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ABSTRACT

While classroom video data are detailed sources for mining student

learning insights, their complex and unstructured nature makes

them less than straightforward for researchers to analyze. In this

paper, we compared the differences between the processes of expert-

informed manual feature engineering and automated feature engi-

neering using positional data for predicting student group interac-

tion in four middle school and high school mathematics classroom

videos. Our results highlighted notable differences, including im-

proved model accuracy for the combined (manual features + au-

tomated features) models compared to the only-manual-features

models (meanAUC= .778 vs. .706) at the cost of feature interpretabil-

ity, increased number of features for automated feature engineering

(1523 vs. 178), and engineering approach (domain-agnostic in au-

tomated vs. domain-knowledge-informed in manual). We carried

out feature importance analyses and discuss the implications of the

results for potentially augmenting human perspectives about quali-

tatively coding classroom video data by confirming and expanding

views on which body areas and characteristics may be relevant

to the target interaction behavior. Lastly, we discuss our study’s

limitations and future work.
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1 INTRODUCTION

Feature engineering is a crucial step in machine learning which

involves brainstorming and transforming raw data to create rele-

vant predictor variables for the target variable. It is often a manual

process in the case of expert-informed feature engineering, and

benefits from subjective human perspectives and intuition from

domain knowledge in order to attain good data representation [13].

Extensive domain expertise alone, however, may not directly trans-

late to effective feature engineering. The most relevant qualitative

characteristics related to the target variable may either be too diffi-

cult to quantify, calculate, or operationalize, or the data needed for

the feature may not exist. Automated feature engineering methods

could perhaps be used to aid this gap. Tools such as FeatureTools

[22], TSFRESH [9], or AutoFeat [17] do not utilize domain knowl-

edge to create features, but instead consider the nature of data (e.g.,

column data type, recognizing value patterns such as time or dates,

etc.) and apply appropriate transformations based on hierarchical

relationships to rapidly generate a large number of features. By

examining the similarities and differences between models using

manually created features and automated features, there is potential

for human perspectives to be guided on the characteristics which

are overlooked, yet meaningful to the target variable.

Both quantitative and qualitative education researchers have

closely examined classroom video data. Within learning analytics,

researchers have used video data to manually label student behav-

iors for building predictive models for characteristics related to

successful learning [5, 19, 30]. In qualitative education research,

the complex, unstructured nature of video data allows for deep

qualitative analyses of students’ behaviors and perspectives in

ways which may not be possible with quantitative methods [3].

In order to organize the complexity of video data, researchers com-

monly rely on qualitative coding to categorize information, find

patterns, and extract meaning. Classroom videos have been used

to inform pedagogical theories through analyzing teacher–student

interactions and dialogue [2], study students’ spatial reasoning and

https://doi.org/10.1145/3576050.3576090
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sensemaking [38], and support teacher professional development

through self-reflective practice [10, 29], to name a few examples.

Despite the prevalence of qualitative labeling and coding of

video data in education research, it is often a laborious and time-

consuming process. The process entails determining the appro-

priate target behaviors based on the available data, behaviors to

be defined, coders to be trained in order to align subjective per-

spectives, and obtain a reasonable degree of inter-rater agreement

[16]. Furthermore, due to its manual nature, the amount of effort

scales linearly with the amount of data. Recent advancements in

machine learning methods and computer vision software have the

potential to augment the qualitative coding process. Off-the-shelf

automatic video analysis methods such as OpenPose [8] or Medi-

aPipe [27] can be used to collect positional data of students in the

classroom video (i.e., x and y coordinates), and when combined

with available post-processing methods [1, 18], it is possible to track

students’ movements. The resulting data could be used to build

machine learning models that predict student learning behaviors

across class periods, for example.

1.1 Contribution

In this paper, we explore how automated feature engineering meth-

ods could inform expert feature engineering processes using indi-

viduals’ positional data for predicting classroom video behaviors.

We compare the differences between a machine learning model

built from a expert-informed manual feature set to a model that

used a larger feature set combining both manual features and auto-

matically generated features. We aim to explore whether automated

feature engineering methods—in particular, FeatureTools—could be

used in tandem with manual feature engineering methods to bal-

ance human perspectives and computational perspectives. Human

perspectives typically inform the creation of new computational

methods or tools; here, we are motivated to explore the reverse: how

computational methods could inform human perspectives around

qualitative classroom video analyses.

Our paper was guided by the following research questions:

• RQ1What are the differences betweenmanual vs. automated

feature engineering methods for creating features related to

predicting student interactions with others?

