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Abstract 

Background  

Self-regulated learning (SRL) strategies can be domain specific. However, it remains unclear 

whether this specificity extends to different subtopics within a single subject domain. In this 

study, we collected data from 210 college students engaged in a computer-based learning 

environment to examine the heterogeneous manifestations of learning behaviors across four 

distinct subtopics in introductory statistics. Further, we explore how the time spent engaging in 

metacognitive strategies correlated with learning gain in those subtopics.  

Results  

By employing two different analytical approaches that combine data-driven learning analytics 

(i.e., sequential pattern mining in this case), and theory-informed methods (i.e., coherence 

analysis), we discovered significant variability in the frequency of learning patterns that are 

potentially associated with SRL-relevant strategies across four subtopics. In a subtopic related to 

calculations, engagement in coherent quizzes (i.e., a type of metacognitive strategy) was found to 

be significantly less related to learning gains compared to other subtopics. Additionally, we 

found that students with different levels of prior knowledge and learning gains demonstrated 

varying degrees of engagement in learning patterns in an SRL context.  

Conclusion  

The findings imply that the use—and the effectiveness—of learning patterns that are potentially 

associated with SRL-relevant strategies varies not only across contexts and domains, but even 

across different subtopics within a single subject. This underscores the importance of 

personalized, context-aware SRL training interventions in computer-based learning 

environments, which could significantly enhance learning outcomes by addressing the 
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heterogeneous relationships between SRL activities and outcomes. Further, we suggest 

theoretical implications of subtopic-specific heterogeneity within the context of various SRL 

models. Understanding SRL heterogeneity enhances these theories, offering more nuanced 

insights into learners’ metacognitive strategies across different subtopics.   

 

Keywords: Self-regulated learning, Learning analytics, Heterogeneity.   
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Introduction 

Computer-based learning environments offer a flexible and adaptive learning experience, 

granting students significant autonomy. However, these environments also present distinct 

challenges, particularly for students who have not yet acquired all the necessary self-regulated 

learning (SRL) skills (Bol & Garner, 2011; Irfan et al., 2020; Pedrotti & Nistor, 2019). SRL is a 

learner’s active management and adaptation of their learning strategies to meet their learning 

goals and overcome challenges encountered throughout learning. Students with SRL skills 

possess the ability to orchestrate their learning plans strategically, as well as the capacity to 

reflect upon and assess their learning progress continually, which ultimately benefits learning 

(Azevedo, 2005; Johnson et al., 2011; van Alten et al., 2020; van der Graaf et al., 2022). 

Therefore, the inherent freedom and complexity of computer-based learning environments, 

although beneficial in numerous ways, often pose challenges in navigation and success, 

particularly for learners who are still developing their SRL skills (Taub et al., 2021; Zheng et al., 

2022).  

Although SRL is crucial for effective learning, it is not an inherent skill among students 

and varies substantially between students (Bernacki et al., 2015; Muwonge et al., 2020). This 

variability in SRL skills often reflects disparities in educational resources and learning 

opportunities, rather than an inherent flaw or lack of potential in the students themselves 

(Zimmerman, 2002). Fortunately, however, SRL skills are not static but can be developed and 

enhanced over time (Zimmerman & Kitsantas, 2005). Thus, there are promising opportunities for 

interventions to teach SRL skills; although some students may not have had sufficient 

opportunities to hone these skills, SRL can be progressively learned and enhanced with 
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appropriate guidance and practice (Bernacki et al., 2020; Schunk & Zimmerman, 1997; 

Zimmerman, 2002).  

While SRL-supporting tools are crucial in fostering students’ SRL skills (Bellhäuser et 

al., 2023; T. Li et al., 2023), current approaches tend to model and support a uniform application 

of SRL strategies across various learning domains and subdomains. Broadbent et al. (2020) 

highlight a challenge in the development of SRL interventions, questioning whether it is more 

effective to design these SRL interventions with a focus on specific domains or to apply a more 

general approach across domains. While Broadbent and colleagues acknowledge that non-

content-specific SRL strategies can be beneficial, they discuss that content-specific approaches 

to SRL interventions might be more effective. In line with this perspective, numerous studies 

confirmed that SRL strategies are not one-size-fits-all and are indeed subject-specific and 

underscored the need for domain-specific SRL approaches, since they are not universally 

applicable (Alexander et al., 2011; Greene, Bolick, Caprino, et al., 2015; Greene, Bolick, 

Jackson, et al., 2015; Lee et al., 2023; Poitras & Lajoie, 2013). However, such evidence prompts 

further questions about whether such specificity in SRL strategies should extend to the varied 

subtopics within a single subject domain, such as mathematics, computer science, and 

humanities.  

Within subject domains, there are more narrowly focused areas, which we refer to as 

subtopics, that potentially demand unique problem-solving approaches. For instance, in this 

study, we refer to statistics as a subject domain, which involves the study of collecting, 

interpreting, and analyzing data. Even within the subject of statistics, there exist numerous 

subtopics, such as calculation and graph interpretation, each requiring distinct problem-solving 

methods. For example, calculation involves tasks like probability computations and standard 
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deviation calculations, which rely on direct application of mathematical formulas. In contrast, 

graph interpretation entails understanding graphical data presented in formats such as scatter 

plots or histograms, demanding different skills. Similarly, in computer science, the subtopic of 

programming requires an understanding of the syntax and semantics of various languages, along 

with coding skills, while the data structures subtopic demands a deep understanding of 

algorithms, including sorting and search algorithms.  

For students who struggle with SRL skills, recognizing and adapting the appropriate 

cognitive and metacognitive strategies to the specific demands of each subtopic poses a 

significant challenge. A generalized approach may not sufficiently account for the intricate 

variances in how SRL strategies are employed (and should be employed), even across different 

subtopics within a single domain. Therefore, there is a need to develop AI-based systems that can 

support students’ personalized learning by fostering the development of SRL skills tailored to 

specific subtopics in computer-based learning environments. Numerous studies explored the 

heterogeneous application of SRL strategies across diverse student populations, taking into 

account variables such as gender, race, and academic performance (Carroll & Garavalia, 2002; 

Foong et al., 2021; Norman & Furnes, 2016; Virtanen & Nevgi, 2010; Yukselturk & Bulut, 2009; 

Zimmerman & Pons, 1990). However, there remains a gap in understanding how SRL strategies 

can and should vary across different subtopics within a single domain in SRL research.  

In this paper, we explore this issue by investigating differential engagement in SRL-

relevant learning patterns across four different subtopics within the subject domain of statistics. 

To the best of our knowledge, this study is the first to explore the heterogeneity of computer-

based learning behaviors in an SRL context across various subtopics within a single domain. 

