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ABSTRACT 
Public access to scientific literature has fueled research in text 
mining and natural language processing, yet the problem of 
geographic named entity recognition persists. is paper 
describes a recognizer that uses candidates from multiple existing 
Named Entity Recognition (NER) tools to ensure high recall and 
uses a filtering model trained on sentence embeddings, metadata, 
and citation data to improve precision. Experimental results on a 
manually curated set of biomedical abstracts show that this 
filtering model preserves high recall while achieving much higher 
precision than all of the individual NER tools. is should enable 
more effective geography-based analysis of scientific literature, 
for example, to study the role of place in biomedical discovery. 
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1 Introduction 
The intersection of geography and biomedical research has been 
crucial in understanding disease epidemiology, public health 
planning, and the global dissemination of medical knowledge [18]. 
Digital databases have greatly improved access to biomedical 
literature, enabling data-driven research [22]. PubMed is one such 
key resource in this field, particularly because of its use of 
Geographical MeSH (Medical Subject Headings) terms, which 
assist in retrieving location-specific information [5, 29]. These 
terms have supported various research areas including geographic 
information retrieval [27], disaster management [31], and disease 
surveillance [4], fostering spatial analyses in biomedical research 
[36]. Some studies utilize geographical names in texts or metadata 
to focus on regions like Nigeria [2], Morocco [7], Ivory Coast [9], 
Australia and India [6]. Other research has developed a 
geographic filter to identify studies involving the Spanish 
population in PubMed [38]. However, since geographical MeSH 
terms cover only broad regions, countries, and a few large cities 
and are assigned at the article level, extracting specific geographic 
entities from biomedical text remains challenging [32]. 
Traditional methods often struggle with the specialized 
biomedical vocabulary, resulting in limited research on 
geographic terminology extraction in this domain [39]. 
Additionally, biomedical terminology, author-defined terms, 
abbreviations, and named entities are obstacles to geographic 
information extraction [15]. Thus, with the growing volume of 
biomedical literature, scalable automated methods for geographic 
entity recognition are increasingly needed [30]. 

Some scholars have explored the recognition of geographical 
names through named entity recognition (NER) techniques, using 
tools like Stanza [28], spaCy [26], FLAIR [3], NLTK [23], and 
DeBERTa [20] on various corpora including historical texts [40], 
social media [25], online sources [8], and scientific articles [1]. 
These studies confirm the importance of geographical names in 
biomedical research but also reveal limitations in previous work. 
Much of the research on local areas has depended on metadata, 
suggesting that including detailed geographical names at the text 
level could enhance these methods. Additionally, NER research 
often focuses on biomedical terms or entities like organizations 
rather than geographical names, and when geographical names 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the owner/author(s). 
JCDL’24, December 16-20, 2024, Hong Kong, China 
© 2024 Copyright held by the owner/author(s). 978-1-4503-0000-0/24/12...$15.00 



JCDL ’24, December 16-20, 2024, Hong Kong, China X. Jiang et al. 
 

 

 

are the focus, they are not typically studied within biomedical 
databases, overlooking challenges related to biomedical 
terminology. 

Building on PubMed’s Geographical MeSH terms, our work 
aims to expand the utility of geographic information within 
PubMed. This paper focuses on geographic named entities, 
requiring both “named” and “geographic” attributes. It includes 
geopolitical entities (GPE) such as cities, states/provinces, and 
countries, as well as some named locations (LOC) like mountains, 
rivers, and islands, and certain named organizations (ORG) if a 
geopolitical entity is implied. However, adjectives containing 
geographical names, like “Monte Carlo simulation” or “Norway 
rat,” are excluded, similar to the annotation approach by Li et al. 
[20]. 

2 Method 
We use two different labeling standards: the silver standard, 
which is automatically generated and imperfect but abundant, for 
model training; and the gold standard, which is manually verified, 
for model evaluation. The gold standard labels are derived from 
1,000 randomly selected abstracts from PubMed from the years 
2014 to 2018, a period chosen to ensure comprehensive metadata 
such as MeSH, citations and affiliations, in which named 
geographic entities were manually identified. Out of these, 140 
abstracts contain a total of 238 sentences with 358 geographic 
named entities. It was annotated by the first author and verified 
by the third author. There was a 3.35% disagreement between the 
two (12/358), and the final version was based on the union of their 
annotations. 

Table 1 shows the performance of several existing NER tools, 
including Stanza (version 1.6.1), spaCy (version 3.7.2), FLAIR 
(version 0.13.1), NLTK (version 3.8.1), the union of the first three 
(Union3) and the union of the four (Union4). The results will 
determine which models we select for generating the silver 
standard data.  

