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Analyzing classroom video data provides valuable insights about the interactions between students and teachers, albeit often through

time-consuming qualitative coding or the use of bespoke sensors to record individual movement information. We explore measuring

classroom posture and movement in secondary classroom video data through computer vision methods (especially OpenPose), and

introduce a simple but effective approach to automatically track movement via post-processing of OpenPose output data. Analysis of

67 videos of mathematics classes from middle school and high school levels highlighted the challenges associated with analyzing

movement in typical classroom videos: occlusion from low camera angles, difficulty detecting lower body movement due to sitting,

and the close proximity of students to one another and their teachers. Despite these challenges, our approach tracked person IDs

across classroom videos for 93.0% of detected individuals. The tracking results were manually verified through randomly sampling

240 instances, which revealed notable OpenPose tracking inconsistencies. Finally, we discuss the implications for supporting more

scalability of video data classroom movement analysis, and future potential explorations.
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1 INTRODUCTION

Video recordings of traditional classrooms capture detailed interactions of students and the instructor. The value of video

recordings as data has been established in educational research, where they have long been used for qualitative research

to analyze pedagogy and to obtain rich classroom insights through teacher reflection [28], classroom comparison

[22], and stimulated recall [24]. Furthermore, qualitative coding of video data has been used to identify patterns in

classroom dialogue [15]. Gestures are also readily recognizable in video; thus, teacher and student gestures have been

a central interest of embodied cognition research, which has examined roles of gestures in mathematics education

such as communicating abstract representations [3] and scaffolding [2] concepts. When combined with machine

learning methods, qualitative video coding (and other types of manual coding) can serve as ground-truth labels to help

automatically detect attentional states [6], analyze patterns in student group collaboration [16], and other constructs

(e.g., [9, 33, 34]).

Although recorded classroom videos are a valuable source of information-rich data for education researchers and

teachers, they can be difficult to translate into insights because of their heterogeneity. Videos can capture a variety of

learning environments, and researchers may collect video data to answer various project-specific research questions
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about diverse modalities. Using existing analysis methods designed for an entirely different set of research questions

can lead to issues. These incompatibility issues have led to researchers needing to develop project-specific video coding

schemes, which are a set of definitions that the researcher determines to be representative of particular behaviors, such

as whether students are on task or verbally interacting with their peers [30]. Developing video coding schemes can be a

time-consuming process that relies on researchers’ domain expertise and idiosyncratic observations from the video.

Once created, video coding schemes are usually most applicable to the researchers’ own dataset. Manual coding of

video data introduces further complexities as project members need to be trained on the coding process and the coders

need to obtain a reasonable level of inter-coder reliability.

More recently, as a result of the progress made with applying machine learning approaches to educational data, there

is a body of work in developing automated methods for analyzing video data [8, 12, 13, 19, 29]. These methods have

provided alternate means of obtaining person movement, position, and posture information that enable larger-scale

qualitative and quantitative analyses. Constructs like movement alone may be too low-level for automatically coding

variables of interest like student engagement or affect, however. Consequently, researchers have used multimodal

approaches to study movement in learning to account for the unpredictability of movement, such as developing affect

detectors using facial expressions as the primary channel and body movements as the secondary channel [7], and

physiological sensors (camera, pressure mouse, pressure-sensitive chair, and conductance bracelet) along with students’

self-reports [4]. Movement and related variables that can be extracted from videos serve to complement these detailed

data for quantitative analyses (e.g., machine learning), and may serve qualitative research by guiding researchers toward

interesting points in videos for in-depth analysis.

1.1 Novelty and Contribution

Little is currently known about the specific challenges that arise when applying automatic video analysis methods

for secondary analysis of classroom data. Classroom video data exist widely for a few reasons: they may originally be

collected for different purposes and research questions [27], they may be publicly available on YouTube, or teachers may

record and store their classroom sessions for their own instructional development and reflection [31]. Modern computer

vision tools such as OpenPose [10], Deepcut [25], RMPE [14], and VIBE (Video Inference for human Body pose and

shape Estimation) [17] are easily applied to videos to explore new research questions. In particular, the scalability of

video data analysis may potentially be increased via investigating the application of computer vision tools on existing

data. However, whether or not such tools are already well suited to the kinds of video that arise from typical middle

school and high school classroom recordings is another matter.