While SRL skills benefit many academic outcomes, in general, and in domain-specific research 
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(Kramarski & Gutman, 2006; Mason et al., 2010; Schraw et al., 2006; Tseng et al., 2006), our 

exploration challenges the conventional belief that increased SRL engagement invariably leads to 

higher learning gains, irrespective of the subtopics. Our focus is on discerning whether the 

correlation between SRL engagement and learning gains is consistent across various subtopics or 

shows notable variations. Such investigations are crucial as they question the generalizability of 

the efficacy of SRL strategies and offer insights into how SRL skills could be taught in a more 

targeted, effective fashion. By exploring the complexities of SRL heterogeneity, our study aims 

to make contributions in two ways. First, we expect that the insights gained from our study will 

contribute to enhancing the development of more personalized and context-dependent AI-based 

systems, thereby enhancing the overall effectiveness of SRL in computer-based learning 

environments. Second, we anticipate that our findings will enrich existing SRL theories by 

revealing the potential to account for variations in SRL-relevant strategies based on specific 

subtopics. 

Our research is structured into two closely related analyses. Analysis 1 employs a data-

driven approach to explore the heterogeneity of learning patterns in an SRL context across 

subtopics, addressing two specific research questions (RQ1 and RQ2) using sequential pattern 

mining. Analysis 2, which addresses RQ3, takes a theory-driven approach to examine the 

heterogeneous relationship between time spent using metacognitive strategies (a type of SRL 

skill) and learning gains (measured as the difference between posttest and pretest grades) across 

subtopics. While Analysis 1 focuses on uncovering the varied nature of learning patterns in an 

SRL context—questioning whether the frequency of employing specific learning patterns differs 

based on the subtopic—Analysis 2 advances this inquiry by examining the extent to which 

metacognitive strategies produced comparable learning gains across different subtopics.  
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Our research questions were as follows:  

RQ1. Are there variations in the frequency of learning patterns in an SRL context across 

different subtopics?   

RQ2.  How does the association between learning gain (measured as the difference 

between posttest and pretest grades) and the frequency of learning patterns in an SRL 

context vary across different subtopics? Furthermore, how does the association between 

prior knowledge (measured as the pretest grade) and the frequency of learning patterns 

that are potentially associated with SRL-relevant strategies vary across different 

subtopics?  

RQ3. Does the relationship between time spent on metacognitive strategy use and 

learning gain vary across different subtopics?   

Theoretical Models of SRL  

SRL is a comprehensive framework that includes cognitive, metacognitive, affective, and 

behavioral facets of learning (Panadero, 2017; Schunk & Greene, 2017). Numerous theoretical 

models have been developed to understand SRL (Efklides, 2011; Pintrich, 2000; Zimmerman, 

1989; Zimmerman & Moylan, 2009), with several specifically designed to subdivide and 

categorize the processes inherent to SRL. For instance, Zimmerman’s SRL model (Zimmerman 

& Moylan, 2009) comprises three phases: forethought, performance, and self-reflection. In the 

forethought phase, students engage in preparatory steps, including analyzing the task, setting 

goals, and planning their strategies, to establish a foundation for their learning process. In the 

performance phase, students execute the learning strategies by managing time, monitoring their 

progress, and using metacognitive strategies to keep themselves motivated. Lastly, in the self-
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reflection phase, students assess and reflect on their goals, strategies, and plans to set their future 

learning.  

In Winne and Hadwin’s SRL model (Winne & Hadwin, 1998), which has a strong focus 

on metacognition, students actively manage their learning by monitoring and employing 

(meta)cognitive strategies. Specifically, this model highlights the goal-driven nature of SRL and 

the impact of self-regulatory actions on motivation. Winne and Hadwin’s model also provides a 

detailed examination of the interaction between various SRL components. The model 

acknowledges that SRL occurs across phases but differs from many other models by also 

modeling the information processes that occur within each phase (Azevedo et al., 2010; Winne & 

Hadwin, 1998). Based on Winne and Hadwin’s model, students employ five distinct facets—

conditions, operations, products, evaluations, and standards—within tasks that unfold over four 

phases. These phases include task definitions, goal setting, the enactment of study tactics, and 

metacognitive adaptations to studying. Although there exist differences within a multitude of 

SRL models (Efklides, 2011; Pintrich, 2000; Winne & Hadwin, 1998; Zimmerman & Moylan, 

2009), especially in terms of the focus of the model and perspective the researchers are using to 

understand SRL process (e.g., Zimmerman uses a socio-cognitive perspective of SRL and Winne 

and Hadwin use the view of information processing theory), researchers agree that SRL consists 

of different phases and subprocesses that students revisit repeatedly throughout learning. Further, 

one common facet of SRL models is the use of metacognitive strategies during learning. Using 

metacognitive strategies, such as task analysis, goal setting, selecting and applying strategies, 

and monitoring and reflection on learning, are key components across many SRL models 

(Panadero, 2017; Puustinen & Pulkkinen, 2001; Schunk & Greene, 2017).   
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Supporting SRL in Computer-based Online Learning Environments  

Investigating heterogeneity in an SRL context is particularly important not only because 

it provides opportunities to observe the array of strategies students use to steer their own 

learning, but also because it pinpoints areas where students may benefit from additional support 

or instruction regarding SRL skills in computer-based learning environments. Research 

demonstrated the critical role of SRL in online learning environments, showing a positive 

relationship between employing these strategies and academic achievement (Jin et al., 2023; 

Johnson et al., 2011; Richardson et al., 2012; Xu et al., 2023). However, computer-based 

learning environments often demand higher levels of SRL skills compared to traditional in-

person courses, as students are required to independently monitor their learning processes and 

make continuous adjustments as necessary. For instance, students must decide when and how to 

engage with the course content, often with minimal guidance beyond the course’s structural 

design (Lajoie & Azevedo, 2006).  

This autonomy underscores the necessity for students to exhibit a significant capacity for 

SRL skills to achieve the required learning objectives (Artino & Stephens, 2009; Barnard et al., 

2008; Broadbent & Poon, 2015; Kizilcec & Schneider, 2015). Therefore, providing 

individualized support could be especially beneficial to students who lack SRL skills since those 

students often confront challenges in navigating and succeeding within these learning 

environments (Aleven & Koedinger, 2002; Graesser & McNamara, 2010; Greene et al., 2010). In 

response to this, numerous studies attempted to foster and support students’ SRL skills in online 

learning environments through a variety of approaches. These methods include open learner 

models (Bull et al., 2014; Ferreira da Rocha et al., 2023; Guerra et al., 2016, 2018; Kay et al., 

2022; Law et al., 2017; Sun et al., 2023; Tacoma et al., 2018; Winne, 2021), dashboards (Alphen 
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& Bakker, 2016; Hsiao et al., 2016; Mejia et al., 2017; Muldner et al., 2015), interventions 

(Cicchinelli et al., 2018; Jansen et al., 2020; Müller & Seufert, 2018; Zarei Hajiabadi et al., 

2023), metacognitive prompts (Engelmann et al., 2021; Pieger & Bannert, 2018; Sonnenberg & 

Bannert, 2019), and others. For systematic literature reviews of SRL-supporting tools, see 

Alvarez et al. (2022), Araka et al. (2020), Edisherashvili et al. (2022), Heikkinen et al. (2023), 

Hooshyar et al. (2020), and Matcha et al. (2020). Although tools supporting SRL are crucial for 

enhancing students’ use of SRL skills, existing methods usually adopt a one-size-fits-all 

approach to SRL support, even across subtopics within various domains.   

