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ABSTRACT
Collaborative problem solving behaviors are difficult to iden-
tify and foster due to their amorphous and dynamic nature.
In this paper, we investigate the value of considering early
class period behaviors, based on small group development
theory, for building predictive machine learning models of
collaborative behaviors during problem solving. Over 12
weeks, 20 small groups of undergraduate students solved
problems facilitated by a digital joint problem space tool on
tablet computers, in the 50-minute discussion component of
an engineering course. We annotated 16,270 video clips of
groups for collaborative behaviors including task relatedness,
talk content, peer interaction, teaching assistant interaction,
and tablet usage. We engineered two subsets of features
from tablet log file data: onset features (early collaborative
problem solving behavior characteristics calculated from the
first ten minutes of the class) and concurrent features (more
general collaborative behaviors from the whole class period).
We compared accuracy between the onset, concurrent, and
onset + concurrent features in machine learning models. Re-
sults exhibited a U-shaped pattern of accuracy over class
time, and showed that onset features alone could not be used
to effectively model groups’ collaborative behaviors over the
entire class time. Furthermore, analysis did not show sup-
port for significant gain in accuracy when onset features were
combined with concurrent features. Finally, we discuss impli-
cations for studying collaborative learning and development
of software to facilitate collaboration.

Keywords
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1. INTRODUCTION
Collaborative problem solving consists of the communication
and coordination of shared effort between team members
toward a common desired goal [19, 23, 26]. Though it has
been identified as a critical skill for students in the classroom
[11, 34, 25], it is difficult to identify effective behaviors and
nurture them, since the nature of collaboration and teams can
be amorphous [48] and dynamic [43]. Education and learning
sciences researchers have advocated for qualitative coding
of video data as a means to understand the complexities of
learning behaviors [24], and have applied these methods to
study collaborative behaviors and the development of col-
laborative practices in courses [35]. Computers can further
support collaborative learning research through collabora-
tive learning software, collaborative games, and digital joint
problem spaces—“a socially-negotiated set of knowledge ele-
ments, such as goals, problem state descriptions and problem
solving actions” [44]—the resulting log data of which have
been widely used with machine learning and data mining
approaches to uncover hidden patterns of collaborative be-
haviors [31, 1, 37, 12]. Recent technological advances have
also given way to multimodal approaches, using eye-gaze
tracking, bodily motion, and physiological data to identify
collaborative states [28, 40].

Despite such diverse approaches to detect and identify col-
laborative behaviors in learning contexts, the evolution of
collaborative practices in student groups has not been closely
investigated. Understanding the evolution of collaboration
and its impact on methods for measuring collaboration is cru-
cial, however. What constitutes collaborative behaviors may
change throughout a learning session [10], and thus measure-
ment may need to be adapted as well. In this paper we focus
on the relationship between measurement and behavioral
changes over time within classroom sessions. In particular,
we leverage organizational theory about the sequential na-
ture of small group development to inform research on how
to measure and predict collaboration via machine learning
in the presence of inevitable shifts in behaviors throughout
collaboration stages.

The rest of the paper is organized as follows: we first discuss
the small group development theories on structured, sequen-
tial group development which motivated our work, then relate



them to collaborative problem solving in the classroom to
define our research questions and respective hypotheses. We
then introduce the context of our study, including the col-
laboration tool, behavior coding, data processing, and model
building. Next, we present our findings and close with an
interpretation of our results and note limitations and future
work.

1.1 Small Group Development
Research in organization and management fields on under-
standing how collaborative behaviors contribute to small
group dynamics and development goes back several decades.
Perhaps most notably, Tuckman’s 1965 meta-analysis of ther-
apy and human relations training groups presented the form-
ing-storming-norming-performing (and later a fifth stage,
adjourning [50]) model [49]. The model outlined the exis-
tence of a sequential, stage-based trajectory of small group
collaboration, in which a group must fulfill one stage before
advancing to the next. Tuckman’s five model stages were
described as (1) orientation to task (forming), (2) emotional
response to task demands (storming), (3) open exchange of
relevant interpretations (norming), (4) emergence of solu-
tions (performing), and (5) separation (adjourning). This
has led to decades of efforts to better understand the stages
in various settings, including management [36], education
[51], and medical training [47].

Tuckman’s 5-stage structure of group development was fur-
ther supported by Cassidy’s 36-book meta-framework study,
which aimed to clarify group development for practical use
by examining group development in therapy, education, and
management settings [17]. Though some scholars have pre-
sented theoretical models with more or fewer stages to group
development [46, 21, 54], others have supported the five-
stage model with differently termed, but analogous stages to
Tuckman’s model [16, 22, 8].