In this paper, we examine one such computer vision method, OpenPose, to analyze classroom videos that were

not originally recorded for such analysis. We examine the extent to which OpenPose can be useful for detecting the

position, posture, and movement of students and teachers in the context of middle school and high school classrooms,

and propose a simple yet effective approach for extending OpenPose’s capabilities via post-processing of output data to

address challenges encountered during secondary analyses of classroom video data. We aim to explore the particular

characteristics of classrooms videos when analyzing movement data.

We first discuss methods that researchers have previously used to track and study movement in learning, and describe

the secondary video data used for our analysis. Then, we describe the OpenPose configurations we used and introduce

our post-processing methods to track individuals throughout the videos. We then discuss the results, our manual

verification process to better support the validity the results, and the implications of this type of analysis for potentially

increasing the scalability of analyzing existing classroom videos.
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We organize our analysis in this paper around the following two research questions:

RQ1:What challenges arise when automatically measuring movement in classroom video data via OpenPose?

RQ2: How well can the issues be resolved via post-processing OpenPose output?

2 RELATEDWORK

There is a growing body of work using diverse methodological approaches to examine movement data in learning.

Research in the area has been partly motivated by the idea of spatial pedagogy as coined by Lim et al. [18], who describe

spatial pedagogy as the teacher’s physical positioning and movement through the learning environment with respect

to the students and learning materials, and these spatial factors’ meaning in relation to creating effective pedagogy.

In order to track and analyze positioning and movements of individuals in classrooms, some researchers have utilized

low-cost wearable badge sensors to track individuals’ patterns of movement, which have been represented and analyzed

as visual heatmaps in higher education contexts in design courses [20] and lab sections [21]. Researchers have also

developed systems using a variety of different custom sensors and features [26]. Perhaps the most developed work

published on multimodal approaches for automatically analyzing classroom interactions is EduSense [1]. EduSense is a

system for instructor-facing dashboards in higher education instructional feedback. It integrates various visual and

audio features, such as detecting sitting and standing, hand-raising, and speech data patterns. EduSense researchers

utilized a single wide-lens camera mounted onto electric boxes near the ceiling to give a bird’s-eye view that is able to

capture a comprehensive perspective of classroom activity. They then processed video data through EduSense, which

consists of applying custom-tuned OpenPose processing to reduce false-positive body detection.

Video recording is often less invasive than other sensors (e.g., sensors worn on the body), which may improve

the ecological validity of the work as it may be less likely to impact subjects’ behaviors. While there is work which

has analyzed existing classroom video data (collected through videos publicly available on YouTube) to automatically

analyze types of movements in video such as eye gaze following [5], there is no such work on automatically tracking

persons across time in existing videos from real-world middle school and high school classroom contexts. Thus, it may

be valuable to develop these methods for positioning and movement on existing video in order to help improve the

empirical understanding of spatial pedagogy.

3 DATA

In line with our research motivation, the data used for analysis were not originally collected for the purposes of this

research. The video data were collected in 2014 and 2015 for a different research project which closely examined the

processes teachers engage in when teaching using point-of-view cameras; specifically, the project aims were to better

understand mathematics teachers’ responsive teaching practices. To that end, cameras were positioned in various

middle school and high school mathematics classrooms located in the United States to capture the interactions between

students and instructors.

We utilized our tracking approach with diverse video data to evaluate its generalizability. Our study analyzed a

sample of 67 classroom videos of around 90 minutes in length in class periods of one hour long—videos started earlier

and later than classes in order to capture footage of the full class period. The collection of videos represent videos from

6 different teachers, across two years mathematics classes with different students. The videos were recorded with either

a Sony HDR-MV1 camera or a Zoom Q4 Handy Video Recorder in 1080p (1920×1080 pixels) resolution at 30 frames per
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Fig. 1. An example video frame from a classroom video
Fig. 2. Example video frames showing the variety of video
data

second. The Sony and Zoom cameras had 120-degree and 130-degree fields of view, respectively. The cameras used to

record the videos in this paper had been positioned in locations of classrooms that were able to capture interactions

from the entire class, such as stage left or stage right. Figures 1 and 2 show the wide variety of videos, with each video

having differences in camera placement, captured perspective, and classroom lighting.