Moreover, among the tools designed to support students’ SRL skills or behaviors, only a 

few studies utilized recommendations on which specific SRL skills should be used to actively 

guide students in developing their SRL capabilities (Du & Hew, 2022). For instance, Bodily et al. 

(2018) developed a content recommender which aimed to support students identifying 

knowledge gap by providing them summary of their mastery level of each concept. Additionally, 

they designed a skill recommender that provides students with an overview of their 

metacognitive strategy use, along with corresponding recommendations to support students’ 

application of these strategies in an introductory blended chemistry course, at the university 

level. While Bodily et al. (2018) found that the majority of students who received the 

recommendations had positive feedback, these SRL strategy recommendations could be further 

personalized by suggesting effective strategies tailored to each subtopic in the course. Despite 

advancements in SRL-supporting tools, there is still significant potential for these tools or AI-

based systems to offer students more personalized, content-dependent SRL support depending on 

the subtopics.  

Measuring and Analyzing SRL through a Temporal Perspective 
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The effectiveness of SRL support is contingent upon the accurate measurement of 

students’ SRL skills and SRL-related behaviors in computer-based learning environments (Q. Li 

et al., 2020; Winters et al., 2008). However, measuring SRL skills and behaviors is a multifaceted 

challenge (Greene & Azevedo, 2010; Hadwin et al., 2007; Winne, 2010; Winne & Perry, 2000). 

Researchers suggest SRL measures should be viewed as both aptitudes and events (Bannert et 

al., 2014; Winne, 2010). The aptitude-based approach focuses on students’ characteristics, such 

as their cognitive, motivational, and emotional dispositions, and how these affect their ability to 

regulate their learning, treating SRL as a set of relatively static traits. This approach often uses 

questionnaires and structured interviews (Bannert et al., 2014; Winne, 2010). Some of the most 

used questionnaires and structured interviews include the Motivated Strategies for Learning 

Questionnaire (MSLQ) (Pintrich et al., 1991), the Self-Efficacy for Learning Form (SELF) 

(Zimmerman & Kitsantas, 2007), and the Online Self-Regulated Learning Questionnaire (OSLQ) 

(Barnard et al., 2008, 2010). However, despite its widespread use, the aptitude-based approach 

has been critiqued for portraying SRL as a fixed trait (Azevedo, 2015; Veenman & van Cleef, 

2019).  

Moreover, the reliance on students’ perceptions and memories in questionnaires may not 

accurately reflect their in situ behaviors and strategies in a learning situation. As Greene and 

Azevedo (2010) argue, the aptitude-based approach can be incomplete since it does not account 

for the dynamic nature of SRL, wherein learners continuously adapt their learning processes 

within and between tasks in response to the unique demands of each. Similarly, trace data—

digital footprints that learners leave behind as they interact with online learning environments, 

such as clicking on a link, submitting an answer, or spending time on a page (Brusilovsky, 2001; 

Du et al., 2023)—also has inherent limitations in capturing learner’s self-perceptions. For 
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instance, Choi et al. (2023) found substantial differences between students’ self-reported goals 

and their goal-relevant behaviors reflected in trace data. However, this substantial misalignment 

indicates that trace data can serve as a counterpoint to self-perception measures. While there 

exist limitations in capturing SRL comprehensively using trace data alone, numerous studies 

have highlighted the discrepancies between self-reported and trace data, demonstrating the value 

of trace data in providing objective insights into student behaviors (Choi et al., 2023; Hadwin et 

al., 2007; F. Han, 2023; Syal & Nietfeld, 2020; Winne & Jamieson-Noel, 2002). For instance, 

studies discovered that student’s trace data were better predictors of student game performance 

and academic performance than self-reported data (Syal & Nietfeld, 2020; Ye & Pennisi, 2022). 

Likewise, studies increasingly rely on trace data because it captures actual student actions in 

real-time, which could reduce the biases and inaccuracies often associated with self-reports 

(Palanci et al., 2024).  

Given the limitations of the aptitude-based approach to SRL measurement, researchers 

have shifted towards examining SRL as a dynamic, temporal process (Fan et al., 2021; Saint et 

al., 2021). Process models, for example, focus on students’ self-regulatory actions within specific 

contexts or tasks, viewing SRL as an unfolding series of actions and decisions in response to 

specific task demands (Cloude et al., 2022; Hardy et al., 2019; Klug et al., 2011; Winne & Perry, 

2000). The process-based perspective has opened new ways to explore SRL but also introduced 

new challenges (Molenaar et al., 2023). First, shifting to a temporal perspective requires 

innovative methods for conceptualizing SRL’s multi-dimensionality and dynamic nature 

(Azevedo, 2014; Järvelä et al., 2019; Jovanović et al., 2017). Reimann (2009) suggest that the 

temporal conceptualization of SRL should extend beyond mere time-on-task, frequency, and 

duration to also include the sequential order of learning events. Despite challenges with 
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interpreting temporality and choosing measurement units, numerous studies investigated SRL as 

a series of events over time to better understand its dynamic nature. For instance, Maldonado-

Mahauad et al. (2018) conceptualized SRL measurements by using questionnaire and process 

mining to extract students’ learning interaction in massive open online courses. They identified 

six different interaction sequence patterns and related each pattern with corresponding SRL 

strategies grounded in literature. Although the authors further discuss the challenges that emerge 

while extracting theory-based patterns from observed behaviors, their study advances SRL 

research by providing a deeper understanding of how students engage with course content and 

assessments through the identification of SRL strategies in massive open online courses.  