In nearly all proposed theoretical models of small group devel-
opment, the first stage is defined as the task orientation stage
[49, 16, 22]. During this stage, group members contextual-
ize the task within the given parameters and communicate
regarding the manner in which it will be accomplished [49].
While“ground rules”are set during this stage, communication
about task orientation continues on some level throughout
the collaboration process. Moreover, in problem solving,
communication with references to others’ ideas rather than
independent solution paths has been identified as an impor-
tant marker of shared task alignment, or “establishment of
a collaborative orientation toward problem solving” [4]. In
this study, we briefly analyze transitions across the stages
of small group development during problem solving in class-
rooms. However, we focus much more closely on the first
stage, orientation to task, since it has been shown to have a
significant positive effect on achievement [45]. The first stage
characterizes cooperative orientation and the motivation to
collaborate, which has a strong relation to the quality of
collaboration [13].

1.2 Contributions and Novelty
This paper considers the role of early group behaviors in
collaborative problem solving. We investigated whether
explicitly incorporating early group behaviors as features
improves machine learning predictions of collaboration and

analyze how model accuracy evolves across time and stages
of collaboration.

We used qualitative coding of collaborative behaviors on
video data to measure collaboration. We then predicted
those behaviors from features extracted from the action log
files of a digital collaboration tool (run on tablet computers)
used by undergraduate students in an introductory mechani-
cal engineering course at a large Midwestern U.S. research
university. We created various feature subsets and built
corresponding machine learning models to evaluate the pre-
dictive accuracy of early group behaviors versus behaviors
from later on in class periods. Assuming the presence of
sequential, evolving collaborative behaviors in small groups,
and the importance of early collaborative behaviors, machine
learning models created from considering class behaviors as
a whole may potentially be improved by accounting for early
behaviors. For example, a group of students who fail to form
a successful collaborative dynamic early on may struggle
throughout class, whereas a group of students who exhibit
high collaboration early on may be more effective in later
stages. Consequently, we analyze whether a model built on
features from class behaviors as a whole would have variable
performance for collaborative behaviors predictions over the
different segments of the class period, which align with the
different stages of group development.

We aim to understand how effective collaborative behaviors,
relating to orientation to task, during earlier stages may
influence a group’s collaborative behaviors in the future. As
such, we also compare the performance a model solely built
from such earlier features with one built from features of
behaviors from all current and past in-class behaviors, not
just early-stage behaviors.

We approach the aim of this paper by formulating and ad-
dressing several research questions:

RQ1 How does the predictive accuracy of collaborative be-
haviors vary across different periods of a 50-minute class?

Hypothesis: We expect stages of collaboration that are domi-
nated by tablet computer interaction behaviors (e.g., reading,
drawing) will be more successfully predicted than those dom-
inated by discussion, and that the changing base rates of
collaborative behaviors over time will influence classification
accuracy [29].

RQ2 Can early class collaborative behaviors alone be used
to effectively model and predict collaborative behaviors of
the entire class period?

Hypothesis: We expect early class behaviors to predict the
quality of collaboration later in class if and only if groups’
collaboration quality remains static or consistently mirrors
early collaboration.

RQ3 Are collaborative behavior prediction models improved
through emphasizing early class collaborative behavior fea-
tures?

Hypothesis: We expect prediction models will be more ac-
curate later in class periods if early class behaviors capture



groups that are consistently collaborative or consistently not
collaborative.

2. RELATED WORK
In this study, we utilized video coding methods along with
machine learning approaches for analyzing action log data
to study temporality. Work in computer-supported collab-
orative learning (CSCL) has highlighted the importance of
considering temporality in collaboration, and Reimann has
argued that“the main object of analysis in CSCL is a process—
something that unfolds over time” [42]. For example, Mercier
et al. examined through video coding and counting how
the development of collaborative practices in engineering
courses evolve over four weeks, and saw that patterns of
interactions, such as conversation and workflow, change over
time [35]. Others highlighted the value of utilizing more
complex quantitative methods over video coding methods to
consider temporality in analyzing problem-solving processes
in computer-supported collaboration settings, as it can reveal
aspects of group interactions that coding methods cannot
reveal [32].

Collaborative learning may also be effectively analyzed via
the action logs, discourse data, and gameplay data of digital
tools and serious games, which are able to provide fine-grain
recollections of the learner’s interactions with the respective
software. Educational data mining researchers have applied
supervised [41] and unsupervised [14, 31] machine learning
techniques to better understand collaboration and to inform
the design of interventions to support collaborative learning
through such means as software prompts [31] and content
creation suggestions [52]. Additionally, Paquette et al. have
highlighted the need to support students during collabora-
tive learning by considering the role of the instructor in
facilitating student collaboration [38]. As such, instructor
dashboards have been explored as ways for instructors to
more easily gauge and analyze student collaboration across
multiple groups [3, 33]. A central aim of our study has been
to inform better instructor interventions for facilitating col-
laboration through insights gained from analysis of action
log data.