4 METHODS

We randomly sampled one-minute video clips for analysis from each of the 67 videos in the collection and extracted

keypoints from each clip using OpenPose. Then, we performed post-processing on the resulting data in order to

implement inter-frame tracking of individuals. Finally, we performed manual verification of our tracking method to

assess its accuracy. In this section, we describe these processes in more detail.

4.1 Video Sampling and OpenPose Processing

We sought to explore the generalizability of our tracking method. We thus focused on analyzing short clips from many

classroom videos to capture data diversity, rather than focusing in depth on specific videos. Based on our preliminary

observations from the videos, the 30 to 60 minute time span represented portions of the video when the classroom

was fully settled, and the most representative of typical classroom activity for the respective classes. This time span

included instances of students moving around, engaging with the course material and instructor, and interacting with

each other in the classroom. Thus, we randomly sampled one-minute video clips from the 67 videos starting from from

the 30th to the 59th minute of class. The resulting 67 one-minute videos were subsequently processed via OpenPose in

order to extract body keypoints (𝑥 and 𝑦 coordinates of various points on each visible body).

Like other pose estimation tools such as Deepcut [25], and RMPE [14], OpenPose is a computer vision tool for

identifying individuals in video data by jointly detecting human body, hand, facial, and foot keypoints on a single image

[10]. For our analysis, we used the 25-keypoint body and foot keypoint configuration. We expected that the addition

of the other facial features and hands keypoints provided by other configurations would not substantially improve

our planned tracking implementation of persons in post-processing, while complicating output interpretation and

greatly increasing the processing time. OpenPose output consists of JavaScript Object Notation (JSON) files, each of

which holds an array of objects representing identified persons with body part locations as coordinates and detection

confidence. Since OpenPose processes videos per frame, the total number of output files per video was ≈ recorded

frames-per-second × seconds of video.
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4.2 Post-processing OpenPose Output Data

OpenPose does not have native support for inter-frame person tracking. Each frame of video is newly analyzed and

persons in the current frame are detected without information about the previously processed frames. This makes it

difficult to use OpenPose for analyses like examining teacher interaction patterns or peer movement interactions over a

class period, since the analyses require tracking individual people over time. Here, we outline an approach to track

students and teachers between frames through post-processing. We applied our approach to the output data of each

one minute video (at 30 frames per second), or around 1,800 frames per video.

First, we concatenated the JSON output files containing the keypoint coordinates and confidence values of each

detected person per frame, forming a single output file per video for easier access to values during calculation. We

considered low-confidence keypoint detections (≤ 0.3) as non-detections and filtered them out prior to calculations,

based on empirical observations that the coordinates of these low-confidence keypoints varied widely. Then, for each

frame in each video output, we calculated individual Euclidean distances from the 25 keypoints of each person in the

current frame to the coordinates of all corresponding keypoints in the previous frames. The calculations continued

with progressively earlier frames in the video until finding a distance of less than 10 pixels or until reaching 5 frames

previous. We recorded the two smallest non-zero distance values along with the keypoint index of the smallest distance.

This allowed us to determine if the best match across frames is close (i.e., closest distance is small) and unambiguous

(i.e., second-smallest distance is large).

We then assigned person IDs based on these inter-frame matches by iterating through frames in reverse order

and linking IDs based on close matches. If a detected person had no clear matches, we assigned a new person ID.

Alternatively, if a person had multiple matches in the same frame, the ambiguity was resolved via voting for the most

keypoints matched. Furthermore, our tracking also accounted for instances when OpenPose briefly failed to detect a

person or where one person was detected as more than one, which is described in section 5.1 in further detail. In cases

when one person’s keypoints were fragmented into two or more sets of keypoints and incorrectly detected by OpenPose

to belong to different people, we automatically merged them into one person with one person ID if the keypoints were

complementary and there was evidence from adjacent frames that they corresponded to a single person. On the other

hand, in instances when OpenPose had inconsistent person detection between frames, we estimated missing keypoints

by interpolating the missing information from earlier and later frames.