The second challenge stems from handling complex trace data, which demands advanced 

analytical techniques to extract meaningful insights into students’ use of SRL skills (Gašević et 

al., 2015; Kizilcec et al., 2017; Siemens & Baker, 2012). In response to this challenge, numerous 

temporally focused learning analytics methods to measure and analyze SRL emerged, each with 

unique strengths and potential limitations. One method employed is lag-sequential analysis, as 

Kuvalja et al. (2014) used. This technique is used to examine the timing and order of events, with 

an emphasis on investigating the timing of actions, which can be beneficial for understanding the 

connections between events. Methods such as process mining and epistemic network analysis 

have been applied for a more holistic view of the SRL process. Process mining is a technique 

used to analyze and visualize sequences of processes based on event logs (Bogarín et al., 2018; 

Saint et al., 2021; Sobocinski et al., 2017). Despite its limitation of not allowing a global 

statistical test for group differences and varying individual weights, process mining can offer a 

detailed view of the sequence and flow of SRL events. Meanwhile, epistemic network analysis, 

which is grounded in epistemic frames theory (Shaffer, 2004, 2006), is applied to analyzing log 
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or trace data in individual and collaborative learning settings to help understand students’ 

temporal learning behaviors. As Paquette et al. (2021) noted, epistemic network analysis 

provides both statistical tests and networked visualizations for qualitative interpretations, 

overcoming some process mining limitations. Additionally, methods like constrained Sequential 

Pattern Discovery (cSPADE) (Kang et al., 2017; Ng et al., 2023; Wong et al., 2019; Zhichun Liu 

& Jewoong Moon, 2023), another form of sequence analysis, and the combination of process 

mining and clustering (Maldonado-Mahauad et al., 2018) provide innovative ways of capturing 

and analyzing the temporal and sequential characteristics of SRL.  

However, another complication arises in choosing temporally focused analytical 

methods: deciding on the analytical direction—whether top-down or bottom-up—in which SRL 

skills and behaviors could be measured (Azevedo, 2014; Panadero et al., 2016). For instance, the 

sequential pattern mining approach (Zaki, 2001), being data-driven, and coherence analysis 

(Segedy et al., 2015), being theory-informed, provide unique insights into students’ SRL-related 

behaviors. These two methods differentiate themselves in their fundamental analytical 

approaches. Sequential pattern mining is a bottom-up method that uncovers patterns directly 

from the observed data. On the other hand, coherence analysis exemplifies a top-down approach 

that leverages existing theoretical frameworks to conceptualize and interpret students’ 

metacognitive behavior.  

Sequential pattern mining is a data mining technique to uncover sequential patterns or 

event sequences in large databases (J. Han et al., 2022). This method analyzes frequent patterns 

of events to identify recurring patterns, such as transactions, time-stamped events, or activities. 

Unlike association rule mining, which focuses on co-occurring events, sequential pattern mining 

specifically targets the sequential relationship between events, emphasizing the temporal 
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ordering and dependencies within a sequence. Sequential pattern mining also differs from lag-

sequential analysis, which examines the strength and statistical relationships, such as transitional 

frequencies, between events at any given lag. Specifically, lag-sequential analysis focuses on 

calculating the probabilities of transitions between individual events or activities, making it 

effective for understanding the likelihood of one event following another in a sequence. In 

contrast, sequential pattern mining aims to identify frequent sequences of events within the entire 

dataset. It detects patterns that occur frequently, providing insights into common learning 

pathways and repeated behaviors within the dataset. There is, however, a great deal of overlap 

between the two methods, since the events within a sequential pattern are, by definition, in order 

and thus contain transitions. In our study, the primary interest lies in detecting frequent learning 

patterns across the entire dataset. Sequential pattern mining is well-suited for this purpose as it 

can uncover the most common sequences of learning activities, offering a broader view of 

learning behaviors.  

Metacognitive Learning Strategies and Learning Patterns  

 Metacognitive strategies, a central component of SRL, encompass students’ deliberate 

use of learning strategies to regulate their own learning process (Panadero, 2017). Identifying 

and understanding learning patterns associated with these strategies are crucial, since they can 

serve as valuable indicators of SRL usage, which can inform the design of AI-driven targeted 

interventions to improve students’ SRL skills. Several studies have used sequential pattern 

mining to examine students’ sequential learning patterns and behavior in computer-based online 

learning environments (S. Li et al., 2020; Mirriahi et al., 2016; Munshi et al., 2018; Shirvani 

Boroujeni & Dillenbourg, 2019; Siadaty et al., 2016; Zhang & Paquette, 2023). For instance, 

research in game-based learning environments has identified patterns in students’ gameplay 
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strategies or navigation sequences over time (Kang et al., 2017; Kang & Liu, 2022; Kinnebrew & 

Biswas, 2012; Rowe et al., 2015). Kang et al. (2017) and Kang and Liu (2022) utilized cSPADE 

to explore students’ problem-solving behavior patterns within a serious game called Alien 

Rescue. The study focused on the behavior patterns of different performance groups and revealed 

distinct problem-solving strategies between high- and low-performing students.  

In learning management systems, Poon et al. (2017) used sequential pattern mining to 

identify navigational patterns. Such pattern discovery in diverse learning environments assists in 

providing feedback to learners for a successful learning experience and offers insights for 

designers to enhance the learning environments (Perera et al., 2009). Regarding the application 

of sequential pattern mining in massive open online courses, Wong et al. (2019) utilized cSPADE 

to analyze log data, exploring differences in interaction patterns between students who viewed 

SRL prompt videos and those who did not. The findings indicated that SRL prompt viewers 

engaged with more course activities and exhibited a more consistent sequential pattern in 

completing them than their counterparts (Wong et al., 2019).  

Building on this analysis of learning patterns, research further demonstrated how 

analyzing metacognitive strategies provides valuable insights into students’ engagement in SRL 

(Segedy et al., 2015). For instance, coherence analysis (Segedy et al., 2015) provides a more 

theory-driven approach to understanding SRL compared to other learning analytics methods that 

are more data-driven. This approach measures metacognitive strategies during SRL by analyzing 

the coherence (i.e., how well two activities work together in sequence) of students’ actions 

observed in online learning contexts. Focusing on coherence allows researchers to see beyond 

simple action and reaction, highlighting the importance of consistent, strategic behaviors in 

successful learning. The idea of measuring SRL skills via coherence analysis can be adapted to 
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conceptualize numerous aspects of students’ use of metacognitive strategies, tailored to specific 

learning settings and research contexts.  

Numerous studies applied coherence analysis to assess students’ employment of 

metacognitive strategies in online learning settings. For example, Bosch et al. (2021) examined 

the links among verbalized metacognition and learning, confusion, and metacognitive problem-

solving strategies. Zhang et al. (2020) used coherence analysis in a computer-based learning 

environment called Betty’s Brain to investigate the relationship between confusion and 

metacognitive strategies. Expanding upon their earlier work, Zhang et al. (2022) further utilized 

coherence analysis to explore the evolution of metacognitive strategy use, advancing the 

understanding of how metacognitive strategy use develops over time.  