• RQ2 In what ways can automated feature engineering meth-

ods inform manual feature engineering methods for pre-

dicting student interactions with others, and what are the

implications for coding qualitative video data?

Next, we briefly outline related work before describing the meth-

ods, results, and implications of these research questions.

2 RELATEDWORK

In the related work section, we discuss how education researchers

have used physical positioning information from video data to study

classroom learning, and how domain expertise has been used to

create effective features for predictive models.

2.1 Studying the role of physical positioning in

learning

The current state of research on examining the role of student and

teacher physical positioning shows that it closely relates to the so-

cial dynamics around interpersonal ties [11, 36] and power [14, 25],

which has implications for pedagogical effectiveness [26, 35] and

collaborative learning [7, 32]. There is a breadth of learning analyt-

ics work on predicting the emotional, behavioral, and cognitive be-

haviors of students in the classroom using multi-modal approaches,

including positioning data, through position sensors and computer

vision tools [1, 12, 28]. In more qualitatively oriented studies, quali-

tative coding of positional information from video data along with

surveys, interviews, field notes, and other learning artifacts have

been used to study student engagement and the evolution of student

knowledge-building strategies [14, 23]. Our paper closely relates to

the aforementioned areas of study by providing potential avenues

for augmenting researchers’ perspectives around interpreting stu-

dent positional information.

2.2 Expert-informed feature engineering

Human perspectives informed by domain expertise have been lever-

aged to create effective features for predicting the target label in a

wide variety of classification tasks, such as diagnosing heart disor-

ders [20], phenotyping genome data [37], and detecting emotions

during learning [21, 34]. In these studies, experts utilized their

understanding of the theoretical underpinnings and empirical ob-

servations to create features. Therefore, for the manual feature

engineering of student positional data extracted from classroom

video data, education researchers’ domain expertise and video obser-

vation notes could perhaps be leveraged to create effective features

related to predicting student group interaction.

3 METHODS

In this section, we discuss target behavior and data selection, Open-

Pose video processing, qualitative coding, manual and automated

feature engineering, as well as model building.

3.1 Video data and target student behavior

The video data used for this research were classroom videos previ-

ously collected for a qualitative research project exploring various

middle school and high school mathematics teachers’ responsive

teaching practices. Cameras positioned at the corners of classrooms

were used to capture students seated in small groups and the teacher

at 1080p (1920×1080 pixels) resolution at 30 frames per second with

120 or 130-degree fields of view. Based on our observations of watch-

ing the various classroom videos, we decided to qualitatively code

for the presence or absence of student group interaction as it relates

closely to collaborative learning [24]. Students are able to develop

higher level thinking skills by working together through sharing,

discussing ideas, and receiving peer feedback [33]. Interaction (i) vs.
No interaction (n) would be sufficiently low-level to code for a large

number of occurrences, while being high-level to be a relevant be-

havior for qualitative education video research. Prior to the coding

process, we defined code definitions and examples activities which

are presented in Table 1.
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Table 1: Interaction (i) vs. No interaction (n) code definitions.

Code Definition Examples

Interaction (i) One or more students in the group are in-

teracting with other students or the teacher

Talking, actively listening, gesturing

No interaction (n) No students in the group are interacting

with other students or the teacher

Writing/working individually, looking

down (no one speaking toward them)

Figure 1: Video frames from each class period from left to right: Class A, Class B, Class C, and Class D. Target student groups

are indicated in green.

We selected four different videos of ∼90-minute class periods

(two high school, two middle school), and selected one target stu-

dent group to code from each video.We focused on selecting diverse

learning environments and target student group location—Class A,

Class B, Class C, Class D are shown in Figure 1. Then, from each

video, we trimmed one continuous 9-minute segment of individual

work (e.g., teacher announces to the class that students will be

working to solve a problem independently) and one continuous

9-minute segment of small group work (e.g., teacher announces to

the class that students should work and discuss their work in their

small groups), for a total of 18 minutes per video. Trials of different

coding clip lengths (i.e., 5, 10, 15, and 30 seconds) revealed that

10-second coding clip lengths balanced brief interactions without

including multiple interaction codes, while still providing enough

context to code longer interactions. Thus, every minute of video

had 6 codes (i or n) for a total of 108 codes per class session.
Two trained coders independently coded one set of videos (two

9-minute segments) in order to establish inter-coder agreement.

The coders agreed on 93.5% (101 out of 108, kappa = 0.87) of the

labels. After establishing this agreement, the rest of the videos were

coded separately. Each coder kept notes on how they determined

the codes, and listed characteristics which helped them to determine

whether or not interaction was occurring.