4.3 Manual Verification of Inter-frame Tracking

We performed a manual verification step in order to support the validity of our tracking approach. Each of the 240

randomly selected samples represented the 25 keypoints’ coordinates (𝑥 , 𝑦) of one person in one frame of one video.

These data were then compared to the keypoint data of the person which was determined by our tracking approach to

belong to the same person (same person ID). The two corresponding video frames of comparison were opened in a

photo editing tool which displayed photo pixel coordinate values. The identity of the person was checked by carefully

examining keypoint coordinates via the photo editing tool. We then recorded whether the person ID belonged to the

same person in both frames.

We conducted a binomial distribution power analysis to determine how many samples (i.e., pairs of consecutive

frames) were needed to detect an error rate of 20% or higher with 80% power, using the pwr package in R [11, 32].

Power analysis showed that 197 samples would be needed. We selected slightly more samples to account for incomplete

5



LAK22, March 21–25, 2022, Online, USA Paul Hur and Nigel Bosch

0 5 10 15 20 25 30

Persons detected

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

Fig. 3. Density plot of the frequency of persons detected by OpenPose across all 67 videos. The true number of
individuals in each video ranged from 16 to 31 (avg. 22.4)

or empty data points and to allow for even sampling across the 6 teachers; specifically, we randomly selected 40 per

teacher for a total of 240 samples.

5 FINDINGS

In this section, we describe our observations from examining OpenPose output data in this classroom context and

findings from our post-processing tracking method. While OpenPose output revealed consistency issues with keypoint

and person detection, inter-frame tracking was highly accurate for the individuals detected. Furthermore, we describe

the instances when tracking was unsuccessful during the manual verification process.

5.1 Inconsistencies in Person Detection

An exploration of OpenPose’s detection process revealed consistency issues with person detection. During observations

of OpenPose’s detection process (viewing detected keypoints in the video while the software was extracting keypoints),

we observed numerous instances of intermittent detection failures. Identified keypoints, and sometimes entire individuals,

would alternate unpredictably between being detected and not being detected. This resulted in inconsistent numbers

of persons detected across the video as shown in the density plot of the numbers of detected individuals in Figure

3. Across all videos, the average percentage of individuals detected by OpenPose out of the manually-counted true

number of classroom individuals was 77.2%.

Intermittent detection manifested in two ways. OpenPose sometimes split one individual’s keypoints into multiple

different individuals, increasing the apparent number of individuals detected. The split-up keypoints coordinates were

so close to the keypoints of multiple individuals that all keypoints could be interpreted as correctly detected, which

complicated tracking. Alternatively, OpenPose can merge multiple individuals’ keypoints into one single detected

individual, leading to a smaller number of detected individuals.

5.2 Tracking Performance

Our tracking approach was largely successful. There were an average of 30,868 instances of OpenPose person detections

per one-minute video clip. Persons were tracked across 93.0% of these detections. We calculated this success rate as the

percentage of detections for which person IDs could be matched (versus creating a new ID).
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Fig. 4. An example of when the tracking method failed to recognize the individual as the same
person due to inconsistency in person detection. Relevant person is circled in yellow in Frame A.

Fig. 5. An example of when the tracking method failed to recognize the individual as the same
person due to a small number of detected keypoints which varied between frames. Relevant person
is circled in yellow in Frame A.

5.3 Observations from Manual Verification of Tracking Approach

Out of 240 manually checked samples, there were 15 samples when our tracking method did not identify the same person

ID. These instances of unsuccessful tracking manifested due to either OpenPose’s person detection inconsistencies as

outlined in section 5.1 above, or our tracking method was unable to accommodate different keypoints being detected in

cases when few keypoints were detected in both frames. Out of the 15 instances of tracking failure, 13 instances were

due to OpenPose detection inconsistencies, and 2 were due to our tracking method failing to track persons with a small

number of keypoints. Figure 4 shows an example of when OpenPose detected a person in one frame (Frame A) but did

not in the next frame (Frame B), despite very little movement differences between the two frames. On the other hand,

Figure 5 shows the tracking method failing due to a small number of detected keypoints in both frames: 8 keypoints in

Frame A, and 10 keypoints in Frame B. The small number of total keypoints for the person, combined with different

keypoints identified in the two frames, led to the inability of our tracking approach to track effectively.