Study Participants and Research Context 

Participants 

We gathered behavioral data and survey responses from 210 college students who learned 

four different subtopics in statistics using a web-based learning environment. We used two 

sampling methods: in one sample, we recruited 112 students locally from a public research 

university in the Midwest region of the United States. Students who participated through this 

method received course credit upon completing the study. In the second sample, we recruited 98 

students on Prolific, an online crowdsourcing platform that enables research with a diverse 

sample of students from U.S. colleges and universities (Peer et al., 2021). While Prolific allows 

researchers to filter potential participants based on various criteria, including demographic 

variables, we only restricted our selection to undergraduate students from either 2-year or 4-year 

community colleges or universities for eligibility in our study. The Prolific sample represented 
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62 unique colleges/universities, including 11 community colleges. We compensated each Prolific 

participant who completed our study with $15.  

Ethics, Consent and Permissions 

Before participating, students completed an IRB-approved consent form (IRB protocol 

#21019).  

Demographics 

We present students’ self-reported demographic information to offer an insight into the 

diversity of our participants, even though not all demographic variables were examined in our 

analysis. Sample characteristics also serve to inform generalizability in meta-analytic research 

based on studies such as this one. Students self-described demographic characteristics, resulting 

in some fine-grained characteristics that had to be grouped together to protect privacy. Students’ 

demographic information regarding race and ethnicity, gender, English as a first language, age, 

and class standing is described in the Appendix Tables 1-5.   

Research Context  

We developed a self-guided online learning system that allowed students to navigate 

educational content at their own pace. The study, spanning approximately 90 minutes, involved 

students engaging with the system to learn about introductory statistics. The participants began 

the study by completing a demographics survey. After completing the survey, participants took a 

pretest and were asked to guess their performance in a previous version of the same test without 

access to their actual scores. Following this, students engaged in a self-paced learning session for 

60 minutes, during which their time remaining was displayed by a timer that operated 

exclusively during active software interaction to promote focus. The self-paced online learning 

environment included four distinct, illustratively presented subtopics with associated icons 
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(Figure 1). Each subtopic module included one reading, quiz, set of worked examples, and 

summary. Although students were not required to complete all the subtopics during the learning 

session, the platform allowed students to revisit and complete any activity multiple times, 

catering to their individual learning needs and preferences. As a final step in the study, 

participants took a posttest, which allowed us to measure learning gains by calculating the 

difference between their pretest and posttest scores.  

We developed pretest and posttest to evaluate knowledge on four subtopics covered in the 

learning material, with each test comprising 12 questions—three for each subtopic. In particular, 

pretests were designed to assess students’ prior knowledge across 4 subtopics that were covered 

in the learning material. We calculated the correlation between students’ actual pretest grade and 

their pretest score that they made immediately after taking the pretest (r = .447, p < .001), as 

verification that students’ performance on the pretest aligns with their self-assessed 

understanding. Such alignment suggests that the pretest measures a construct that students are 

aware of, which could indirectly support its validity. From a convergent validity perspective, 

although self-assessed knowledge and actual knowledge differ, they are (ideally) closely related 

such that a positive correlation suggests the related constructs are indeed related. The correlation 

value of .447 does suggest a moderate positive association between students’ actual pretest 

grades and their immediate guessing scores. This correlation serves as evidence that the pretest 

accurately reflects students’ understanding of the concepts it is intended to measure, thereby 

aligning the pretest’s objectives with students’ perceptions of their own knowledge. Additionally, 

we report the correlation between pretest and posttest (r = .480, p < .001); although we would 

not expect the correlation to be perfect, since some students learn more than others, this 

correlation serves as evidence that pretest and posttest measure the same knowledge as intended.  
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Pretests and posttest were also designed to be as similar as possible in difficulty and 

subtopic coverage. To this end, we created two versions of the test, A and B, which were 

interchangeable as either pretests or posttests. To ensure similar difficulty levels for tests A and 

B, we calculated the percentage of students who answered each question correctly. This 

information is provided in the Appendix Table 6 along with the full questions from tests A and B. 

While most pairs of questions had similar correct response rates, indicating comparable difficulty 

levels for those specific questions in both tests, we noted some variations that suggest slight 

differences in difficulty. Despite these variations, tests A and B alternately featured questions 

with higher correct response rates. Therefore, while not all pairs of questions achieved exactly 

the same difficulty level, we ensured that tests A and B maintained a similar level of difficulty 

overall. Additionally, to minimize any ordering effects between tests A and B and ensure the 

reliability of our measurements, we employed a counterbalanced test order, where students were 

randomly assigned one of two versions: A or B. Students in version A began with test A as their 

pretest and test B for their posttest.  

The test order was then reversed in version B to reduce effects due to test difficulty 

differences. Specifically, the random assignment of students to different test order neutralizes 

potential differences in test difficulty as it relates to statistical analysis of learning. Random 

assignment of test order evenly distributes potential differences in test difficulty across all 

students, thereby mitigating bias on average (i.e., in statistical point estimates of the mean) 

despite individual student-level biases in the learning gain estimate. Estimates of learning are 

therefore conservative, since the point estimate is unbiased but any potential test difficulty 

differences contribute variance to the estimate, decreasing statistical confidence. To establish 

content validity, we also asked four content experts (i.e., individuals with substantial post-
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graduate training in statistics) to match the randomly shuffled questions from tests A and B, 

which were interchangeably used as pretests and posttests, as described above. The experts were 

tasked with aligning each question from Test A to a corresponding question from Test B based on 

the statistical concepts they believed each question measured. All four experts achieved a 

correctness level of 100%, providing evidence that the questions from each test measure similar 

knowledge. We included full questions from Tests A and B in Appendix Table 6 to detail the 

structure and content of both the pretest and posttest.  
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Figure 1 

Screenshot of a main menu of the learning software (top) and an illustration of an incorrect quiz 

question attempted by a student (bottom). 

  

 

Note. If a student’s quiz answer was wrong, we displayed that information, but did not display 

the correct answer.  

Learning Activities and Subtopic Characteristics  

The learning session comprised four distinct modules, each addressing a unique subtopic 

within introductory statistics. One subtopic, referred to as Terminology for concision, included 

comprehensive explanations and descriptions to enhance understanding of fundamental statistical 

concepts. It covered various related concepts, including descriptive and inferential statistics, the 
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distinction between sample and population, the concept of margin of error, and its basic 

calculations. Furthermore, the subtopic contained the categorization of data types into categorical 

(including nominal and ordinal variables) and quantitative (comprising discrete and continuous 

variables). The Graphs subtopic focused on interpreting various graphs, particularly histograms. 

Emphasis was placed on comprehending histograms representing quantitative variables and 

identifying their distribution as unimodal, bimodal, or symmetric. The Calculation subtopic 

entailed computations of central measures, such as mean and mode, and dispersion measures, 

including variance and standard deviations. Finally, the Amalgamation subtopic covered various 

aspects like response and explanatory variables, confounding variables, and associations. 