3.2 Video processing and student positional

data

We used the computer vision tool OpenPose [8] to process and

extract positional data from the videos by identifying individuals’

body parts as ordered keypoints. For our analysis, we used Open-

Pose’s 25-keypoint body configuration, such that each individual

of each frame of video has a maximum of 25 keypoints. The output

file formats individuals’ keypoint data as x and y coordinate values

in terms of the video’s resolution (i.e., 1920×1080 in this case). We

processed each video through OpenPose, and post-processed the

output files to track individuals’ movements over time using an

open-source OpenPose data tracking method [18] and restricted the

tracking calculation to the target student group region in the video

(groups indicated in green in Figure 1). This allowed us to obtain

relationships in the data by assigning person IDs to individuals by

determining Euclidean distances of available respective keypoints

and connecting the closest matches between frames to the person

ID. The process outputted a CSV file where each row represents a

person detected per frame with the following information: person

ID, frame number, whether each keypoint was detected, as well as

x and y coordinate information for each of the 25 keypoints.

3.3 Manual and automated feature engineering

We brainstormed features using the notes that trained video coders

had taken to determine the group interaction coding labels (sum-

marized in Table 2). Coders had primarily noticed that group inter-

actions were typically indicated by increased movement: frequent

gesturing, heads moving while lips also moved when speaking and

exchanging objects or learningmaterial. On the other hand, a lack of

interactionwas indicated by reducedmovement and less visibility of

group members due to leaning down toward their desks and work-

ing separately. We aligned codes to the frame-level tracked Open-

Pose output data, and created 178 primarily movement-focused

features, each created at the clip-level. Features were separately cal-

culated for each of the four class periods, as different camera angles

meant that the each video’s positional data were scaled differently.

We calculated such features as: clip-level (10 second) maximums

and means of individuals’ keypoint x and y coordinate movement

magnitudes (related to coders’ observations of shifts in vertical

positions of heads, occurrences of horizontal movements of hands

and wrist when writing, etc.), clip-level means of Euclidean dis-

tances of each keypoint (relating to shifts in groups’ total amount of

movement), clip-level means of total number of keypoints detected

per frame (relating to students opening up their body more/less

when interacting/not interacting, leading to potentially increased

keypoints being detected), and clip-level means of total number of

people detected per frame (relating to teacher more/less likely to

walk around during interaction/no-interaction).

For automated feature engineering, we used FeatureTools [22],

which combines and calculates new data values based on a relational

hierarchy defined by the user. FeatureTools’ calculation functions

are called primitives, and allows a depth value to be set which en-

ables primitives to be increasingly stacked on top of each other to
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Table 2: Summary of trained coders’ notes about characteristics they noticed to determine each label.

Code Characteristics noticed

Interaction (i) Talking with head facing towards someone in group and lips moving,

Two people looking at each other actively (e.g., nodding, moving head as they speak),

Sharing a worksheet, clearly working from the same document or item,

Teacher more frequently walking around/nearby,

Exchanging objects,

Gesturing towards each other (e.g., pointing, waving)

No interaction (n) Everyone relatively still and looking down at their work,

More writing/scribbling movement,

Working individually on separate things,

Not looking towards any other student group member,

Looking away from the group (e.g., at the board or around the class),

Overall reduced visibility and lower heads of group members (e.g., leaning down into desk)

create larger feature sets. We used the default set of aggregation-

type primitives (count, min, max, mean, skew, standard deviation,

sum) along with one transformation-type primitive (percentile),

set to a depth of 3, to generate 1,523 features at the clip level (10

seconds). As was the case with manually calculated features, fea-

tures were individually calculated for each of the four class periods.

Some example features generated by FeatureTools were: clip-level

minimums of each keypoint’s y values, clip-level standard deviation
of each keypoint’s x values, and clip percentile of the sum of each

keypoint’s y values.

3.4 Model building

Using the scikit-learn Python library [31], we trained a random

forest classifier from each of the manual feature sets of the four

class periods. We chose random forest due to its suitability in high-

dimensional feature spaceswithout overfitting [6, 15], a key concern

with the large number of features considered in this study. We also

combined manual features with the automated features and trained

additional random forest classifiers from the combined feature set.

Feature data had been preprocessed to remove low quality features

(invalid values > 5%), which reduced the size of feature sets by

6% to 31% depending on the feature set. We expected automatic

features would be difficult to interpret [4], and would likely have

led to modest implications for qualitative video coding; thus, we did

not create automated features-only classifiers. Models were cross-

validated using leave-one-out, where each of the 108 observations

were used as the testing set once. Furthermore, the 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ

hyperparameter was tuned for each model by changing values 1 to

10 and plotting by accuracy on a validation curve.

