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A B S T R A C T

This paper presents the development of a novel orchestration tool that predicts collaborative problem-solving
(CPS) behaviors of undergraduate engineering groups and investigates the use of that tool by instructors. We
explore the impact of receiving real-time, machine-learning, model-based prompts on 1) instructors’ orches-
tration strategies, which are strategies instructors use to manage and facilitate collaborative activities, and 2)
groups’ participation, including how groups are engaged in CPS activities. The orchestration tool is a dashboard
that notifies instructors of—and advises them on—monitoring and intervening with groups who may need
collaborative support and guidance. We describe the accuracy of the models in predicting CPS behaviors and of
instructors in identifying these behaviors in the classroom. We then describe how real-time prompts from models
can affect instructors’ orchestration strategies and students’ participation. Our findings show that there is
variability in the accuracy of our machine learning models and that instructors are better at identifying pre-
dictive behaviors as compared to the models. Instructors in this context engaged in orchestration strategies, like
monitoring and probing when using the orchestration tool, and groups of students were largely talking while on-
task across classes. We triangulate across data sources to examine the effectiveness of the orchestration tool in
the classroom and share pedagogical and technical implications for the field.

Introduction

Collaborative problem-solving (CPS) is a crucial 21st-century skill
[1]. This form of learning refers to joint activities completed by groups
of two or more people to solve a problem without an obvious or clear
solution [2,3]. Social knowledge construction, as proposed by Vygotsky
[4], emphasizes the role of social interaction in learning environments.
While theorists argue that social interaction is critical to developing
disciplinary knowledge, these interactions do not occur naturally in
classrooms. Learning environments must be intentionally created to
foster social interaction, knowledge creation, and problem-solving skills
[4]. Teachers play a vital role in creating environments conducive to
collaborative learning to create and clarify the processes of social in-
teractions [5]. While teacher guidance is essential, identifying when and
how to intervene is challenging, especially in CPS tasks where groups
may be working on different parts of the task simultaneously [6].

One way to support teachers in creating a classroom context that

promotes social construction of knowledge is to leverage actionable
analytics to help teachers orchestrate CPS tasks. While researchers have
developed and tested analytics-rich tools to facilitate peer interactions,
these tools often focus on monitoring or understanding collaborative
interactions and are rarely implemented in face-to-face classroom [7].
More specifically, recent reviews on supporting collaboration using
analytics call for more support for teachers to facilitate group discussion,
as most collaborative analytics still rely on mirroring interaction rather
than designs that enable alerting and advising [8]. In this paper, we
introduce a Design-Based Implementation Research (DBIR) project that
developed an orchestration tool using machine learning to provide
real-time support for instructors during CPS activities. We tested how
accurately machine learning models were able to predict groups’
participation as well as instructors’ ability to identify predicted behav-
iors. We then examined instructors’ orchestration strategies while using
the tool and how these strategies affected groups’ participation. The
contributions of our paper include (1) the development and testing of a
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novel real-time machine learning model and prompts for supporting
instructors’ interventions, (2) evidence of potential interventions in
machine-learning supported classrooms, and (3) a DBIR approach and
detailed analytic process for triangulating data types to understand the
tool’s impact.

Teacher guidance in collaborative problem-solving (CPS)

Research has shown that CPS allows students to deepen their
knowledge and develop better problem-solving skills [3,9]. CPS relies on
social knowledge construction, where groups of students engage in
synchronous activity to construct and maintain a shared understanding
of a problem [3,4]. To engage in social knowledge construction, students
must disseminate their own knowledge while negotiating their group’s
shared understanding [1]. Researchers emphasize the need for groups to
establish common ground, develop a solution, monitor their progress,
and negotiate ideas [9] while working within a pre-constructed joint
problem space [3]. Yet, to foster productive CPS, the learning environ-
ment must be designed to support and augment these interactions,
including the teachers’ facilitation [10].

Teachers play a crucial role in planning and facilitating CPS [5,11].
Kaendler and colleagues [5] theorize that to foster high-quality in-
teractions, teachers must plan, monitor, support, and reflect on groups’
interactions. Specifically, teachers need to identify the nature of a
group’s interactions to intervene when necessary to avoid interrupting
productive interactions [6], as teachers’ interventions has been shown
to influence the quality of group interactions [12]. Webb and colleagues
[12] identified ways teachers guided students to collaborate in in-
terventions, including asking for explanations, sharing partial answers
or directions, requesting elaborations, and prompting students to discuss
content. While these strategies for orchestrating activities are important
for facilitating productive collaboration, it is a challenge to identify
when a group may need support and what type of guidance is needed
[6].

Research indicates that without training, orchestration strategies,
such as monitoring, probing, and prompting collaboration, do not occur
naturally [13], even expert teachers feel unprepared for such activities
(e.g. [11]). In our context, teaching assistants (TAs), who frequently
teach core undergraduate courses, are rarely equipped with the peda-
gogical strategies needed to facilitate effective CPS [6]. Research shows
that graduate and undergraduate TAs often lack the pedagogical
knowledge to monitor, assess, and support groups’ interactions in
real-time [6,14]. Our previous research in engineering courses shows
that TAs rarely intervene in ways that promote CPS, and instead disrupt
moments of productive collaboration [14]. Because CPS provides op-
portunities to enhance disciplinary knowledge, social interactions, and
problem-solving skills, it has become an increasingly common peda-
gogical practice in postsecondary courses and instructors need support
to enact it well (e.g., [15]). Given the challenges TAs have monitoring
and intervening in ways that support CPS [6,14], we leverage an
orchestration tool to provide instructors with real time support to learn
about and facilitate productive interactions.

Analytics-Rich orchestration technology

Orchestration, defined as coordinating interventions across learning
activities, is crucial in managing groups working simultaneously on
different tasks [16]. Orchestration is an instructional method that often
includes technological enhancements that call attention to specific
moments in the classroom [17,18]. This form of targeted scaffolding
often involves focusing teachers’ attention on students or groups who
may need assistance [19]. In doing so, real-time orchestration technol-
ogies support teachers at the interactive phase of Kaendeler and col-
leagues’ [5] model, which includes monitoring and pedagogical
decision-making.