6 DISCUSSION

Compared to collecting original video data for movement analysis, we had no control over optimizing the data collection

process for our analysis. Occlusions may have been a major contributor to our tracking performance not reaching

greater tracking accuracy. In ideal scenarios, cameras near the ceiling avoid issues with occlusion [1]; however, in

secondary data analyses like ours, comparatively low angles are common since this typically makes camera setup more
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straightforward. This created many instances of occlusion, as students positioned very close together appear even closer

in the 2D plane. Furthermore, the lower half of students’ bodies were often obscured since students were seated at or

around desks, so OpenPose was not able to consistently detect many lower-body keypoints. Thus, the keypoints that

were more rarely detected were those located in the lower half of the body. As shown in the box plots in Figure 6, some

keypoints (1, 2, 5, 0) were detected with reasonable consistency, while some keypoints (13, 10, 11, 14, and 19 through 24)

were rarely detected across the 67 videos—the bottom 10 least often detected keypoints were found in the legs.

Further analysis into keypoint differences revealed movement magnitude difference patterns based on location.

The five most frequently detected keypoints (1, 2, 5, 0, 8) were found in the torso, lower, or head and neck, and had

average inter-frame distances (in pixels) of 1.67, 2.03, 2.07, 1.93, and 3.54, respectively. The five least frequently detected

keypoints (22, 19, 20, 23, 21) were all found in the legs, and had average inter-frame distances (in pixels) of 9.80, 10.01,

9.66, 9.72, and 9.57, respectively. Despite these larger distances for some keypoints, the tracking performance was

still quite good across the videos since the difference between closest and second-closest distance typically provided

strong evidence of matches even when keypoint detection was imprecise. Our manual verification process revealed that

our approach successfully tracked 225 out of 240 instances, with 15 instances of tracking failures. A majority of these

instances (13) were due to persons having variable detection between the two consecutive frames. This shows that

there is room for improving our tracking approach through accounting for instances when keypoint information is

more sparse.
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Fig. 6. Box plots of keypoint detection frequencies of all 67 videos

7 FUTUREWORK

Future work could improve the process by integrating the keypoint detection frequency analysis which showed detection

rate variations based on keypoint locations on the body. The keypoints could be assigned different weights denoting

their importance in the tracking process, in which more commonly detected keypoints (e.g., in the upper body) might

receive higher importance weights. This will help to reduce noise from less commonly detected keypoints (e.g., in the

lower body) with large inter-frame distances, which could contribute to fewer tracking failures. Furthermore, we can

perhaps account for the inconsistent contrast across videos caused by uneven classroom lighting or camera hardware

limitations. Recent work has shown that image pre-processing operations such as increasing the contrast and sharpness

of the target could increase OpenPose’s detection accuracy by up to 38.37% [23]. Our tracking approach could also be
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applied to videos of a wider range of classroom environments, as the collection of videos analyzed in this study had

some similarities in classroom layout. There are opportunities for further improving the robustness of our inter-frame

tracking approach, such as scanning over longer periods of time to re-identify persons when tracking fails, using motion

to anticipate where persons are likely to be in subsequent frames, and other approaches. Such improvements will allow

for the investigation of trends in movement over entire class periods, and further develop spatial pedagogy research.

Finally, while many current pose estimation software packages like OpenPose support person detection but not person

recognition, there are still concerns in maintaining the privacy of individuals’ data. Future work should consider ways

to depersonalize such potentially sensitive data through blurring of faces after pose estimation but before data analysis,

or separating available student characteristic data (names, grades, etc.) from video data.

8 CONCLUSION

In this paper, we described a method for automatically measuring the positions and movements of teachers and students

in classroom videos. We were motivated by the potential scalability of these methods when compared to more manual

qualitative methods, and its less intrusive nature compared to using custom sensor systems. Tracking persons in

classroom settings highlighted several challenges, like large amounts of occlusion and intermittent detection failures,

along with less-than-ideal video angles, all of which are expected in real-world classroom settings. Much work remains to

be done to fully address these challenges. However, our post-processing solution for overcoming these challenges while

tracking students and the instructor shows promise, whichwas validated through amanual verification process. Our code,

including ongoing improvements, is documented and publicly available (https://github.com/tca2/videodata-processing).
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