3. METHODS
This study utilizes data collected from a design-based imple-
mentation research project which aims to better facilitate
collaboration in engineering problem solving through the
analysis of video and interactions from engineering classes.
The project team has developed a student-facing tool that fa-
cilitates student group collaboration through a synchronized-
per-group shared digital environment (Figure 1) on tablet
computers, which group members can use to create and dis-
play their work. During use, we collected two types of data:
student interactions on the tool stored in log files—detailing
actions taken by individual students such as writing, drawing,
or editing—and video data from cameras set up around the
classroom. One of the key goals of the tool is to scale to large
classrooms where cameras are unlikely to be consistently
available; thus, we utilize video data to collect ground truth
labels, but rely only on logged tablet actions for collaboration
prediction.

Data in this study came from the use of the tool in Fall 2017
during the discussion component of an undergraduate intro-

Figure 1: One example of the result of collaborative
problem solving through the tool’s shared digital en-
vironment. The interface allows students choices of
different colors and tools to write, draw, and create
figures.

ductory mechanical engineering course at a large Midwestern
U.S. research university. The research team worked closely
with faculty and teaching assistants (TAs) to design tasks
suitable for collaboration and in line with the intended learn-
ing outcomes from the class. The tasks were independent
from week-to-week and did not build on one another, and the
students were not graded on completion by the end of each
class period. The tasks were represented in the tablet tool
as worksheets with variable number of pages, which included
problem descriptions and space to work out solutions. Data
were collected across 12 weeks of class from 20 groups of
approximately 4 students (group sizes varied from week to
week based on attendance).

While students interacted on tablets using the interface shown
in Figure 1, TAs present in the classroom viewed student
progress on their own tablets (Figure 2). The TA tablets
showed students’ editing positions in the worksheets, and
allowed TAs to join any group as a non-interactive participant
to see students’ work in detail. Our current work seeks to
augment the TA-facing tool via predictions of various markers
of collaboration quality made by machine learning models.
This feature enables TAs, who may lack extensive training
in assessing and promoting collaboration, to identify groups
that are not collaborating well and intervene to encourage
collaboration.

3.1 Behavior Coding Process
Videos of each group’s interactions (Figure 3) were captured
by high-angled cameras and synchronized with audio data
captured by microphones positioned near each group; addi-
tionally, an overhead fisheye lens camera captured the entire
class, including events such as the TAs’ interactions with
groups. The collected video data were annotated (coded) at
the group level by two trained annotators with an annota-
tion scheme adapted from previous work on collaborative
behavior annotation [38] to define group activity in terms
of task relatedness, peer verbal interaction, TA interaction,
talk content, and tablet usage.

Previous research on predicting collaboration from interac-
tions with software has involved annotating similar content



Figure 2: Example screenshot of a teaching assis-
tant’s view of a classroom with five groups of stu-
dents. The top graph indicates activity over time
for each group, with the selected group (#4) high-
lighted in purple. Bars on each worksheet thumbnail
show the page each student is viewing and their in-
dividual levels of activity.

Figure 3: An example of a group working collab-
oratively on a problem through the tool on tablet
computers. Videos of such groups were recorded
and qualitatively coded through a coding scheme
adapted from Paquette et al.’s work [38].

in video clips at 60-second intervals [38]. In this study, the
presence of collaborative behaviors (expanded below) were
annotated at 20-second video clips, after trials of the anno-
tation process at different clip duration of 10, 20, 30, 40,
and 60 seconds. Annotators determined 20 seconds to be a
reasonable balance—10 seconds was too brief to confidently
observe the presence of collaborative behaviors, while 30 sec-
onds was too long and often led to the observance of multiple
collaborative behaviors within the same video clip. Further-
more, through our trials at varied clip lengths, additional
identifiable behaviors emerged that were better identified
at the current 20-second coding clip length rather than the
longer 60-second clips annotated in previous work. A total of
16,270 clips were annotated for the presence (annotated as 1),
or absence (0) of the following set of collaborative behaviors:

• Task relatedness: At least one of the group members ap-
pears to be on task (e.g. two students solving problems
on the tablet).

• Peer verbal interaction: Verbal interaction is present
between group members.

• TA class interaction: TA is talking to the whole class
(e.g., class-related announcement, addressing a fre-
quently asked question).