Students also learned how to interpret scatterplots, understand correlation and correlation 

scatterplots, and grasp the properties of correlations. The Amalgamation subtopic necessitated a 

mix of competencies intrinsic to other subtopics, including the interpretation of graphs and the 

memorization of terminologies.  

Each module comprised four distinct learning activities: reading, quizzes, examples, and 

summaries. Students had the flexibility to select the order of these activities, irrespective of the 

subtopic. Every activity served a distinct learning purpose. The reading activity, typically four to 

six pages per subtopic, provided comprehensive information about the subject matter. The quiz, 

consisting of around 10 questions, allowed students to assess their understanding of the material 

without any time limitations. Incorrect answers were flagged, but the correct answers were not 

revealed, promoting self-guided learning. The examples provided more than just correct answers 

to example questions; they demonstrated the proper problem-solving methods. Finally, the 

summary provided a concise recap of each module’s essential learning materials, allowing 

students to review each subtopic’s material quickly.  
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Analysis 1: Employing a Data-driven Approach  

Data  

We used 210 participants’ trace data from the online learning system, which recorded 

their learning activities in real-time for our study. These trace data contained types of activities 

that students engaged in, activity durations, and test/quiz results recorded during the students’ 

interactions with every stage of the software. In analysis 1, we leveraged sequential pattern 

mining and linear mixed-effect regressions. To implement the sequential pattern mining, we first 

transformed student’s log data into a long format where every event was identified by a student 

ID, a learning activity (i.e., Read, Quiz, Example, and Summary), and an element ID (indicating 

the order of the learning activities). The element ID is crucial as it specifies the chronological 

order in which each learning activity occurred. For instance, in a learning sequence of Read → 

Quiz → Example, the “Quiz” learning activity would be assigned an element ID of 2 to indicate 

that it was the second activity in the sequence. Then, we transformed students’ log data into two 

different long formats. The first, the overall learning activity list, contained the sequence of 

learning activities that students engaged in throughout the entire learning session, regardless of 

the subtopic. For the second long format data, subtopic-specific learning activity list, we 

extracted students’ learning activities in relation to each subtopic (Terminology, Graphs, 

Calculation, and Amalgamation) individually. Therefore, we had four different subtopic-specific 

learning activity list for each subtopic. This transformation was necessary to enable us to 

investigate heterogeneity in learning patterns within SRL context across subtopics.  

Analytic Framework and Methods  

In this section, we provide a brief overview of our analytical approach, followed by 

detailed descriptions of each stage to help readers follow the methodological pipeline. The initial 
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step involved using sequential pattern mining on students’ overall learning activity sequence data 

to unveil commonly occurring learning patterns. We then identified and associated the frequently 

observed learning patterns potentially relevant to SRL-relevant strategies, as outlined in Table 1. 

This first step is detailed in the Sequential Pattern Mining subsection below. Once this 

groundwork was laid, we tallied each learning pattern’s occurrences across subtopic-specific 

learning activity lists to examine the variations within the use of learning patterns within this 

SRL context across subtopics. Then, as a second step, we employed the frequencies of learning 

patterns potentially related to SRL-relevant strategies as variables within mixed-effects 

regression models (described in the Analyzing Learning Patterns with Linear Mixed-Effects 

Regression subsection) to address our research questions (RQ1–2).  

Sequential Pattern Mining  

We utilized the cSPADE algorithm (Zaki, 2000, 2001) for sequential pattern mining on 

our dataset. Specifically, we used the R package arulesSequences to implement cSPADE and 

discover frequent sequential learning patterns. cSPADE requires data in a long format and offers 

the flexibility to define parameters, such as the minimum support, which represents the threshold 

for the proportion of students utilizing a pattern for it to be considered frequent. Another 

constraint is the maximum gap, which sets the largest allowable time difference between 

elements in a sequence. Given that the appropriate settings for these parameters can vary based 

on the research context and objectives, many studies that leveraged cSPADE for discovering 

frequent patterns in the educational research domain determined these values based on the 

specifics of their research context (Kang et al., 2017; Kang & Liu, 2022; Ng et al., 2023; Wong 

et al., 2019; Zhichun Liu & Jewoong Moon, 2023). In our study, we used students’ overall 

learning activity as a data input for cSPADE with minimum support value of 0.4 and a maximum 



 28 

gap value of 1. This minimum support value ensures that we only include sequences used by 

more than 40% of students in our results. The maximum gap value sets the largest allowable time 

difference between consecutive elements in a sequence.  In our study, we defined a maximum 

gap value of 1, indicating that a sequence of two activities of interest should have at most one 

other activity between them. This particular constraint was chosen to align with our measurement 

of SRL constructs via coherence analysis for answering RQ2. In coherence analysis, we utilized 

a 5-minute window timeframe (as outlined in Analysis 2); for cSPADE, we observed that 

students, on average, spent approximately three minutes per learning activity, and thus there 

would typically be 2–3 activities overlapping with any given 5 minutes (i.e., a maximum gap of 

1), approximately matching the timeframe used for coherence analysis.  

After applying cSPADE to the overall learning activity list, we obtained the most 

common sequences of learning activity patterns that students engaged in and the corresponding 

support values, which indicates the proportion of students who engaged in each frequent learning 

pattern at least once. For instance, an example of a frequent learning pattern could be Read → 

Quiz with support value .75, which implies that 75% of the students engaged in a reading activity 

then a quiz activity at least once throughout the entire learning session.  

Associating Frequent Learning Patterns to Potential SRL-relevant Strategies  

We examined frequent learning sequences to relate these recurring learning patterns to 

potential SRL-relevant strategies that are theoretically grounded in the literature (Corrin et al., 

2017; Sonnenberg & Bannert, 2015; Zimmerman & Pons, 1986). We mainly adopted 

Zimmerman’s 14 classes of SRL strategies (Zimmerman & Pons, 1986) as a framework to relate 

each frequent learning pattern to a potential SRL-relevant strategy. Zimmerman and Pons 

developed these 14 types of SRL strategies to assess students’ application of SRL in naturalistic 
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settings. In their SRL strategy schema, they defined SRL strategy as actions directed at acquiring 

information or skills, such that the actions involve agency, purpose (goals), and instrumentality 

self-perceptions by a learner (Zimmerman & Pons, 1986). Zimmerman and Pons’s SRL 

strategies focus on evaluating students’ active SRL behaviors in terms of their actions. While 

Zimmerman’s three-phase SRL model (Zimmerman & Moylan, 2009) describes SRL through 

distinct phases such as forethought, performance, and self-reflection, the classification of 14 SRL 

strategies delves deeper into evaluating students’ active application of these strategies. Notably, 

these strategies, particularly those centered on action, may align closely with the performance 

phase of Zimmerman’s model, where learners are actively employing SRL strategies and 

behaviors, as opposed to phases before learning (i.e., forethought) or after (i.e., reflection).  