There is a growing consensus that keeping teachers up to date on

groups’ collaborative progress can lessen teachers’ load and afford them
more time to focus on providing support rather than trying to identify
who may benefit from support [20]. To do so, many orchestration tools
leverage log-based analytics to explain or characterize groups’ in-
teractions that are then fed back to teachers (e.g., [21]). However,
visualizing and sharing log data does not guarantee that teachers will be
able to interpret and act on it [20]. Scholars argue that to develop
actionable collaborative analytics, they must be theoretically grounded,
co-created with users, and built from well-designed tasks that capture
meaningful data [22]. Processes to co-design analytics based on actual
needs and learning goals are hypothesized to lead to more authentic and
actionable insights [22,23].

Recent reviews have called to move beyond descriptive analytics and
visualizations and towardmore actionable recommendations that advise
teachers regarding who to help and why [7,8]. However, actionable
recommendations should not restrict pedagogical goals. To provide
teachers with guidance to foster productive CPS, analytics should offer
advice for interaction rather than directive instruction. For instance,
analytics that capture what is happening, in conjunction with scaf-
folding (such as sentence openers or probing questions) can provide
teachers with actionable prompts that support their interventions [24].
However, teachers need to retain their autonomy in being able to make
pedagogical decisions based on information from analytics [25]. Thus,
critical design concerns of orchestration technologies include providing
teachers with guidance and potential actions while also reinforcing their
agency to question the analytics and make decisions based on what they
observe in the classroom [26]. While this is a growing body of literature
in the CSCL field, few studies have yet to examine how orchestration
tools might support teacher guidance toward groups’ interactions [8].
Our work builds on this existing work to examine how an orchestration
tool, developed with instructors, can support their interactions and, in
turn, groups’ participation in CPS activities.

Research questions

This study addresses open questions about the accuracy, effective-
ness, and use of model-based prompts in orchestration tools during CPS
activities. Specifically, we look at how the CSTEPS tool, including fea-
tures that prompt from machine learning models and advise instructors
on how to monitor and intervene, impact groups’ participation We hy-
pothesize that predictive models embedded in orchestration technology,
when utilized by teachers, can improve instructors orchestration stra-
tegies (i.e., monitoring, intervening, attention; see Fig. 1) which can in
turn engage students in participating in the CPS activity. To investigate
this hypothesis, we address each of the following questions:

1) How accurate were the models at predicting groups’ participation?
2) What was the relationship between the model predictions, the expert

coder’s analysis of behaviors, and the instructor’s identification of
behaviors?

3) How did the CSTEPS tool support instructors’ orchestration strategies
in the classroom?

4) How did instructors’ use of the CSTEPS tool and orchestration stra-
tegies support groups’ participation?

Methods

Study design and background

This study is part of a multi-year, DBIR project [27] called CSTEPS
(Collaborative Support Tools for Engineering Problem Solving). We built
upon several iterations of our DBIR process, in which we explored the
learning context, co-created tasks to foster collaboration [28], trained
TAs on CPS [29], built and evaluated student collaborative tools [30],
co-designed the orchestration tool with TAs [31], and developed models
to predict CPS behaviors [32].

L. Lawrence et al.
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Context and participants

Data were collected from 90 undergraduate engineering students (20
female, 70 male) enrolled in an introductory engineering course during
the Spring 2019 semester in a lab-based classroom. The students were
organized into 26 groups across five discussion sections. Groups were
formed using Comprehensive Assessment of TeamMember Effectiveness
(CATME) to ensure no students were a minority in the group (e.g., not
one female with three males). Each student in the group used synchro-
nized tablet-based applications for collaborative tasks. These tasks were
co-designed by members of the research team using a literature-based
framework to support CPS [28] (see Appendix A for example). Each
one presented students with ill-structured, real-world applications of
key concepts to resemble a workplace problem, with multiple solutions
that were socially negotiable through multiple solution paths [3,28] .
Each group produced one worksheet with their joint solution. The study
involved five discussion sections, each led by a graduate teaching as-
sistant (TA) and two undergraduate course assistants (CAs). The two TAs
and six CAs (Table 1) are henceforth called instructors. Consent was
obtained from all participants. The course took place in a lab-based,
university classroom, where all classes were held for the full duration
of the semester.

Students’ technology & predictive models

Students used a tablet-based application that facilitated the joint task
by displaying each other’s work to the group (Fig. 2). Students were
trained on the features of the software in week one, and used it through
the remainder of the semester, making it a normal part of their learning
experience. This synchronized software allowed us to collect log data
about students’ interactions during the task. This data, in conjunction
with the coding of the groups’ participation, was used to inform the
machine learning models used in the orchestration tool. Our CPS

machine learningmodels were created from video and log file analysis of
20 groups across six weeks in a previous phase of the project [32]. Full
details of our model-building process are available in the results from
the previous phase of the project [32].

CSTEPS tool

The CSTEPS tool was co-designed over two iterations [31]) and
implemented in Javascript and HTML (available online at https://github
.com/colearnlab/ccaf-web). Machine learning models were trained to
alert instructors when a group was likely to need support and provide
intervention strategies (Authors). Specifically, we fit random forest
classification models with nested cross-validation for hyperparameter
tuning using scikit-learn in Python [33]. Trained models and code for
running models in a server application to make real-time predictions are
available (https://github.com/colearnlab/ccaf-prediction-server). The
CSTEPS tool presented all groups in a card format with a color bar along
the top (see Fig. 4). Yellow indicated that there was no prompt, meaning
that the prediction models had not identified a potential issue among the
group. The orange bar meant there was a prompt. When another
instructor in the classroom selected a prompt, the bar turned gray and
was not selectable. Each card showed a thumbnail of the current
worksheet and the students’ location. Instructors could view a group’s
work, allowing them to join the worksheet to monitor and write in the
shared drawing space.