• TA group interaction: TA is verbally interacting with
at least one of the group members.

• Task talk : Audible talk content in the group is related
to solving the task.

• Other talk : Audible talk content in the group is not
related to solving the task.

• Tablet movement : At least one of the group members
is moving the tablet to initiate (and to end) sharing of
the screen content with others.

We measured inter-rater reliability via Cohen’s kappa [18]
and percent agreement on a subset of 2,125 video clips. Ta-
ble 1 shows these reliabilities. All labels except Other talk
(kappa = .651) achieved kappa = .8 or higher, indicating
substantial agreement [18]. Given this agreement, the two
annotators divided the remaining 14,145 clips and annotated
them individually.

Table 1: Inter-rater reliability for a sample of 2,125
video clips in this study.

Behavior Base rate Agreement Kappa

Task relatedness .954 98.6% .840

Peer verbal interaction .501 91.7% .833

TA class interaction .024 99.5% .898

TA group interaction .150 98.3% .932

Task talk .608 91.2% .816

Other talk .072 95.3% .651

Tablet movement .019 99.2% .801



Of the qualitatively coded behaviors, we considered six spe-
cific behaviors for this study: on-task (derived directly from
Task relatedness), on-task-no-interaction (from a com-
bination of Task relatedness and Peer verbal interaction),
peer-interaction (from Peer verbal interaction), silent
(from Task talk and Other talk), task-talk (from Task talk),
and ta-class (from TA class interaction). These six be-
haviors were those which we believed would be best suited
for investigating the evolution of collaboration with consid-
eration of the actions of both the TA and students during
a typical class period for the course. We did not include
tablet movement due to the low base rate during annotation
and questionable value for characterizing collaboration. We
deemed on-task-no-interaction important for distinguish-
ing collaboration from individual work, and while it was not
explicitly annotated, it was calculated from a combination
of two different behavior labels (Task relatedness and Peer
verbal interaction).

3.2 Data Processing
The tablet tool collected student action log files, one per
group, during each class session. Relevant behavior data
were cleaned and stored based on expected suitability for
predicting collaborative behaviors on the tool. These types of
data included event types, such as scrolling, drawing, object
creation (inserting one of a few built-in graphics), modifying
drawings or objects (removing or undoing), as well as the
size and position of edits made, object geometry changes
(e.g., moving, resizing), page number, scroll bar position, and
changes to drawing color.

3.3 Machine Learning Models from Feature
Subsets

We aligned annotated behaviors with the student action log-
files to allow synchronized analysis between the two data
sources. We created three features sets: (1) onset features,
which characterized collaborative behaviors found in and cal-
culated within the first ten minutes, (2) concurrent features,
which captured collaborative behaviors based on the most
recent 60 seconds as well as all cumulative data, and (3)
combined features, which combines both subsets. Student
behaviors were recorded individually within each group’s log
file. However, we primarily extracted features intended to
characterize whole-group behaviors, in line with the group-
level video annotation scheme and the overall project goal
of improving collaboration rather than individual learning
behaviors.

3.3.1 Feature Engineering
Designing features to extract took place over the course
of several sessions involving the video annotators and re-
searchers, who discussed behaviors observed in the classroom
and how they might be reflected in tablet-based behaviors.

We extracted 89 features from the action logs using the full 50-
minutes of the class duration, which we refer to as concurrent
features. For these features, we used a combination of the
behaviors that annotators had observed to be related to
collaboration, as well as those characteristics we hypothesized
to be more broadly associated with effective collaboration.
For example, we created features such as: the mean distance
between consecutive edits of the same students (since it may

distinguish working in one area vs. jumping around rapidly),
total number of unique document pages viewed (a higher
number may symbolize more exploration of the task), and
maximum distance between concurrent edits of the same
page but made by different students (may symbolize task
division).

Similarly, we extracted 21 features from the action logs cal-
culated from the first ten minutes of class, which we refer to
as onset features. Assuming the five stages of small group de-
velopment apply in this context, we approximately split each
50-minute class period into stages by dividing into fifths. We
expected each class period to somewhat reset the collabora-
tion process, since there was a new task each week—meaning
a new corresponding task identification stage (storming), as
well as some variation in the group, in number and person,
due to fluctuating attendance. We specifically kept in mind
the characteristics of the task identification stage, such as
verbal and written communication for contextualizing the
problem and setting “ground rules”, as well as behaviors such
as reading or using visual figures to understand (but not
necessarily solve) the exercises. To that end, we created
features such as: the proportion of the first ten tool objects
created by the group being the pre-made available diagrams
(a higher proportion may mean more complete solutions early
in class), the longest time between object additions and ed-
its (longer pauses between actions may characterize more
verbal communication), and the cumulative number of page
switches (switching back and forth between pages may signal
wanting to fully understand the task at hand by referencing
material on other pages).