4 RESULTS

Here, we discuss the results of the models, including model perfor-

mance and feature importance analyses.

4.1 Model accuracy

Across the four different class periods, the manual models’ accura-

cies were improved in the combined models (mean manual AUC

= .706, mean manual + automated AUC = .778) models. While the

base rate of the interaction code was not perfectly balanced with

the no interaction code (except Class A), choosing two equal-length
classroom video segments of independent work and small group

work led to the labels being relatively balanced. The mean Cohen’s

𝜅 value in the manual feature models was .453 and combined feature

models’ mean 𝜅 was .555. Model accuracy are compared in Table 3.

4.2 Feature importance analysis

We compared feature importance between the respective manual

and combined models. Preprocessing the feature sets in the models

variably affected the number of features inputted during model

building. For example, Class A had a manual feature set length of

151 and combined feature set length of 1,330, while Class B had

178 and 1,469, respectively. Due to the method in which scikit-learn
calculates feature importances—in which all the feature importance

values sum to 1—we did not directly compare the feature importance

values to each other across models. Instead, we compared the top

10% most important features from the folds of each manual models

to the top 10% from the folds of the respective combined model.

Results showed that many features important in the manual

features model were also important in the combined model, as

summarized in Table 4. As high as 90.1% of the most important

features from the manual model were found among the important

features in the combined model, with a mean of 72.4%. Furthermore,

we determined the most frequent keypoints from which models’

important features were created, and found that a mean of 5 (50%)

of the top 10 (out of 25 total keypoints) most important keypoints

overlapped between models. When comparing non-overlapping

important keypoints between the models, we found that there was

at least one unique body area of features which was important in

the combined model but not the manual model. In Class A, these

areas were the nose, elbows, and eyes; Class B, neck and wrists;

Class C, elbows and shoulders; and in Class D, eyes.

5 DISCUSSION

In the section below, we review our results and discuss them, in-

cluding potential implications for qualitative coding research.

5.1 Differences in manual vs. automated feature

engineering processes

Both manual and combined models had reasonably high accuracy

across the respective class periods despite differences in student

group location, composition, and orientation. For our first research

question, however, we were more interested in examining the dif-

ferences in the processes of creating manual vs. automated features
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Table 3: Accuracy comparison of manual features vs combined (manual + automated) features models.

Video Interaction base rate 𝜅 (manual) 𝜅 (combined) AUC (manual) AUC (combined)

Class A .500 .352 .444 .676 .722

Class B .528 .444 .574 .722 .788

Class C .472 .441 .499 .720 .750

Class D .491 .574 .704 .704 .852

Table 4: Metrics for feature importance comparison. The top 10% most important features from the manual models were

compared to the top 10% from the combined models.

Combined model Number of

features

Manual features in

important features

Top 10 key-

points overlap

Body area not in

manual features

Class A 1330 87.5% 40% Nose, elbows, eyes

Class B 1469 66.3% 50% Neck, wrists

Class C 1250 90.1% 60% Elbows, shoulders

Class D 1112 45.8% 50% Eyes

related to predicting group interaction. When creating manual

features, we were cognizant of the coders’ noted characteristics

(Table 2). A majority of the manual features were based on val-

ues related to shifts in group movement, but other characteristics

could not be made into manual features. For example, it was not

straightforward to create features around sharing or exchanging

objects (e.g., worksheets, book, pencil) because those objects were

not detected in the person position data. While our features for

movement in the arm keypoints could be one possible proxy for

those situations, it was not possible to create a direct feature. Lips

moving, or talking, was arguably the most frequent and defining

characteristic of interaction, but those keypoint values were not

available in our data. Despite these limitations, the model created

from manual features worked well.

The time and effort to create automated feature engineering

process using FeatureTools was notably less than the manual pro-

cess. FeatureTools was able to generate 1,523 features with little

researcher time. The resulting feature names, however, were often

difficult to interpret, since FeatureTools combined column names

with the raw calculations carried out on the data. In many cases,

features created by FeatureTools were nonsensical, such as apply-

ing percentile calculations to the rows of binary column data (e.g.,

keypoint detected or not detected), or the counts of the sums of

keypoint y values. The model built from the combined feature set

had improved accuracy compared to the manual model, perhaps

due to FeatureTools’ features being able to capture and represent

trends in the data overlooked by our manual features. Automated

feature engineering tools’ tendency to create models of high accu-

racy but lowered interpretability of features has been previously

explored [4], and our study mirrors those findings.