When an instructor opened a prompt, a pop-up prompt would appear
on the screen (see Fig. 5). On the left side, the tool prompted the
instructor to monitor the group for the predicted behavior. When
prompted to monitor a group, the tool provided the instructor with a
title, a drop-down menu for more information, and buttons to either
confirm or deny if the models had accurately described the group’s
behavior (Fig. 3). If the instructor declined the prompt (i.e., if they saw
that the model did not accurately reflect the group’s behavior and
rejected its suggestion), the pop-up disappeared. If they confirmed the
issue, the tool then used the right panel to present strategies for inter-
vention. Strategies were co-designed and organized into two sections: 1)
an overarching goal that identified a strategy for approaching the group,
and 2) a few sentence starters or phrases to use when talking to the
students. Once their intervention was complete, the instructor could exit
the prompt by selecting the “Done” button.

Data collection

Data Collection: This Design-Based Implementation Research
(DBIR) study employed a mixed-methods approach, combining log data,

Fig. 1. The conceptual model outlining our research questions and their interrelationships.

Table 1
Participants by section.

Section
1

Section
2

Section
3

Section
4

Section
5

Number of Groups
Analyzed

5 6 3 6 4

Number of Students
Analyzed

18 22 10 22 14

TA Adam Adam Adam Lisa Lisa
CA 1 Zain Jason Jason Casey Raj
CA 2 Santu Jenn Jenn Santu Santu

L. Lawrence et al.
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Fig. 2. The student tool included navigation of pages in the worksheet and location of students on the pages, a series of drawing tools, the PDF worksheet pages
where the students were able to draw together, and a scrollbar indicated the location of students on the page.

Fig. 3. Flow chart of instructors’ use of the CSTEPS tool.

Fig. 4. CSTEPS tool, main screen view.

L. Lawrence et al.
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video recordings, and audio recordings to triangulate data and gain a
more complete picture of the classroom [34]. Data were collected during
a 3-week implementation, weeks 10, 11, and 12 of the 16-week se-
mester. Instructors were trained on the tool functions prior to imple-
mentation, and students were introduced to the tool the first week it was
used. Log data included timestamps for prompt visibility, selection, and
confirmation/denial by instructors; all log data included timestamps and
instructor names. Audio and video data were collected from all con-
senting participants in the lab classroom; students that did not give
consent were grouped together and were not video or audio recorded.
Overhead cameras and either a hanging or wireless microphone
collected data from each table in the classroom and instructors wore
lapel microphones. We received approval from our Institutional Review
Board for data collection, for which we followed protocols about data
storage (i.e., storing data in a secure Box folder), participant privacy (i.
e., anonymizing data), and other ethical issues.

Analysis

First, we broke up the video data into 20-second clips, the same unit
of analysis the machine learning models used to predict group behaviors
[32]. We chose the 20-second length after rigorously testing video
coding with different clip lengths (i.e., 5, 10, 20, 30, & 60 s). We
determined that 20 s was the best unit of analysis to reliably identify
what the group was doing without observing conflicting behaviors
within the same clip. Coding rubrics included identifying whether the
group was silent or speaking and what type of dialogue was occurring,
and if their behavior (and dialogue when applicable) was on-task or
off-task. It is important to note that the synced tablets represented a
medium through which students could silently collaborate. Thus, groups
could be silent on task, talking on task, silent off-task, or talking off-task
(IRR = 0.65; 88 % agreement). Next, we aligned the video and log file
data segments to illuminate the relationships between data. We exam-
ined the three 20-second clips prior to (1) the models showing a prompt
in the tool and (2) an instructor responding to a prompt (e.g., confirming
or denying it).

To analyze the instructors’ interactions with groups, interventions
were identified in the video data and transcribed [35]. Interventions
were defined as moments when an instructor spoke with a group. Each
intervention was coded for the presence of orchestration strategies (see
Appendix B for definitions and reliability). Each transcribed interven-
tion was framed by three 20-second clips of student dialogue before and
after to enable us to observe the change in the group’s behavior. This
matched the Binded tool which also used three-clips to identify group
behaviors (i.e., a behavior must be identified for three consecutive
20-second clips, or 60 s, to generate a prompt in the tool). We used
several analytic approaches to explore our four research questions:

Research Question 1: To determine the accuracy of the models, we
analyzed the retroactively coded video clips against the predictions
generated from log file data. This comparison allowed us to identify
whether the behaviors that the machine learning models prompted
matched the participation behaviors coded by our research team. The
alignment was coded as accurate if at least one of the three 20-second
video clips coded by the research team matched the prompt in the
tool. We calculated descriptive statistics to measure the alignment of
these data.

Research Question 2:We investigated the relationship between the
model predictions, the expert coder’s analysis of behaviors, and the
instructor’s identification of behaviors. We computed descriptive sta-
tistics of the alignment between the instructor’s identification—select-
ing “confirm” or “deny” to a prompt shown in the orchestration tool—to
the coding of the group’s behavior at the time the instructor answered
the prompt. We then examined the relationship between the accuracy of
the models and the instructors.

Research Question 3: To understand how the orchestration tool
affected instructors’ orchestration strategies during interventions, we
compared the occurrence of orchestration strategies with and without
the orchestration tool. To be classified as having used the tool, the
instructor had to interact with the tool for 60 s before or during an
intervention; these were identified using timestamps in the log file data
and validated with video data. We then ran t-tests between the in-
structors’ use of orchestration strategies with and without the

Fig. 5. CSTEPS tool after an instructor has selected a group. On the left, the tool prompts the instructor to monitor the behavior. If the prompt is confirmed, the right
panel displays tips to address the group.