3.3.2 Machine Learning and Cross-Validation
We used the random forest classifier in the scikit-learn Python
library to build models from each respective feature subset
[39]. We selected random forest due to its effectiveness in
dealing with high dimensional feature spaces, and reduc-
ing overfitting [27, 9]. It is also able to deal with highly
correlated features, and provides feature importance mea-
surements which we analyzed to find the features that were
most predictive of collaboration. We cross-validated models
via leave-one-group-out (each of the 20 groups used as the
testing set once), and tuned hyperparameters using nested
cross-validation and grid search within training data only.
Hyperparameters consisted of the proportion of features to
consider for each tree branch (0.25, 0.5, 0.75, or 1.0) and
the minimum number of instances required in a tree node to
create new branches (2, 4, 8, or 16).

Table 4 presents the values of rpb, kappa, and area under the
receiver operating characteristic curve (AUC) of the models,
cross-validated over all data ignoring the five collaboration
phases. We decided to use the point biserial correlation coef-
ficient, rpb of the true and predicted values as the primary
accuracy metric, since the extreme base rates of on-task
and ta-class behaviors (and the changing base rates of other
behaviors over collaboration phases) led to unwanted sensi-
tivity to the threshold for kappa calculation. Kappa scores
(without threshold tuning) were not necessarily representa-
tive of accuracy changes as much as poorly-chosen decision
thresholds. Table 4 shows that the pattern of AUC values
across behavior labels was similar to rpb; however, rpb allows
straightforward computation of confidence intervals, enabling



Table 2: Top ten most important features for each of the six considered collaborative behaviors from the
combined features (onset + concurrent) random forest model. Common features in all six behaviors are in
bold.
ON-TASK ON-TASK-NO-INTERACTION PEER INTERACTION

1. maximum seconds of no actions

2. cumulative ratio of 2nd most to most active

3. cumul. number of page changes

4. number of actions

5. ratio of least to most active student

6. proportion of students acting

7. cumul. number of scroll position changes

8. number of unique pages viewed

9. max proportion of students on different pages

10. cumul. number of actions

1. number of actions

2. cumul. number of actions

3. cumul. distance drawn

4. maximum seconds of no actions

5. cumul. mean distance of same student edits

6. cumul. number of scroll position changes

7. cumul. ratio of least to most active student

8. cumul. standard deviation of distance scrolled

9. cumul. number of page changes

10. cumul. ratio of 2nd most to most active

1. cumul. number of page changes

2. cumul. distance drawn

3. cumul. number of actions

4. cumul. ratio of 2nd most to most active

5. cumul. number of scroll position changes

6. cumul. mean distance of same student edits

7. cumul. number of tool changes

8. cumul. ratio of least to most active student

9. cumul. number of add object

10. cumul. mean y-axis value of edits

SILENT TASK-TALK TA-CLASS

1. cumul. number of actions

2. cumul. number of selection changes

3. cumul. number of add object

4. cumul. distance drawn

5. cumul. number of page changes

6. cumul. number of tool changes

7. cumul. mean distance of consecutive edits

8. cumul. ratio of 2nd most to most active

9. maximum seconds of no actions

10. cumul. number of scroll position changes

1. cumul. number of page changes

2. cumul. number of selection changes

3. cumul. distance drawn

4. cumul. number of actions

5. cumul. number of add object

6. cumul. number of tool changes

7. cumul. number of scroll position changes

8. cumul. mean distance of same student edits

9. maximum seconds of no actions

10. cumul. ratio of 2nd most to most active

1. cumul. number of actions

2. cumul. standard deviation of distance scrolled

3. cumul. number of scroll position changes

4. cumul. maximum seconds of no actions

5. cumul. proportion of students scrolling

6. cumul. number of page changes

7. cumul. distance drawn

8. cumul. number of add object

9. cumul. distance scrolled

10. cumul. number of selection changes

the statistical comparisons of models that we include in this
paper. We thus proceeded with rpb as the primary accuracy
metric.

4. RESULTS
Within a 50-minute class period, we surmised that the five
stages of a collaborative problem-solving team could be ap-
proximated through five equal 10-minute segments. However,
if base rates of each behavior vary over time, model accuracy
could as well [29]. Thus, before answering our research ques-
tions, we visualized the base rates of each behavior to help
inform the results.