Among the four tools tested, the accuracy ranked from highest 
to lowest is FLAIR, Stanza, spaCy, and NLTK, while the speed 
ranking is exactly the opposite. Although NLTK is very fast, its 
overall accuracy is the worst, generating many irrelevant results 
that could severely impact downstream tasks. On the other hand, 
FLAIR achieves the highest accuracy but is 100 times slower than 
NLTK. To balance speed and accuracy, spaCy and Stanza are used 

for the silver standard. Compared to NLTK, spaCy demonstrates 
3 times more precision performance with a similar processing 
speed. Stanza, while providing an intermediate performance level 
close to FLAIR, processes text four times faster. 

We also tried to test some language model based approaches 
but were unable to reuse the code from Acheson and Purves [1] 
due to version updates in Python dependencies. However, they 
use Stanford CoreNLP, and Stanza is also developed by the same 
Stanford research group. Furthermore, the precision/recall 
reported by Acheson and Purves [1] is similar to that of Stanza 
observed in our experiments. We were also keen to reuse the code 
and data from Li et al. [2] because our precision/recall results 
differed dramatically, particularly for spaCy. However, the 
GitHub repository referenced in the paper is currently unavailable. 
Both Acheson and Purves [1] and Li et al. [2] perform manual 
annotations, but we were unable to find the corresponding raw 
data. 

Among PubMed abstracts from 2014 to 2018, spaCy identified 
10 million sentences containing candidate place names, which 
were then assessed by Stanza, resulting in a silver-standard 
dataset of over 4 million candidate sentences. Each candidate 
place name was wrapped with [locB] and [locE] tags, with label 1 
indicating entities recognized by both tools and label 0 indicating 
those identified only by spaCy. The silver standard process 
applied to the 1000 abstract gold standard yielding a recall of 70.7% 
(253/358), and precision of 82.4% (253/307) for label 1 and 98.0% 
(479/489) for label 0. Overall, the silver standard not only 
encompasses the majority of true geographic entities with 
relatively high precision but also captures diverse contexts, 
including a large number of challenging biomedical terms marked 
with label 0, addressing unique challenges in geographical NER 
for biomedical literature. 

After generating the silver standard data, we engineered a 
diverse set of predictive features that are categorized into four 
types: text-based, metadata-based, linked data-based, and pre-
trained sentence embeddings. To better capture potential 
nonlinear features, we also applied transformations such as the 
square, square root, and logarithmic functions.  

The first major category of features is based on the candidate 
and its surrounding texts, including the number of words, number 
of letters, word length, position in the sentence, and the count of 
uppercase letters, the proportion of uppercase letters in the 
candidate, whether the candidate contains numbers or symbols, 
and whether special texts like year or “et al” occurred in candidate 
sentences.  

The second major category involves three sub-types of article 
metadata information: matching candidate information with 
affiliation and MeSH metadata, calculating the frequency of the 
candidate’s appearance in different metadata fields (author name, 
affiliation, title and abstract) across the entire PubMed database, 
and co-occurrence rate of MeSH with geographical MeSH. MeSH, 
a controlled vocabulary thesaurus by the National Library of 
Medicine, standardizes terminology in PubMed, offering a 
hierarchical structure of terms across 16 trees to enhance search 
accuracy as shown in https://meshb.nlm.nih.gov/treeView. 

Table 1: Test Results of Existing NER Tools on 1,000 
Manually Checked Abstracts of Gold Standard Data 

NER 
Tools 

Detected 
Candidates # 

Prec. 
(%) 

Rec. 
(%) 

Speed 
(Sent. /s) 

Stanza 368 76.6 78.8 8.1 
SpaCy 796 33.0 73.5 220.5 
FLAIR 437 76.0 92.7 2.4 
NLTK 2,271 10.1 64.2 231.3 

Union3* 996 34.7 96.6 1.7 
Union4* 2,883 12.4 99.7    1.6 

*Union3 = Stanza + SpaCy + FLAIR; Union4 = Stanza + SpaCy + FLAIR + NLTK 

https://meshb.nlm.nih.gov/treeView
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Along with affiliation information, MeSH can also be used to 
assess whether the candidate aligns with the metadata as the first 
sub-type of metadata features. However, these features are 
challenging to compute due to place name complexities, including 
multiple variants, abbreviations, and hierarchical relationships 
(city, state, country). Consistency between candidates and 
metadata must account for these relationships; for example, a city 
like Chicago aligns with metadata listing its state, Illinois, or 
country, the USA. Since MeSH terms cover limited cities and 
states, extra information is required for broader matching. To 
standardize the different variants of place names, we utilized 
MapAffil, a bibliographic tool that maps PubMed author affiliation 
strings to geographic locations [34]. The MapAffil dictionary [33] 
was used to standardize the detected candidates, ensuring 
consistent naming for entity-to-entity hierarchical matching with 
MeSH terms and affiliations. 