L. Lawrence et al.
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orchestration tool to identify any differences. Strategies and tool use
were coded as dichotomous variables, which satisfy test assumptions by
yielding approximately normal sampling distributions when n×p≥ 5 and
n × (1 - p) ≥ 5. Given few closely related statistical tests, we did not
control the false discovery rate for multiple tests (additionally, doing so
would not substantially affect interpretation as all but one significant
results were highly significant).

Research Question 4: Finally, we examined the clip coding of a
group’s behavior before and after interventions to examine how the
instructor’s use of the CSTEPS tool and implementation of orchestration
strategies supported the group’s participation. Our expert clip coding
was categorized by silent on task, talking on task, silent off-task, and talking
off-task to understand how the behaviors in the tool were actualized in
the classroom.We cluster these into two categories: talking while on task
and silent or off-task (silent on task, silent off-task, and talking off-task) to
look at the transitions between categories before and after instructor
interventions. We examined groups’ overall transitions between the
behaviors predicted in the orchestration tool before and after in-
terventions, as well as any interactions between tool use and the pres-
ence of orchestration strategies.

Results

RQ 1. How accurate were the models at predicting groups’ participation?

We conducted an initial pilot study prior to giving the CSTEPS tool to
instructors. We monitored a test version of the teacher tool while stu-
dents engaged in their regular classroom activities to verify that the
prompt infrastructure worked. However, no prompts were triggered
during the pilot. This may have been the result of the initial models’
predictions having been calibrated to the training data, which were
collected from different students in another semester. The older data
may have caused the models to have lower confidence in their pre-
dictions in this new context.

To counteract the models’ low confidence values, we adjusted the
thresholds required for the detection of off-task and silent on-task
behavior. We systematically changed the thresholds to identify how
many prompts would have been triggered during a class under the new
thresholds. Following this analysis, we adjusted the threshold for off-
task behavior to 0.15 and the threshold for silent on-task behavior to
0.40. By lowering these thresholds, we created a situation in which the
models were more likely to generate false positive predictions, leading
to a higher number of prompts generated during each class. We accepted
this overprediction of the target behaviors for two key reasons. First, one
of the tool’s goals was to train instructors to recognize off-task and silent
on-task behavior, and it always asked instructors to first verify that the
behavior was currently ongoing before offering guidance. Second, given
that the prompts were targeting rare behaviors, we preferred over-
prediction of the target behaviors to underprediction, which would have
missed most of the moments where an instructor’s intervention might
have been helpful.

Across all five classes, the machine learning models generated 437
prompts in the orchestration tool. The clip coding alignment indicates
that 134 (30 %) of the models’ prompts were confirmed by our video
coding. Of the total 437 prompts, 213 alerts predicted that a group was
off-task and 224 alerts predicted that a group was silent on task. 34 of
the 213 (14 %) of the off-task prompts aligned with the video coding,
whereas 100 of the total 224 (45 %) silent on-task prompts were
confirmed. This suggests that the models’ predictions of silent on-task
behavior more frequently matched our video coding. In general, the
models over-predicted the occurrence of behaviors requiring moni-
toring, which was expected and intended to avoid missing key events
that should be predicted (i.e., false negatives).

RQ 2. What was the relationship between the model predictions, the expert
coder’s analysis of behaviors, and the instructor’s identification of
behaviors?

Of the 437 generated prompts in the orchestration tool, instructors
opened 232. Because this is a supportive tool and not intended to be
prescriptive, we expected prompts to go unopened. Instructors moved
from group to group for many reasons, including prompts from the
orchestration tool, observations, and student questions. They did not
have time to open all prompts. There were differences regarding how
instructors used the technology. Adam, Santu, Jenn, and Lisa opened the
most prompts, whereas the remaining teachers opened far fewer (Fig. 6).

Of the 232 prompts the instructors opened, 161 (70 %) matched our
coding of the video clips; more specifically, 103 of the 232 prompts were
group off-task prompts, 76 (74 %) of which were identified correctly by
the instructor, and 129 were silent on-task prompts, 85 (67 %) of which
were identified correctly. After opening the prompts, instructors
confirmed or denied that the behavior was present in the group. Of the
total 232 opened prompts, 59 (25 %) were confirmed and 173 (75 %)
were denied. Of the 59 confirmed prompts, 23 (39 %) were correctly
identified. Five (19 %) group off-task prompts were correctly identified,
and 18 (55 %) silent on-task were correctly identified. This shows that
instructors were slightly better at identifying the presence of silent on-
task behaviors correctly compared to group off-task behaviors. In
contrast, of the 173 prompts that were denied by instructors, 138 (80 %)
were correctly identified by instructors. Seventy-one (92 %) were
correctly identified as group off-task behaviors and 67 (70 %) as silent
on-task behaviors. This data illustrates that the instructors were better at
correctly indicating prompts when they were denying behaviors and
were more likely to incorrectly agree with the prompts. Instructors’
proportion of correctly identified behaviors ranged from 60 % to 80 %
(M=69 %, SD = 7 %; Table 3). There was no relationship between
prompts opened and correctness, as the two instructors with the highest
level of accuracy were the instructors who opened the fewest and most
prompts respectively.

To compare the accuracy of the machine learning models, the in-
structors, and the video clip coding, we examined the relationship be-
tween these aligned data. Of the 232 prompts that were confirmed or
denied by an instructor, 73 of them matched the log data’s level of ac-
curacy and 159 did not match. This means that the model, the instructor,
and the expert coders agreed on 31 % of the prompts that were opened
and answered. Of the 73 prompts for which the model, instructor, and
coder identified the same behavior, 47 were silent on-task and 26 were
group off-task.

While this is a low frequency of matching between all parties, we
acknowledge that very few prompts were responded to immediately
after being shown. On average, prompts were answered 55 s after they
were opened (SD= 70 s;Mode= 60 s), with a range from 5 s to 9min. If a
prompt was answered 60 s later, the instructors observed different
segments of time, and our analysis examined different clip codes.
Therefore, the model could identify something incorrectly, whereas the
instructor identified it correctly. For example, the model might send a
prompt for silent on-task behavior, yet our clip coding could disagree. If
60 s later, the instructor confirms silent on-task behavior and the clip
coding confirms that they were correct, that would indicate that the
group’s behavior changed between the time the prompt was generated
and when the instructor monitored for that behavior.