4.1 Base Rates Over Time
The trajectories of average base rates of the collaborative
learning behaviors across these five segments of class are
shown in Figure 4. Across behaviors, we observed a common
pattern: the largest changes in base rates were from the
first 10-minute segment to the second. The magnitude and
direction of the changes in base rates during this transition
were variable between the different behaviors, though some
patterns can be assumed to be closely correlated. For exam-
ple, the behaviors ta-class and silent followed a similar
negative trend in magnitude, since students across groups are
more likely to be silent when the TA is addressing the entire
class at the start of the class period, when task objectives or
announcements are likely to be made. Similarly, on-task,
peer-interaction, and task-talk tended to increase dur-
ing class periods, since on-task behavior is likely to involve
more instances of peer-interaction and task-talk be-
havior. on-task-no-interaction showed a comparatively
consistent base rate throughout the class period, perhaps
being influenced by other behaviors in both directions with
similar magnitude.

As base rates become more imbalanced (closer to 0 or 1),
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Figure 4: Average base rates of annotated behaviors
across segments of each class period (averaged across
class periods).

classification problems tend to become more difficult because
fewer data points are available from one category of the
data, and because accuracy metrics tend to become less
effective [29]. Hence, the patterns in Figure 4 are important
to consider when interpreting the results of the research
questions.

4.2 RQ1: How does the accuracy of predict-
ing collaborative behaviors vary across pe-
riods of a class?

To address this research question, we focused on the accuracy
of the concurrent features model. This model has similar
accuracy to the combined features model (see RQ3), and is
more parsimonious since it has 89 features, compared to 110
features from the combined model. Thus, it will likely be
the model of choice to drive predictions in future versions of
the TA-facing tablet tool, and we focus RQ1 on this model.
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Figure 5: Concurrent features model accuracy
shown over time throughout five segments of classes.
Accuracy in this case consists of point-biserial corre-
lation coefficients with 95% confidence intervals in-
dicated by shading or by error bars for labels where
base rates were too imbalanced (0% or 100%) to al-
low prediction in every class segment.

From the overview of the model performance in Figure 5,
a general U-shape pattern can be observed across the class
period, where the second peak in accuracy toward the end
of class never quite reached the initial accuracy from the
first ten-minute segment. This trend differed for on-task-
no-interaction, which showed a rapid drop after the first
10-minute segment, from 0.351 to 0.062, and did not later in-
crease. Predictions for on-task-no-interaction and silent
also briefly dropped below chance level during the second
half of the class period.

4.3 RQ2: Can early class collaborative behav-
iors alone be used to effectively model and
predict collaborative behaviors of the en-
tire class period?

As shown in Figure 6, the onset features model had overall
lower accuracy across the class periods compared to the
concurrent features model (Figure 5). The absence of the U-
shaped pattern from the concurrent features model (Figure 5)
suggests that the first 10 minutes of collaborative behaviors
may have been sufficiently similar to be captured by a model
with features created from behaviors from the entire class
duration, but that those behaviors were not the same as the
last 10 minutes. With the exception of silent, predicted
behaviors showed a trend toward the lowest accuracy at
the end of class. However, peer-int remained significantly
above chance for the first 30 minutes of class, indicating
that groups’ verbal interactions were—to a certain extent—
characterized throughout most of the class period by their
first 10 minutes of logged behaviors. When compared to
the accuracy pattern for the concurrent model, (Figure 5),
accuracy dropped below chance level more often, with on-
task-no-interaction, task-talk, and silent behaviors
predicted at below chance level for the latter half of the class
period.
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Figure 6: Point-biserial correlation coefficients with
95% confidence intervals by class segment for the
onset features model.

4.4 RQ3: Are collaborative behavior predic-
tion models improved through the addi-
tion of early class collaborative behavior
features, leading to a greater emphasis on
the early class period?

The lower and upper 95% confidence interval bounds of the
point-biserial correlation values of the models are presented
in Table 3. Among the confidence intervals there was overlap
for concurrent vs. combined models, but not for onset vs.
concurrent and onset vs. combined (with the exception of
ta-class for onset vs. concurrent, not drastically so), high-
lighting that there was no clear significant difference in the
models from the addition of onset features to the concurrent
features model. This is further supported in Figure 7, which
shows that the trajectory of the combined model accuracy
closely resembles the concurrent features model (Figure 5).
Table 4 also shows that in most cases the combined feature
set was not notably better than concurrent features alone
when considering overall accuracy across class time segments,
in terms of rpb, kappa, or AUC. Feature importance were
analyzed and are presented in Table 2. Three common fea-
tures were found in all six behaviors: cumulative number of
set page, cumulative number of scroll position changes, and
cumulative number of rows.