5.2 Automated methods for informing manual

feature engineering

Our second research question was concerned with how automated

feature engineering methods might inform manual feature engi-

neering methods. Feature importance comparisons between the

models showed that in all class sessions, manual features were

consistently included among the most important features in the

combined model. When understood together with the high accu-

racy of manual feature models, this may show that the largely

group-movement-based manual features were more parsimonious

in effectively capturing characteristics related to group interaction

despite having a comparatively smaller number of features.

We also found that there were overlaps between the top 10 most

important keypoints for predicting group interaction between the

two models. This meant that many of the same keypoint values

among 25 were used to create important features in each model.

The overlaps may be unsurprising as both models were likely able

to find that interactions were largely characterized by changes in

specific areas of the body. These overlapping keypoints in the two

models, however, could be used to ascertain the relative usefulness

of certain keypoints over others. This information could be used

to help the researcher strategize which keypoint data should be

perhaps receive more attention when manually creating features.

Similarly, the important features and body areas found exclusively

in the combined models’ set of important features may have poten-

tial value for manual feature engineering. Across the four classroom

sessions, the combined model found keypoints from unique upper

body areas (i.e., areas not found among important body areas in

the manual model) to be important for predicting student group

interaction. Manual features could then be designed with this in-

formation (Table 4), such as brainstorming and creating specific

features related to the nose, elbow, and eye for Class A’s model.

This could result in a more comprehensive feature set that attempts

to integrate the potentially less noticeable constructs related to

group interaction for that particular video data.

5.3 Implications for qualitative video coding

Feature importance analyses such as those in our study could be

carried out as a preliminary pilot study to allow qualitative coders

to confirm and expand their observations of relevant behavior char-

acteristics for code definitions before coding a larger set of data.

In our study, qualitative coders had noted that group interactions
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were largely characterized by changes in movement, such as mov-

ing lips or making gestures. Our results showed that primarily

movement-based features in the manual feature set were effective

in predicting group interaction. The presence of important manual

features among the important features in combined models could

perhaps be used by researchers who are coding for group interac-

tion to strongly confirm the importance of movement as relating

to group interaction. Additionally, based on how the respective

combined models’ accuracy were even further improved from the

manual models, the added meaning captured by the automated

features could inform qualitative video coders about potentially

unexpected, yet relevant body areas to group interaction. For exam-

ple, by considering such information in the last column of Table 4,

coders can be informed to more closely examine the nose, elbows,

and eyes of participants in Class A if they were not already doing

so.

6 CONCLUSION AND FUTUREWORK

In this paper, we were motivated to explore how automated meth-

ods could inform human perspectives around analyzing qualitative

classroom video data. Based on our observations of four middle

school and high school mathematics class video data, we labeled

group interaction codes, and carried out expert-informed manual

feature engineering and automated feature engineering (using Fea-

tureTools) from tracked positional data. Our results highlighted

differences in the modeling processes, such as improved model ac-

curacy when adding automated approaches (mean manual models

AUC = .706, mean combined models AUC = .778) despite a decrease

in overall feature interpretability, more directed feature brainstorm-

ing in manual feature engineering, and shortened process time and

increased number of automated features (1,523 vs. 178). A large

proportion of important features from manual feature set models

were also important in combined feature set models (mean = 72.4%).

We also discussed our methods and results in terms of how qualita-

tive video researchers may use similar approaches to inform their

qualitative video coding processes.

In terms of limitations, our study used just four classroom videos

to explore our approach as we wanted to observe substantial ses-

sions of continuous small group work and individual work for each

class session. Thus, were not able to reach a large number of group

interaction labels with 104 labels coded at 10-second clips, for a

total of 416 labels. This most likely reduced observations of unique

student interactions, and our results may not be representative

of general small group interactions. Future work could determine

the suitability of integrating the unique body areas found to be

important by the combined models for informing qualitative cod-

ing researchers, exploring a wider variety of student classroom

interactions beyond small group interaction, such as constructs

around teacher–student interactions, and explore additional auto-

mated feature engineering tools. We are currently investigating

some practical applications of this work, such as how qualitative

video analysts would perceive and utilize automatically-filtered

video clips from a class period. Classroom video data are rich and

detailed sources for mining insights about student learning. Our

paper highlights how automated methods may have the potential

to augment researchers’ perspectives on making sense of complex,

unstructured classroom video data.
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