Given our focus on investigating students’ potential use of SRL-relevant strategies based 

on their learning patterns during their active learning phase using trace data from computer 

interactions, Zimmerman’s SRL strategy classifications serve as a fitting framework for our 

study—provided that we operationalize the potential use of SRL-relevant strategies in terms of 

behaviors that are possible in our computer-based learning context. SRL encompasses not just 

the observable use of SRL strategies by students, but also their motivational aspects and self-

perceptions, which are inherently internal and often difficult to measure solely through trace data 

extracted from online learning platforms. However, capturing both of these aspects, especially 

students “agency, purpose, or instrumentality self-perceptions” as described by Zimmerman and 

Pons, is challenging when only trace data is available. The feasibility of collecting self-reported 

data on SRL varies, making it essential, as we aim in this study, to devise methods to measure 

and conceptualize SRL solely through the analysis of trace data. In this study, we adopt a 
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process-based perspective to understand SRL, focusing on investigating students’ observable 

actions as inferred from trace data.  

Therefore, we note that our approach to conceptualizing the potential usage of SRL-

relevant strategies does not encompass students’ “agency, purpose, or instrumentality self-

perceptions,” as directly measured by self-reported surveys, which are subjective to student’s 

own beliefs and perceptions. However, our SRL-relevant strategy conceptualization does aim to 

capture students’ agency, purpose, or instrumentality to the extent that they are apparent through 

trace data, rather than through self-reported data. Although trace data cannot capture all aspects 

of SRL, at least not equally, it can still provide valuable insights into students’ agency and 

purpose. For instance, frequent and purposeful engagement with specific learning strategies can 

indicate a high level of agency and goal orientation. Learning patterns such as regular revisiting 

of reading or repeating quiz takings can reflect a student’s purpose and strategic approach 

towards achieving their goals.  

Table 1 details each frequent learning pattern, its support value, and potentially associated 

SRL-relevant strategies. For instance, the most prevalent learning pattern identified was the Read 

→ Quiz, which could potentially imply the use of seeking information SRL-relevant strategy. 

Further, we provide a detailed description in Table 1 on how each learning pattern is potentially 

associated with SRL-relevant strategies. We highlight that the frequent learning pattern may 

potentially imply student’s use of SRL-relevant strategies, thus does not strictly indicate 

student’s use of SRL strategies. For instance, the Read → Quiz sequence could potentially imply 

students’ use of seeking evaluation strategy (Zimmerman & Pons, 1986). When learners read 

material and then take a quiz, they are assessing their comprehension and recall of the content. 

By taking the quiz, students can evaluate the quality or progress of their understanding based on 
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their performance. Learning patterns such as Quiz → Read and Quiz → Summary, where a 

student takes the quiz and goes on to reading or summary, could potentially be associated with 

student’s use of keeping records and monitoring (Zimmerman & Pons, 1986), seeking 

information (Zimmerman & Pons, 1986), and search (Sonnenberg & Bannert, 2015). Students 

engaging in these learning patterns are likely to seek information relevant to their quiz attempts 

to enhance their understanding. Further, these learning patterns could potentially indicate that 

students are aware of knowledge gaps found by taking quizzes and actively search for specific 

material to address these gaps.  

We potentially related Quiz → Quiz learning pattern with rehearsing and memorizing 

(Zimmerman & Pons, 1986) and repeating (Sonnenberg & Bannert, 2015) SRL-relevant 

strategies. Engaging in continuous self-assessments allows students to rehearse and help them 

identify errors and knowledge gaps. Moreover, the act of retaking quizzes aligns with the SRL-

relevant strategy of repeating, as it provides continuous practice and aids in the deepening of 

understanding. Quiz → Examples learning pattern could potentially indicate the use of help-

seeking (Corrin et al., 2017), keeping records and monitoring (Zimmerman & Pons, 1986), and 

seeking information (Zimmerman & Pons, 1986) SRL-relevant strategies. This learning pattern 

can possibly imply students’ proactive efforts to clarify doubts by seeking help through 

reviewing example questions like those in the quiz. By referring to examples after quizzes, 

students monitor their performance and track progress, ensuring they comprehend the material. 

We associated Read → Examples potentially with elaboration (Sonnenberg & Bannert, 2015) 

and seeking information (Zimmerman & Pons, 1986) SRL-relevant strategies. Elaboration 

involves deeper processing through activities such as paraphrasing, connecting, and inferring 

(Sonnenberg & Bannert, 2015). This learning pattern possibly suggests that students engage in 
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detailed examination and integration of the material by connecting reading content with practical 

examples. Additionally, by going over the examples, students actively seek relevant information 

to enhance their understanding.  

Visualizing frequent learning patterns among students can be a challenging task, 

especially given the variability in sequence lengths and the number of elements within sequences 

depending on the research objectives. We used a Sankey diagram (Figure 2) to illustrate the 

frequent learning patterns potentially linked to specific SRL-relevant strategies as outlined in 

Table 1. The diagrams’ links effectively display the sequence in which each learning pattern is 

employed within SRL context. The width of each link signifies its support level; broader links 

indicate a higher number of students engaging in a specific learning pattern.  

Figure 2  

Sankey Diagram Displaying Students’ Usage of Frequent Learning Patterns  

 

Note. To interpret the diagram, begin from the leftmost label, Quiz. This starting point branches 

into four distinct frequent learning patterns: transitioning from Quiz to Read, Quiz to Summary, 

Quiz to Example, and Quiz to another Quiz.  
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Table 1  

Proposed Alignment Between SRL-relevant Strategy and the Frequent Learning Patterns Found 

via the cSPADE Algorithm  

Frequent 
Learning 
Pattern 

Support  SRL-relevant strategy  
(specific subcategory) 

Description 

Read → 
Quiz  

0.85 - Seeking evaluation 
(Zimmerman & Pons, 1986)  

When students read material and then 
take a quiz on it, they are evaluating 
their understanding and recall of the 
material they just read. After taking 
the quiz, they can gauge the quality or 
progress of their work based on their 
performance. 

Quiz → 
Read 

0.77 - Keeping records and 
monitoring (Zimmerman & 
Pons, 1986) 
- Seeking information 
(Zimmerman & Pons, 1986) 
- Search (Sonnenberg & 
Bannert, 2015)  

Students taking the quiz and then 
reading the main material signifies 
that students are aware of the 
knowledge gap and might specifically 
look for information to address the 
gaps.  

Quiz → 
Quiz 

0.69 - Rehearsing and 
memorizing (Zimmerman & 
Pons, 1986) 
- Repeating (Sonnenberg & 
Bannert, 2015)  

When students encounter the first 
quiz, they are prompted to recall 
specific information. By the second 
quiz, they are not just accessing their 
foundational understanding but also 
relying on memory from the previous 
quiz attempt.  

