensor 

degradation exists for fuel-cell based transdermal devices due to humidity buildup within the gas 

chamber between the sensor and skin (Ash et al., 2022; van Egmond et al., 2020). Evidence of 

some sensor degradation over the course of continuous wear was evident in the current sample. 

For the 2-week time interval captured here, however, accuracy rates were consistently strong. It 

is notable that, in the current study, device wear time (i.e., days of wear by a given study 

participant), but not overall device age (i.e., device ship date), moderated sensor performance. 

One possibility is that the sensor aeration and cleaning afforded by periods of non-wear between 

participants served to interrupt humidity buildup and refresh sensors, and that such breaks 

integrated into future research and applications might improve sensor performance. Related, 

devices in this study were replaced in response to data anomalies, presenting circumstances 

potentially favorable to device performance. The extent to which such degradation would emerge 

as problematic over longer time periods under typical day-to-day use conditions requires further 
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investigation, as does the extent to which performance degradation is permanent vs. might 

rebound following a period of rest, and whether or not technological advances in sensor 

manufacturing can eliminate these losses.  

Regarding the time course of drinking detection, sensors identified most (70%) cases 

of alcohol consumption for data points within 30 minutes of the time of first positive 

breathalyzer reading, increasing to 92% by minutes 30-120. In the current investigation, 

transdermal device accuracy was examined only at times of active BAC assessment. 

Additional research is needed to chart the precise time course from the point of drinking 

initiation to first transdermal alcohol use detection. Such research would be important prior 

to the initiation of more time-sensitive transdermal device applications wherein unanticipated 

detection delays might result in harm to the drinker or others (e.g., real-time driving 

advisability feedback; Fairbairn and Bosch, 2021).  

TAC dynamics have been theorized to vary substantially across individuals due to 

variability in the physical properties of the stratum corneum, including differences in skin 

thickness, hydration, and permeability (Anderson and Hlastala, 2006; Luczak and Rosen, 2014). 

In the current study no significant differences in transdermal detection accuracy emerged 

according to sex, race, age, or prior drinking history. Nonetheless, although the sample for the 

current study was large in comparison to many prior studies (Yu et al., 2022), sample size 

requirements for between-subject moderator analyses are high. Additionally, although no 

individual-level differences reached significance, yet some non-significant group effects (e.g., 

race) might warrant examination in larger samples. Future research might employ oversampling 

techniques to increase power for detecting variability across individuals and ensure the 

development of transdermal alcohol detection algorithms generalizable across populations. 
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Additional limitations and future directions should be noted.  The current study 

comprises, to our knowledge, the largest database of objectively-assessed high-risk drinking 

episodes (>.08%) captured in transdermal sensor research to date (see Yu et al., 2022). But high-

risk episodes were still relatively scarce in this sample (n = 618; Figure 4). Future research 

should revisit the question of low- vs. high-risk drinking differentiation in larger datasets. 

Related, in the current study we operationalized drinking risk level according to NIAAA’s binge 

drinking threshold (National Institute on Alcohol Abuse and Alcoholism., 2004), yet alternative 

thresholds exist for the determination of high- vs. low-risk drinking. Future research might 

explore the accuracy of transdermal sensors for detecting drinking episodes both above and 

below the .08% threshold. Further, although initial data was presented, a thorough examination 

of user acceptability was beyond the scope of the current study (Ash et al., 2022; Rosenberg et 

al., 2023). Additional analyses, including qualitative examinations and models exploring 

individual differences, are needed to understand user experience with these sensors. Finally, 

although our dataset explored the accuracy of transdermal sensors in the context of a dataset that 

integrated diverse contextual conditions, an examination of context-level moderators was beyond 

the scope of this initial investigation. Future research is needed to examine context-level 

moderators of transdermal sensor accuracy, including controlled testing environments, physical 

exertion, skin-sensor distance, and ambient alcohol. 

In sum, for nearly a century, researchers have known that ingested alcohol can be 

detected within perspiration (Nyman and Palmlöv, 1936). Alcohol’s journey to the skin’s surface 

is complex, dependent on activity of the digestive, circulatory, endocrine, and integumentary 

systems, spurring questions surrounding the viability of contemporaneous perspiration-based 

drinking detection (Anderson and Hlastala, 2006). Additional research is needed to explore the 
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potential of perspiration-based sensors for detecting more fine-grained drinking metrics, 

including precise BAC and/or standard drink estimation. Results of the current study nonetheless 

lay the foundation for wearable alcohol sensors with applications across medical, intervention, 

prevention, and research domains.  
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Table 1. Participant sample characteristics and drinking rate condition 

Age  
    Mean (SD) 24.20 (4.36) 
  
Sex (%)  
    Female 50 
    Male 50 
  
Race (%)  
    Native American 6 
    Asian 40 
    Black/African American 9 
    White 41 
    Mixed race 4 
  
Ethnicity (%)  
    Hispanic or Latino 24 
    Not Hispanic or Latino 76 
  
Drinking Days/30  
    Mean (SD) 9.39 (5.06) 
  