RQ 3. How did the CSTEPS tool support instructors’ orchestration
strategies in the classroom?

The prompts in the tool were the focus of the tool, and the secondary
use of the technology was to join a group and view their work. This
function was used in a variety of ways unrelated to the number of
prompts an instructor opened (see Fig. 6). To understand how the
CSTEPS tool supported orchestration strategies, we analyzed all

L. Lawrence et al.
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interventions, including both opening and responding to prompts as well
as viewing a group’s work.

Instructors intervened with groups 297 times (Table 4), with a range
of zero to 40 interventions per section (M=20, SD= 11). Instructors used
the CSTEPS tool before or during 57 interventions (19 %), including 50
prompts, five uses of the view work function, and two instances that
included both a prompt and the use of view work. During validation
with video data, we found that another instructor who was not inter-
acting with the group used the technology in 21 of the 50 instances in
which prompts were opened. All these prompts were denied by the

instructors who opened them; they were counted as ‘interventions
without tool use’ in analyses because they did not affect the intervening
instructors’ interactions.

Of the 36 instances in which the intervening instructor used the tool,
five used the view work function, 14 responded to group off-task
prompts, 15 responded to silent on-task prompts, and two responded
to silent on-task prompts followed immediately by the use of the view
work function. We also examined the timing of all tool use. In sixteen
instances, the tool was used before the intervention, meaning the
instructor opened and responded to the prompt or viewed a group’s
work before ever interacting with the group. Instructors also used the
technology 10 times during their intervention; in 4 instances, instructors
used the view work function and in 6 instances the instructor opened
and responded to a prompt while still with a group. Finally, in 10 cases,
an instructor opened a prompt before intervening and responding either
during (n=2) or immediately afterward (n=8).

To understand how instructors interacted with groups, each inter-
vention was coded for the presence of orchestration strategies. Fig. 7
illustrates the proportion of each strategy across interventions. In-
structors were identified as “monitoring” when they spent at least 10 s
observing a group of students before intervening. There was no signifi-
cant difference for the use of monitoring as a strategy with (M=22 %, SD
= 42 %) or without the orchestration tool (M=23 %, SD = 42 %), d =

− 0.02, t(60.9) = − 0.12, p = .91. Interventions were either initiated by
the instructor or the students. When using the tool, instructors initiated
significantly more interventions (M=71 %, SD = 46 %) compared to
without the tool (M=44 %, SD = 05 %), d=0.559, t(63.9) = 3.65, p <

.01. Since the technology is designed to direct instructors towards
certain groups, we hypothesize that instructors were more likely to
initiate strategies during interventions without the technology. Our
findings show that roughly half of all interventions began with the
instructor using a probing initiation strategy rather than immediately
providing direct instruction (M=48 %, SD = 50 %). There was a sig-
nificant difference in initiation strategies between interventions in
which instructors used the tool (M=66 %, SD = 48 %), which prompted
them to use generative initiation moves, compared to those in which
they did not use the tool (M=42%, SD= 49%), d=0.509, t(62.3)= 2.96,
p < .01.

Instructors probed groups’ understanding in the initiation move by
asking what the group was working on, how they were doing, or how

Fig. 6. Orchestration tool interaction frequency separated by instructors with both prompts opened and view groups’ work.

Table 3
Instructors’ accuracy of prompts.

Instructor Prompts
Opened

Prompts
Confirmed

% Prompts
Confirmed

Prompts
Identified
Correctly

%
Identified
Correctly

Adam 84 22 26 % 64 76 %
Lisa 17 4 23 % 11 65 %
Casey 8 0 0 % 5 63 %
Jason 4 0 0 % 3 75 %
Jenn 45 19 42 % 29 64 %
Raj 5 0 0 % 4 80 %
Santu 64 11 17 % 42 65 %
Zain 5 3 60 % 3 60 %
Total 232 59 161

Table 4
Tool use during interventions.

Instructor Interventions Instructor Used
Tool During
ANY
Intervention

Used Tool
During
Intervention
THEY
ENACTED

Tool Use
During
Someone else’s
Intervention

Adam 63 12 9 3
Lisa 61 8 1 7
Casey 11 3 0 3
Jason 52 6 4 2
Jenn 36 13 13 0
Raj 16 1 1 0
Santu 44 11 6 5
Zain 14 3 2 1
Total 297 57 36 21

L. Lawrence et al.



Computers and Education Open 7 (2024) 100203

8

much progress the group had made. In one example, Adam opened a
group off-task prompt, walked over to the table, and monitored the
group for a few seconds before confirming the prompt. The group qui-
eted as Adam approached the table and asked, “Having trouble with the
worksheet?” One member of the group, who was off-task, responded,
“I’mmaking… we’re almost ready…”, followed by a few seconds of silence
across the group. Another member of the group, who had not been
engaged in off-task discussion said to Adam, “So I have got a question…”
The student asked a question, which was followed by a clarification from
Adam.

The interventions were additionally coded for follow-up moves to
identify if instructors posed questions or provided direct instruction
after the initiation move. Fifty-four percent (SD= 50 %) of interventions
had follow-up moves in which the instructor further probed the under-
standing of the group, a non-significant difference with (M=50 %, SD =

49 %) and without the tool (M=55 %, SD = 50 %), d = − 0.13, t(60.2) =
− 0.76, p = .446. Follow-up moves were also coded to identify moments
wherein instructors asked questions or engaged the group in conversa-
tion, rather than telling them what to do or revealing the answer. In one
case, Adam received a group off-task prompt about a group of three
students. He opened the prompt, walked to the table, and monitored for
six seconds. While the group was on task, Adam caught part of a con-
versation among the three students. Adam arrived at the table as Student
1 was asking a question to his group; this question was then posed to
Adam as he moved toward the group.