5. DISCUSSION
We analyzed automatic detection of collaborative problem
solving in classrooms through a lens informed by small group

Table 3: Comparison of the 95% confidence intervals
of the models’ point-biserial correlation coefficients,
rpb

Onset Concurrent Combined

on-task .446, .492 .506, .553 .522, .569

on-task-no-int .009, .040 .125, .155 .117, .146

peer-int .075, .104 .247, .276 .220, .250

silent .080, .112 .264, .295 .269, .300

task-talk .091, .119 .410, .438 .393, .421

ta-class -.005, .022 .012, .036 .022, .050
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Figure 7: Point-biserial correlation coefficients with
95% confidence intervals by class segment for the
combined features model.

development theory. Based on the five stages of small group
development and the importance of the early periods of col-
laboration, we were curious if explicitly considering early class
behaviors was beneficial for predicting a team’s collaborative
behaviors over a class period. We annotated collaborative
behaviors from 16,270 video clips of an undergraduate engi-
neering course as ground truth for behaviors, and compared
the accuracy of a machine learning model built from onset
features (early collaborative behaviors calculated from the
first ten minutes of class) to a model from concurrent features
(general collaborative behaviors over the whole class period).
In this section, we discuss the implications of our findings.

5.1 Collaboration Across Class Periods
We investigated whether evidence of the five stages of group
development could be seen in the concurrent model accuracy
when examined in 10-minute periods of a 50-minute class.
Our experimental results showed a U-shaped accuracy curve
for a majority of the considered collaborative behaviors, with
lowest accuracy in the middle 30 minutes of class. The
base rate trends (Figure 4) may be one explanation for the
observed pattern, because a majority of the behaviors also
had U-shaped or inverse U-shaped base rate patterns, which is
indicative of unbalanced classes. An exception to the U-shape
for accuracy and base rates was on-task-no-interaction,
which had the highest accuracy at the beginning of class
and lowest by the end. One possible explanation for this
may be that the students in the first 10 minutes of the class
were reading or individually thinking about the task, and
transitioning to become more verbal and interactive as the
class goes on—which can be approximately observed in the
overall base rate pattern.

In terms of the small group development theories, the U-
shape may be interpreted as evidence for the existence of
three, as opposed to five, distinct stages: a beginning, a
longer middle, and an end. Three stages is in line with
Spitz and Sadock’s three-stage model from observing the
training of nursing students [47]. According to the model,
stage one is characterized by anxiety-related emotions, such
as curiosity and confusion, stage two is a period of trust and
cohesiveness, and stage three is disengagement and anxiety
about the group conclusion.

It is difficult to determine whether these stages were captured
in our analysis, however, since there were some notable dif-

Table 4: Accuracy comparison of the onset features,
concurrent features, and combined features (onset +
concurrent) models.

Behavior Model rpb Kappa AUC

Onset .470 .469 .737

on-task Concurrent .532 .529 .746

Combined .547 .545 .754

Onset .025 .025 .512

on-task-no-int Concurrent .192 .140 .551

Combined .175 .131 .549

Onset .093 .090 .545

peer-int Concurrent .266 .261 .630

Combined .239 .235 .617

Onset .096 .096 .549

silent Concurrent .306 .279 .620

Combined .307 .284 .623

Onset .115 .105 .558

task-talk Concurrent .445 .424 .699

Combined .422 .407 .692

Onset .011 .008 .503

ta-class Concurrent .064 .024 .507

Combined .095 .036 .510

ferences in context and aim between our study and Spitz and
Sadock’s research. In our study, we did not set out to capture
or identify emotions during collaboration, since the focus in
data collection was on annotating collaborative behaviors and
capturing action data, such as tool use, scrolling, and editing.
Furthermore, while previous work has developed approaches
for detecting student affect through applying computer vision
techniques to detect facial expressions and bodily movements
on video [15, 53, 6, 7], our study used video data as means
to obtain ground truth data for collaboration rather than
emotion. A central goal of our research is to enable analysis
for real-time collaboration intervention in the classroom, and
thus we analyzed ways to detect collaboration using solely
action log data, which can be applied in large and varied
classroom environments even when sensors are not available.
Current methods for accurately capturing emotion during
learning largely rely on video or multimodal methods [5,
20], and it is difficult to envision classrooms with access to
multimodal instruments and camera systems designed for
analyzing emotion and collaboration.