Binge Days/30  
    Mean (SD) 4.18 (3.87) 
  
Heavy Drinker (%)  
    Non-Heavy Drinker 67 
    Heavy Drinker 33 
  
Drink Rate (%)   
    Fast (0.01% BAC/3 minutes) 45 
    Slow (0.01% BAC/6 minutes) 55 
Note: Binge drinking is used to refer to 4 or more 
standard drinks consumed in a single sitting for females 
and 5 or more for males. 
Heavy drinkers are defined as those who reported ≥5 
binge drinking days within the past 30 days. 
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Figure 1. Laboratory-ambulatory study design with timeline and example data

 

Note. BAC data is scaled up by a factor of 1000 for visualization purposes. (A) Example of raw 

TAC and BAC data collected from a single participant in both laboratory and field contexts. 

Ambulatory assessment lasted 14 days, during which time participants wore transdermal sensors 

and supplied BAC readings in real-world contexts in response to custom prompts. Experimental 

laboratory visits doubled as ambulatory orientation, check-in, and close-out sessions. (B) During 

laboratory session 1, participants were oriented to ambulatory study procedures and engaged in 

experimental alcohol-administration. (C) At the midpoint of the study, participants received 

feedback on ambulatory data provided during days 0-7 and engaged in alcohol-administration 

Session 2. (D) During the final study visit, participants engaged in the final alcohol-

administration session and returned study equipment.  
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Figure 2. Schematic of study design, manipulations, and conditions 

 

Note. All participants consumed three doses of alcohol over three laboratory sessions, targeting 

peak BAC levels of 0.03%, 0.06%, and 0.09%. Rate of consumption was operationalized as a 

0.01% increment increase in target peak BAC being associated with a corresponding 3-minute 

(fast) or 6-minute (slow) increment increase in the duration of the beverage administration 

period. The order and type of environmental manipulation were randomized both across and 

between participants to yield a balanced distribution. Products employed for ambient alcohol 

manipulations included hand sanitizer gel, alcohol-containing hand lotion, (simulated) spilled 

alcoholic drink, perfume, alcohol-based cleaning product, and hand sanitizer spray. Between 

laboratory sessions, participants provided prompted breathalyzer readings in real-world contexts. 

More details on laboratory and ambulatory procedures are provided in Supplemental Methods.   
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Figure 3. Descriptives for breathalyzer data employed in model training 

 

Note. BAC readings employed for machine learning model training displayed above. (A) The full 

dataset comprises 12,699 breathalyzer readings provided by 100 participants over 14 days. Each 

row represents one subject, with breathalyzer readings represented by dots. For illustration 

purposes, in the case of participants whose final study sessions were delayed (N = 5), date-

stamps for these visits are rescaled to display on Day 14. (B) and (C) represent the distribution of 

BAC readings provided by subjects and the distributions of context for BAC assessment. 

 

  



TRANSDERMAL ALCOHOL USE DETECTION                                                                 31 
 

 

Figure 4. ROC curves depicting transdermal sensor accuracy 

 



TRANSDERMAL ALCOHOL USE DETECTION                                                                 32 
 

 

Note. (A) Receiver operating characteristic (ROC) curve displaying results of machine learning 

model for detecting drinking (>0.00% BAC) vs sobriety (0.00% BAC) in both laboratory and 

field contexts. (B) ROC curve for model detecting drinking vs sobriety in field contexts only. (C) 

ROC curve for model detecting high-risk drinking (BAC ≥ 0.08%) vs a combined comparison 

group of low-risk drinking and sobriety (BAC<.08%). (D) – (I) Moderators for drinking vs 

sobriety detection accuracy. 
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Figure 5. AUROC and confidence intervals depicting transdermal sensor accuracy across 

moderator classes 

 

Note. Area under the receiver operating characteristic curve (AUROC) and corresponding 95% 

confidence intervals across moderator classes. Heavy drinkers are defined as those who reported 

≥5 binge drinking days within the past 30 days. Binge drinking refers to 4 or more standard 

drinks consumed in a single sitting for females and 5 or more for males. Transdermal Device 

Wear Time is defined as days of continuous wear time by a single participant within the study. 

Transdermal Device Age is defined as months elapsed since original device ship date. 

 


	Figure 3. Descriptives for breathalyzer data employed in model training
	Note. BAC readings employed for machine learning model training displayed above. (A) The full dataset comprises 12,699 breathalyzer readings provided by 100 participants over 14 days. Each row represents one subject, with breathalyzer readings represe...
	Figure 4. ROC curves depicting transdermal sensor accuracy
	Note. (A) Receiver operating characteristic (ROC) curve displaying results of machine learning model for detecting drinking (>0.00% BAC) vs sobriety (0.00% BAC) in both laboratory and field contexts. (B) ROC curve for model detecting drinking vs sobri...
	Figure 5. AUROC and confidence intervals depicting transdermal sensor accuracy across moderator classes