Student 1 Wait, for this… what could be the relation between [Adam
arrives] like the X and the Y moments and shear stress are related… I don’t
know how they are related.

Adam What do we call a moment acting perpendicular to the direction?
Student 2 Torsion.
Student 3 It’s like a twist.
Adam Torsion. Do we have a way to relate torque to a shear stress? You

may not remember it was earlier in the semester…
Student 1 I don’t, I don’t…
Adam Look on the equation sheet, see if that will spark your memory.
Rather than explaining how the moments and shear stress are

related, or explicitly stating the group’s next step, Adam provided
guidance and helped the group identify how they might address the
problem.

Next, we examined moments in which instructors directly prompted
groups to work together. This strategy, wherein an instructor directly
prompted the group to discuss or collaborate, rarely occurred in the

data. There was no significant difference with the tool (M=7 %, SD= 25
%) compared to without it (M= 8 %, SD = 26 %), d = − 0.03, t(62.5) =
− 0.21, p = .833. Despite this low frequency (n=22), all the instructors
except Zain engaged in this strategy at least once. In some instances, the
instructor repeated prompts that were supplied in the tool. In one
instance, when Santu was answering a question, rather than providing a
direct answer, he asked, “Does anyone in your group know?” In other
cases, the instructors adapted strategies for their own use. For example,
Adam prompted a group to work together by sharing advice: “Maybe, I
don’t know, talk to each other. Work through it together. Even if only one of
you is writing, you should be on the same problem.”

Holding the group’s attention aligns with the goal of promoting
collaboration, wherein instructors can model engagement with multiple
group members. Instructors held the full group’s attention during the
majority of all interventions (M=69 %; SD = 47 %), but no significant
difference was observed between interventions with the tool (M=71 %,
SD = 46 %) compared to without it (M=68 %, SD = 46 %), d=0.06, t
(61.4)= 0.38, p = .70. Our coding identified whether explanations were
preceded by questions, as opposed to the instructor explaining a concept
without confirmation of what the group needed. Fifty-nine percent (SD
= 49 %) of all interventions had at least one explanation prompted by a
question or an expression of confusion from the group, with a barely
significant difference with the tool (M=44 %, SD = 50 %) compared to
without the tool (M=62 %, SD= 49 %), d= − 0.35, t(59.7)= − 2.11, p =
.04. Finally, we coded instances in which instructors ended in-
terventions by checking the group’s understanding. There was little
difference in the use of this strategy; instructors ended by checking for
understanding with the tool in 9 % of cases (SD = 29 %) versus in 17 %
of cases (SD = 37 %) without the tool (d = − 0.21, t(73.3) = − 1.59, p =

.12). Closing knowledge checks were often simple questions posed to the
group, such as “Does that answer your question?” or “Did that make sense?”

RQ 4. How did the TAs’ use of the CSTEPS tool and orchestration
strategies support groups’ participation?

We analyzed the clip coding alignment before and after each inter-
vention to understand whether the instructors’ intervention and tool use
affected students’ participation. Looking at all 297 interventions, 94 %
(n=278) were talking and on task before the intervention started. After
an intervention occurred, 90 % (n=267) were talking and on task. Of the
groups that were talking and on the task before the instructor inter-
vened, the majority sustained this behavior afterward (n=255, 86 %),

Fig. 7. Proportion of interventions organized by orchestration strategies with and without the orchestration tool.
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while a few transitioned to silently working or off-task behavior (n=12,
4 %, see Fig. 8). Seventy-seven percent of groups that were silent or off-
task pre-intervention transitioned to talking while on task post-
intervention (n=23). Our analysis showed that groups more frequently
remained talking and on task when the orchestration tool was not used
(87 %) compared to when it was used (78 %). The tool was used more
often in cases where, after the instructor intervened, the group transi-
tioned either from silent or off-task to talking and on task or vice versa.

Due to the highly unequal distribution across categories, we did not
statistically analyze the orchestration strategies and tool use during the
interventions in relation to group participation. Fig. 9 shows the pro-
portions of orchestration strategies by tool use. In examining fre-
quencies, we gleaned several high-level insights. Instructors monitored
the groups more frequently during interventions wherein the group
moved from a silent or off-task to talking and on task (50 %). Although
such cases were rare, the instructors who used the tool monitored more
frequently (100 %) compared to those without (40 %). Our findings
show that, when the instructor initiated the intervention, the group was
most likely to move from talking and on task to silent or off-task; they
also used more direct instruction during the initiation move when the
group remained silent or off-task. Finally, the instructors probed for
understanding most frequently when the group moved from a silent off-
task to talking and on task.

Discussion

In this paper, we present an exploratory study to leverage machine
learning techniques to support real-time predictions of collaboration
interactions to inform instructors’ pedagogical moves. We investigated
the accuracy and effectiveness of our novel orchestration tool by
examining the relationship betweenmachine learning models predicting
CPS, instructors’ responses to these predictions, instructors’ orchestra-
tion strategies, and the effect on group participation. By looking at the
interplay of these factors in an authentic classroom context, we can
understand how orchestration technology could support instructors and
groups in real-time. Below we describe our findings by contribution,
including technological and pedagogical findings and implications.

Technological findings and implications

When analyzing the log file data alone, our findings show that the
predictive models often identified participation inaccurately but were
better at identifying silent on-task behaviors than off-task ones. We
attribute this to several factors. First, we trained models on data from the
same course but with different students in a previous semester. Indeed,
this study aimed to understand how these models scale to other students.
Second, we intentionally over-predicted the target behaviors to avoid
missing crucial intervention opportunities for instructors to monitor and
identify behaviors. Given the goal of training the instructors to practice
monitoring, we considered inaccuracies acceptable and designed the
interaction to ask instructors to verify predictions. Our tool’s design
enabled instructors to question the analytics and verify behaviors before
conducting interventions that may not have been necessary [31].