The second sub-type of metadata features calculates the 
frequency of the candidate's appearance in various metadata fields, 
such as affiliations, titles, abstracts, and names, to distinguish 
geographical entities from others. This frequency analysis aims to 
help the model differentiate place names from personal names and 
technical terms in biomedical literature.  

The third sub-type of metadata-based features includes the co-
occurrence rates of non-geographic MeSH terms with geographic 
MeSH terms across all of PubMed articles. Certain topics, like 
infectious diseases or health policies, often mention geographic 
locations, while others, such as DNA or RNA studies, rarely do.  
Table 2 shows that the co-occurrence with geographic MeSH 
terms varies dramatically for broad categories of MeSH. For 
example, Anthropology (I) and Humanities (K) exceed 50%, while 
Chemicals (D) and Anatomy (A) are below 10%. It is important to 
note that if an article contains multiple MeSH terms in different 
categories, the count will be incremented once for each category 
during the statistics process. Therefore, the sum of article counts 
across categories will be greater than the overall article count. 
Table 3 shows the variability for select terms within the same 
broad Diseases category C; “C24 Occupational diseases” has a high 
38.10% rate, while “C04.619 Neoplasms, experimental” has a low 
0.80% rate, and the overall rate is 13.83%. The co-occurrence rates 
for about 30,000 MeSH terms in PubMed 2018 were precalculated 
and each article was assigned the three most and least frequently 
co-occurring terms as features for predicting geographic 
references.   

The third major category uses metadata from cited references, 
similar to the second main category metadata features, but by 
checking the candidate’s presence in cited MeSH terms and 
affiliations and analyzing co-occurrence rates of the three highest 
and lowest geo-entity-related terms. This method, supplemented 
by MapAffil for standardization, generates binary and numeric 
features to enhance model training, especially for articles with 
missing metadata. 

The fourth major category of features is sentence Embedding 
Features. Specifically, we explored two pre-trained embedding 
models, including BioBERT [19] and BioSimCSE [17], which were 

trained by biomedical literature. Initial testing reveals that the 
BioSimCSE performed better and there was adopted as a sentence 
embedder to convert text into vector-type features for inclusion 
in model training.  

Three models were trained on the 500,000-record silver 
standard dataset: logistic regression (LR), XGBoost (XGB), and a 
deep neural network (DNN) on an 80/20 split using different 
feature groups. To enhance the model's ability to capture non-

Table 3: Differences in Co-occurrence within the Same 
Broad Category with Geographic MeSH Terms 

Cat. Name Total  
Article # 

Co-occ. 
Rate (%) 

C24 Occupational diseases 126K 38.10 
C03* Parasitic diseases 368K 34.57 
C02* Virus diseases 867K 31.73 
… … … … 
C04.697… Cell transformation… 73K 1.33 
C22.232 Disease models, animal 302K 1.08 
C04.619 Neoplasms, experimental 144K 0.80 
C Diseases  13.95M     13.69 

*Annotated items are valid vocabularies in PubMed 2018 but were moved to 
other branches from the latest version: 
C02 Virus Diseases were moved to C01.925 Virus Diseases 
C03 Parasitic Diseases were moved to C01.610 Parasitic Diseases 

 

Table 2: Co-occurrence of Different Broad Categories 
with Geographic MeSH Terms 

Cat. Name Total 
Article # 

Co-occ. 
 Rate (%) 

I Anthropology, education, 
sociology, and social 
phenomena 

2.95M 51.32 

K Humanities  0.85M 51.13 
N Health care  10.39M 31.90 
F Psychiatry and psychology  4.25M 27.71 
H Disciplines and 

occupations  
3.65M 27.62 

J Technology, industry, and 
agriculture  

2.39M 23.03 

M Named groups  9.18M 22.30 
L Information science  2.85M 20.75 
B Organisms  23.15M 14.55 
E Analytical, diagnostic and 

therapeutic techniques, 
and equipment  

17.40M 14.38 

C Diseases  13.95M 13.69 
G Phenomena and processes  13.89M 10.29 
D Chemicals and drugs  13.69M 7.75 
A Anatomy  10.35M 4.02 
 Overall  29.15M 13.68 
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linear relationships, squaring, and logarithmic transformations 
were applied to certain non-embedding features. Pairwise 
multiplicative interactions among selected non-embedding 
features were created, multicollinearity was addressed using 
correlation and VIF, and a model was trained on a reduced dataset 
to select the top 100 features based on importance determined by 
both tree-based and regression models as well. The DNN in this 
study is a seven-layer fully connected feedforward network 
designed for binary classification, processing input features as 
rank 1 tensors with a length between 768 and 960. Each layer uses 
the ReLU activation function, with a final single neuron using a 
sigmoid for outputting the positive class probability. The network 
is optimized with the Adam optimizer and uses binary cross-
entropy as the loss optimizing model performance through 
various data sizes and validating against both silver and manually 
verified gold standards. function.  