5.2 Role of Early Collaborative Behaviors
Our hypothesis that early class behaviors could effectively
predict the quality of collaboration later in class was not
supported by our findings. While we created onset features
with characteristics of task identification of problem solving,
such as verbal communication, deliberation, and reading,
through features such as handwriting on the tablet, pauses
between edits, high number of object removals, frequent page
switches, and problem diagramming, the accuracy of the
onset features model was lower than the concurrent model
as a whole. Moreover, the U-shaped pattern from concurrent



features model was not observed. Despite the accuracy of
the onset model showing a similarly steep decrease after the
first ten minutes, it did not increase at the end of the class
for any of the considered collaborative behaviors, as had the
concurrent model. Taken together, the U-shape of concurrent
model accuracy and the steep decline in accuracy of the onset
model suggest that the first ten and last ten minutes of class
are similar, but there are differences which make it difficult
to effectively characterize based on features calculated from
the first ten minutes of class. The similarities of the first
and last ten minutes are also supported from the trends
in the base rates (Figure 4). ta-class behaviors—when
the instructor addresses the entire class—only tend to occur
at the beginning and end of class, but the content of the
announcements at the beginning of the class are different and
likely influence student behavior differently. For example,
students may be more likely to listen and be silent in response
to the announcements made at the beginning of the class
since it is immediately pertinent to the class ahead, but
students may be less silent when announcements are made
at the class end.

Our analysis also did not support the idea that the addition
of the onset features (21 features) to the concurrent features
(89 features) model might improve predictive accuracy. While
the resulting combined model was created using the largest
number (110) of features with an emphasis on the earlier
parts of class, the accuracy did not differ significantly from
the concurrent features model. Comparing the confidence
intervals of the model’s overall point-biserial correlation co-
efficient (Table 3) showed that while the accuracy of onset
and concurrent features models are significantly different
for a majority of the behaviors except ta-class (which has
especially imbalanced base rates), there is overlap between
concurrent and combined models for all behaviors. This
indicates that the models may not be statistically different,
and are not meaningfully different. Moreover, of the 110
features in the combined (onset + concurrent) model, none
of the 21 onset features were found in the top eight important
features in any of the six behaviors (Table 2). Three common
features were found in the top eight important features for
all six behaviors: cumulative number of set page, cumulative
number of scroll position changes, and cumulative number of
rows. When interpreted together, these three features may
be related to the overall activity level of the groups, which
may intuitively relate to changes in collaborative behavior.

6. CONCLUSION
In this paper, we were motivated by theories in small group
development to analyze how explicitly accounting for early
class behaviors and collaboration evolution might help im-
prove collaboration prediction from tool action log data. We
investigated collaborative problem solving in an introductory
engineering course over 12 weeks. We found that collabora-
tion prediction in a 50-minute class period did not appear to
follow a straightforward interpretation of the five-stage struc-
ture, but rather a potential three-stage structure. We found
that while the first ten minutes of class are distinct from the
middle and ending periods of class, onset features calculated
from the first ten minutes of the class could not be used to
effectively predict collaboration in the later parts of class.
Concurrent features (calculated from the whole 50-minute
period) performed better as a whole, and the combination

of onset and concurrent features did not necessarily lead
to a better predicting model. Thus, groups’ collaborative
behaviors later in class were not notably related to their
initial collaborative behaviors.

Our study was limited in several ways. Using solely tablet ac-
tion log data to examine small group development restricted
us from being able to account for changes in emotion, a
common aspect of small group development theory. We
utilized data from action logs since we wanted our analysis
to be scalable and make progress toward real-time student
interventions for collaboration in the classroom via prompts
delivered to TAs (Figure 2). However, to promote better
understanding collaborative learning theory in general, ad-
ditional approaches are needed. To this end, future work
examining small group development in collaborative problem
solving may benefit from incorporating work on sensor-free
affect detection for student engagement [2, 30], which may
help identify emotions associated with various stages of small
group development such as confusion or anxiety [47]. Addi-
tionally, audio of group conversations could be recorded from
their tablets and aligned with action log data to understand
conversations in the context of the small group development
at hand. Our study was also limited by the variability of
student groups in size and membership. Some groups had
as few as two students in some weeks of class, and the same
groups may have had four members in other weeks. This
likely influenced the amount of activity captured, in addition
to inevitable changes in the communication dynamic.

Insights into to the influence of early collaborative behav-
iors for improving collaboration prediction may help design
better interventions for helping TAs facilitate collaboration,
and design software tool features to promote effective stu-
dent collaboration. Deeper insights into understanding small
group evolution may offer ways for future work to more ac-
curately identify a group’s current collaborative stage solely
from a group’s behaviors, without considering content of
interactions between members. Based on the assumed stage,
instructors or tools could possibly allow for personalized per-
team interventions to better facilitate collaborative problem
solving.
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