When we looked at the instructors’ use of the orchestration tool, we
found differences in how they used the technology. We acknowledge
that the one instructor who engaged with the tool the most was Adam,
who also participated in two years of prior design work with the team
and, therefore had buy-in of the technology. Understandably, not all
instructors used the orchestration tool in the same way or at the same
frequency. For instance, Zain used the view work function more than the
prompts. With the expectation of Zain, all instructors used the prompts
more than the view work. Multiple avenues to interact with the
orchestration tool are necessary to accommodate instructors’ views and
needs toward supporting students. Using actionable analytics that le-
verages data to inform concrete recommendations helps advise in-
structors on whom to help and why [8,7]. Nevertheless, designing the
orchestration tool with multiple pathways to explore groups’ progress
and participation affords instructors the agency to make decisions
without directing them on what to do and when [8,25]. Future research
could explore how personalized training or customization of the tool
could improve instructors orchestration strategies and how they support
CPS.

All instructors were better at identifying silent on-task behaviors than
group off-task ones. Silent on task is a relatively simple behavior to
identify. Off-task becomes more challenging, as instructors can have

Fig. 8. Transitions across all interventions and with and without the orchestration tool.
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different perceptions of what constitutes an off-task behavior. While we
provided a definition in the tool, it was not representative of all possible
off-task behaviors but rather a definition with an example, leaving it
open to interpretation of what that means given the groups’ current
behavior. While the tool calls attention to specific moments and supports
pedagogical decision-making [18], there are many scenarios the in-
structors may be responding to that extend beyond the support the tool
gives. The CSTEPS tool, and others like it, must be responsive to various
views and interpretations of predictive behaviors.

Lastly, examining the relationship between the model predictions,
the expert and instructors’ identification of behaviors, we found that
instructors’ identifications of silent on-task and off-task behaviors were
largely correct. However, instructors correctly identified behaviors
when the predictive models got them wrong. Instructors were much less
likely to identify behaviors that the models got right. We attribute this to
two main factors. First, since the models were mostly incorrect, it is
probable that this led to instructors’ doubt and lack of trust in the
orchestration tool. While we decided to lower the thresholds to train
instructors to recognize the predicted behaviors and to support possible
moments where intervention might be helpful, through these decisions,
we risk the instructors questioning the accuracy of the predictions.
Second, because this is a classroom environment, many factors interfere
with how instructors use the tool. For example, instructors responded to
prompts often minutes after the prompt was delivered due to various
reasons in the classroom, meaning the group’s behavior may have
changed after the model made predictions. To account for this, we
designed our models to identify behaviors that persisted for at least a
minute to capture sustained behavior. When creating orchestration tools
to support CPS, we expect changes and tensions to arise in authentic
classroom contexts. A goal of CSTEPS tool was to help instructors feel
comfortable and confident supporting groups in spaces they are gener-
ally unprepared [11,14], we need to be able to support them without
breaking their trust and accounting for the changes and disconnects that
emerge in real-time.

Pedagogical findings and implications

Regarding pedagogical implications, we turn to our last two research

questions. Our findings highlight evidence of potential interventions in
real-time, machine learning-supported classrooms. The orchestration
tool did impact some aspects of how instructors interacted with groups,
specifically who prompted the intervention and how instructors started
the conversation. There were no significant differences regarding
groups’ participation when instructors used the CSTEPS tool. Yet, we did
see some promising results regarding orchestration strategies. When
instructors used the tool and monitored before intervening, groups
moved into productive participation. Additionally, there were moments
when instructors applied prompts as expected, which led to effective
interventions. While these were few, we see these as promising instances
that can help us understand how to support instructors.

Looking closely at the use of specific orchestration strategies, we
know that planning and facilitating CPS is a complex form of instruction
that requires knowledge of this type of learning as well as strategies for
monitoring and intervening in ways that promote collaboration among
groups [5,6,11]. The contents of instructors’ interventions are critical
for productive group interactions [12], making pedagogical content
knowledge an essential aspect of CPS classrooms. Monitoring is an
essential step in gauging a group’s progress through a CPS task and
identifying their immediate needs [13], and we designed the orches-
tration tool intentionally to prompt instructors to monitor specific be-
haviors, share pointers on how to observe effectively, and share
strategies for intervention. However, we saw no difference between
monitoring behaviors with or without the orchestration tool, despite the
tool directly prompting them to do so. Because we designed the tech-
nology to draw instructors to the groups, interventions without it are
more likely to be prompted by groups. We observed that when using the
tool, the instructors were more likely to initiate an intervention as
compared to when they were not using it.

Regarding initiationmoves, we found that instructors used less direct
instruction and more open-ended questions and generative probes when
using the tool. Instructors using less direct instruction is a promising
result of the technology and the system change happening as part of our
DBIR project. In our previous research in this context, engineering in-
structors often initiate interventions with instructions or the answer
rather than probing and allowing the group to work together to explain
what they are doing or need [6]. Prompting the group to work together

Fig. 9. Proportion of interventions by orchestration strategies categorized by transition.
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was a core purpose of the orchestration tool [5,11]; however, instructors
rarely used that strategy. We saw changes in the orchestration strategies
of when instructors intervened and if and how they probed the group
during the intervention. There is room to explore how we might support
additional orchestration strategies in future iterations.

While some interventions moved groups from talking and on task to
silent or off-task, such cases rarely occurred across the three weeks. While
a few transitions before and after interventions were silent or off-task to
talking and on task, we did see the frequency of some orchestration
strategies (e.g., monitoring and probing for understanding) increase
during those transitions, echoing the importance of these strategies in
the literature findings [5,6].