To support reproducibility, the code and data is available from 
GitHub: https://github.com/XiaoliangJiang/BiomedicalGeoNER 

3 Results and Evaluation  
Table 4 shows the performance of different configurations of 
features and classifiers. We added 358 randomly sampled negative 
examples to the gold standard’s 358 positive examples, creating a 
classifier with 100% recall and 50% precision to simulate a result 
generated by NER tools. Embeddings alone achieved a 93.2% F1 
score while combining them with other features raised the score 
to 96.1% with logistic regression. The DNN underperformed 
compared to logistic regression and XGBoost, likely due to 
overfitting on the noisy instances from the silver standard, 
whereas logistic regression generalized better. 

To compare changes in geographic named entity recognition 
before and after applying our model, we tested it on various NER 
tools, as summarized in Table 5. Since recall depends on the pre-
existing NER tools, our model is mainly responsible for improving 
precision while minimizing recall loss, with spaCy showing the 
highest precision increase at 58.5%. The best-performing tools 
with our model were FLAIR and Union3 (Stanza, spaCy, and 
FLAIR), achieving high precision (94.1%) and recall (93.0%) 
respectively.  

To evaluate feature importance, we used SHAP values [24], 
revealing that matching with the place name dictionary 
(MapAffil_dict_matched) was the single most influential positive 
indicator.  However, other features, such as capitalization 
(cand_capitalized) and sentence position (cand_pos), and some 
specific embedding features also played crucial roles. The model 
assigns negative weights to words with a high proportion of 
capital letters to address challenges in place name recognition, 
such as distinguishing “US” as the “United States” from 
“ultrasonography.”  

4 Discussion 
The goal of the presented study was to assess how a broad set of 
text, metadata, and linked data can contribute to distinguishing 
from other named entities in biomedical literature, without regard 
to their relevance to the topic. The recall of the best classifier is 
limited by the upstream NER tools used to generate candidate, 
while the classifier dramatically improves precision. Although 
overall performance metrics exceed 95%, errors persist: false 
positives often involve terms with common place names that are 
not necessarily linked to actual locations, such as “Minnesota Job 
Satisfaction Scale” or “Monte Carlo simulation,” while false 
negatives frequently stem from out-of-dictionary terms like 
“Mtkvari,” a river that is not present in the MapAffil dictionary. 
Despite this, the model effectively balances dictionary-based 
evidence with other features, achieving an F1 score of over 93% 
using only embedding features. Additionally, as the model outputs 
probabilities along with the results, adjusting the probability 
thresholds can potentially enhance performance. By fine-tuning 
the default threshold of 0.5 to other values or introducing a neutral 
category for handling more challenging classifications near 0.5 
while selecting more certain probabilities as the threshold, a 
balance between precision and recall can be adjusted, resulting in 
performance changes that cater to the specific requirements of 
practical applications. Future work may include retraining with 
different dictionaries or configurations to enhance handling of 
complex cases. 
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Table 5: Performance Comparison of NER Tools Before 
and After Using Trained Model 

NER 
Tools 

NER 
Recall 

+Model 
Recall 

NER 
Prec. 

+Model 
Prec. 

Prec. 
Improved 

Stanza 78.8 77.7 76.6 88.0 11.4 
spaCy 70.7 70.1 31.8 90.3 58.5 
FLAIR 92.7 89.3 76.0 94.1 18.1 
NLTK 64.2 61.1 10.1 53.9 43.8 

Union3* 96.6 93.0 34.7 85.4 50.7 
*Union3 = Stanza + SpaCy + FLAIR 

Table 4: Evaluation Results with Different 
Configurations on the Gold Standard Data.  

Model Settings Models Prec. 
(%) 

Rec. 
(%) 

F1 
(%) 

No Embedding Features LR 85.7 95.9 90.5 
XGB 88.2 95.5 91.7 

Only Embedding Features LR 90.3 96.3 93.2 
XGB 90.3 96.4 93.2 
DNN 91.8 93.8 92.8 

With Embedding Features LR 95.2 97.1 96.1 
XGB 94.1 96.3 95.2 
DNN 92.4 95.8 94.1 
 

 

https://github.com/XiaoliangJiang/BiomedicalGeoNER
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