This study provided many open design avenues for revising our tool
to support instructors’ orchestration strategies. First, future work can
explore additional models and prompts that might effectively support
instructors’ orchestration strategies. Since CPS is complex, there are
many aspects of students’ learning processes to draw instructors’
attention to foster productive social knowledge construction in CPS
activities. Future studies need to construct machine learning models that
help us understand a range of students’ interactions and study their
accuracy in authentic environments. In addition, we can think about
how we might communicate models to provide more adaptive feedback
to instructors. Adaptive feedback could help give instructors the support
they need based on their intervention styles, experience with CPS, and
comfort supporting groups. Our findings highlighted not all instructors
leveraged the prompts due to many factors, such as the model’s accuracy
or factors in the classroom. Since no two instructors will have the same
needs and groups engaged in CPS differ drastically based on their
progress, interactions, and other factors, orchestration tools must be
responsive to accommodate the dynamic versus static realities of class-
rooms. The CSTEPS tool had multiple modes of interacting with groups’
participation, including real-time prompts and viewing students’ work,
but designers need to create multiple support that align with the dy-
namic elements of CPS classrooms.

Limitations

Our exploratory study looked at the accuracy of the machine
learning models and how the instructors used the tool to support CPS. To
do so we created models that predicted off-task and silent on-task be-
haviors, yet we recognized that these do not fully recognize the
complexity of students’ CPS and that we acknowledged we over-
predicted these behaviors. We chose these behaviors because they were
detectable through our work to create these machine learning models.
We were interested in how prompting instructors to support these be-
haviors might impact them in context; however, we recognize that these
behaviors paint a small, non-representative picture of what group CPS
looks like [20]. By overpredicting these behaviors we may have lost the
instructors trust in our tool; future work needs to predict other
CPS-related behaviors and alter how to communicate them to support
instructors and sustain trust. We also acknowledge this study is an

exploratory study to see how machine learning models might impact
orchestration strategies. Long term analyses are needed to understand
the impact of the tool on orchestration strategies and CSP behaviors.
Lastly, since we worked with a small number of instructors, with one in
particular who worked with us on the research team, this may have
impacted their use of the tool. We highlight the need for other methods
to better understand the accuracy of models, such as setting up a time
gap in the instructors’ procedure or iterative implementation cycles to
understand how instructor interventions changed.

Conclusion

Our paper contributes to the evolving field of CPS and orchestration
by offering insights into the interplay between predictive models,
instructional tools, and orchestration strategies in engineering class-
rooms. The findings underscore the nuanced nature of classroom
orchestration and emphasize the potential of technology to enhance
real-time interventions and support collaborative participation. Our
paper makes three main contributions to the literature. First, our study
illustrates the development and testing of a novel, real-time machine
learning model and prompts for supporting instructors’ interventions.
This work moves beyond monitoring and mirroring orchestration sup-
port and provides empirical evidence of interventions to support CPS.
Second, we provide evidence of potential interventions in machine-
learning supported classrooms. Our findings show how instructors
respond to and use real-time, machine-learning strategies to support CPS
classrooms. Lastly, we provide insights into a DBIR approach and a
detailed analytic process for triangulating data types to understand the
tool’s impact.

CRediT authorship contribution statement

LuEttaMae Lawrence: Writing – review & editing, Writing – orig-
inal draft, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Emma Mercier: Writing –
review & editing, Supervision, Software, Resources, Project adminis-
tration, Methodology, Investigation, Funding acquisition, Formal anal-
ysis, Data curation, Conceptualization. Taylor Tucker Parks:Writing –
review & editing, Validation, Formal analysis, Data curation. Nigel
Bosch: Writing – review & editing, Software, Resources, Project
administration, Investigation, Data curation. Luc Paquette: Writing –
review & editing, Supervision, Software, Resources, Project adminis-
tration, Methodology, Investigation, Funding acquisition, Data curation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Example task

L. Lawrence et al.



Computers and Education Open 7 (2024) 100203

12

Appendix B. Coding Scheme

L. Lawrence et al.



Computers and Education Open 7 (2024) 100203

13

Code Code Description IRR
Instructor monitored 1 = yes Instructor monitored the group for at least 10 s Agree: 97

%
Kappa:
0.93

0 = no Instructor monitored the group for less than 10 s or not at all

Instructor initiated 1 = instructor Instructor intervened first Agree: 96
%
Kappa:
0.92

0 = student Student asked a question

Initiated by probing group 1 = prompting
conversation

Instructor began the intervention by asking the group how/what they were doing, if they were stuck, or
prompting them to collaborate (e.g., what did you get?, what are you struggling with?, can you tell him how
you got there)

Agree: 99
%
Kappa:
0.960 = delivering instruction

or directions
Instructor began the intervention by instructing the group what to do or telling them the answer (e.g., No,
that answer is 5; That works but would be a big cross section, right?)

Prompted Collaboration 1 = yes The instructor explicitly prompt the group to interact with each other (e.g., encouraging the group to talk,
respond to each others’ questions, noting they’re on different pages, or collaborate on the task)

Agree: 93
%
Kappa:
0.25

0 = no The instructor does not explicitly prompt the group to interact

Probed for understanding 1 = yes Occurance of any questions about the groups’ understanding, what they are doing, or if they are stuck that
took place after the initiation move

Agree: 89
%
Kappa:
0.77

0 = no All turns after the initiation move were instruction where the instructor was telling the group what to do,
explaining a concept, or providing an answer

Held group’s attention 1 = yes All students were engaged, speaking with, or listening to the instructor during the intervention or the
instructor is attempting talk to all group members

Agree: 92
%
Kappa:
0.87

0 = no The instructor did not have the entire groups full attention (e.g., only spoke to one or two students)

Explanations proceeded
quetsions

1 = yes Instructor provided elaborated description because a student asked a question or expressed they were
confused

Agree: 93
%
Kappa:
0.86

0 = no Instructor provided elaborated description without prompting from students

Instructor checked group
at the end

1 = yes Instructor ended the intervention by asking if the students understood or if they had additional questions Agree: 99
%
Kappa:
0.95

0 = no Instructor did not check with students, but ended the intervention in any other way
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