Quiz → 
Examples 

0.63 - Keeping records and 
monitoring (Zimmerman & 
Pons, 1986)  
- Seeking information 
(Zimmerman & Pons, 1986) 
- Help-seeking (Corrin, de 
Barba, & Bakharia, 2017) 

After taking the quiz, students are 
trying to make an effort to gather 
specific, detailed information on how 
to approach or solve problems 
correctly.  

Read → 
Examples  

0.57 - Seeking information 
(Zimmerman & Pons, 1986)  
- Elaboration (Sonnenberg & 
Bannert, 2015) 

Illustrates student-initiated efforts to 
seek additional knowledge from 
additional resources to bolster their 
learning. Students are actively 
seeking clarity and deeper 
understanding as Examples provides 
them with detailed worked-out 
problems with explanations on how to 
approach solving the problem.  

Quiz → 
Summary 

0.45 - Keeping records and 
monitoring (Zimmerman & 
Pons, 1986) 

Students are not only keeping records 
of their quiz performance but are also 
actively seeking to enhance their 
understanding through the 
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- Seeking information 
(Zimmerman & Pons, 1986) 
- Search (Sonnenberg & 
Bannert, 2015) 
 

supplementary information provided 
in the summary. This dual approach 
allows them to both identify areas of 
improvement from their quiz results 
and address those areas by going 
through a summary.  

Note. The left most column lists the frequent learning patterns, followed by a column indicating 

their support values, which reflect the prevalence of these patterns among the students. The next 

columns detail the potential association with corresponding SRL-relevant strategies found in the 

literature and provide descriptions of these possible associations.   

Analyzing Learning Patterns with Linear Mixed-Effects Regression  

Using students’ subtopic-specific learning activity lists, we counted the occurrence of 

each frequent learning pattern for each subtopic (Table 1). By examining the frequencies of 

learning patterns across subtopics, we determined whether students adjusted their learning 

patterns with varying frequency across subtopics. We then employed these frequencies of 

subtopic-specific learning patterns as variables in a linear mixed-effects regression. However, as 

discussed in the previous section, one of the limitations of using cSPADE is that the results (i.e., 

the frequent learning patterns) from cSPADE do not afford an inferential, statistical 

interpretation. In this study, we overcame this limitation by arranging the cSPADE results such 

that they are suitable for follow-up linear mixed-effects regression modeling. All models 

included subtopic-wise frequency of learning patterns and learning gain as dependent variables. 

For all models, we checked the assumptions of linear regression (linear relationship, 

independence, homoscedasticity, and normality). All regression models included a random 

intercept for participant ID to account for the hierarchical nature of the data (i.e., many observed 

behaviors per student). Such an approach allowed us to consider individual differences at the 

baseline level. We report standardized betas as effect sizes in situations where predictors and 
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outcomes were continuous, or partially standardized betas where predictors were categorical 

(e.g., subtopic ID). 

For RQ1, we analyzed the occurrences of learning patterns as dependent variables and 

subtopic names (treated as factor variables) as independent variables. For RQ2, we also modeled 

each learning pattern frequency as the dependent variable in a model, but included different 

predictor variables: type of subtopics, learning gain, and prior knowledge (as measured by 

pretest score). We note that our focus is to investigate whether we observe variations in the 

frequencies of learning patterns within an SRL context across different subtopics. Therefore, to 

address our research question, we used learning patterns as dependent variables, rather than 

predictors. Learning gain was measured by taking the difference between students’ posttest and 

pretest grades to assess how much students improved in their understanding of the study material 

throughout the learning session. We also considered interactions between these predictors. 

Specifically, we hypothesize that the influence of prior knowledge and learning gain on the count 

of learning patterns might vary depending on the study subtopic. Thus, we included interaction 

terms between the study subtopic and the other three predictors. These terms allowed us to assess 

whether the heterogeneous effects of pretest score and learning gain on the occurrence of 

learning patterns are explained by the specific subtopic under study. We note that in RQ2, we are 

interested in investigating whether students’ prior knowledge, learning gain, and their 

interactions across subtopics have predictive power regarding engagement with learning patterns 

in an SRL context. Therefore, learning gain and prior knowledge are used as independent 

variables, allowing us to explore how variations in these factors are associated with using 

learning patterns.  
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Analysis 1 Results  

Before answering RQ1 and RQ2, we present an overview of learning patterns along with 

potentially associated SRL-relevant strategy usage across subtopics to examine whether there 

was a varied distribution of these learning patterns with possibly related SRL-relevant strategies 

among students within different subtopics (Table 2). Specifically, the frequencies indicate the 

proportion of students who engaged in each learning pattern at least once, across different 

subtopics. Across all subtopics, we found that students predominantly engaged in the learning 

pattern of Read → Quiz which we propose is associated with the SRL-relevant strategy of 

seeking evaluation (as shown in Table 1). However, the extent to which students engaged in this 

learning pattern varied notably across different subtopics. For instance, engagement rates were 

observed to be 79.4% for Terminology, 65.1% for Graphs, 58.1% for Calculation, and 66.8% for 

Amalgamation. Further, our analysis revealed that certain learning patterns exhibited higher 

frequencies in specific subtopics compared to others. For instance, the learning pattern of Quiz 

→ Quiz, which we propose is associated with the use of rehearsing and memorizing and 

repeating SRL-relevant strategies was found to be a common learning pattern within the Graphs 

subtopic (34.0%). In contrast, the Read → Example learning pattern, which we propose is 

associated with the seeking information SRL-relevant strategy, was particularly prominent within 

the Calculation subtopic, accounting for 31.0% of the learning patterns students engaged in. The 

observed subtopic-specific learning patterns possibly associated with SRL-relevant strategies 

hint at the possibility that students may adapt their choice of learning patterns based on the 

subtopic they are studying. For instance, the prevalence of the learning pattern, Quiz → Quiz, 

which we propose is associated with the use of rehearsing and memorizing and repeating SRL-

relevant strategies in the Graphs subtopic might suggest that recalling specific information 
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during the initial quiz, and then reinforcing that memory in subsequent quizzes are particularly 

beneficial for understanding graphical data. Meanwhile, the high occurrence of the Read → Quiz 

learning pattern, possibly implying the use of seeking information and elaboration SRL-relevant 

strategies, indicates that students may benefit from seeking detailed examples after their readings 

to further consolidate their understanding, especially when dealing with computational or 

problem-solving tasks.  

We conducted an additional analysis to investigate the mindfulness of students’ 

engagement in these learning patterns in SRL context. To this end, we randomly shuffled the 

order of learning activities that students engaged in for each subtopic using the second long 

format data, which is described in the Data subsection of the Analysis 1: Employing a Data-

driven Approach section. Specifically, we shuffled each subtopic’s learning activity list using the 

“shuffle” function in Python. Shuffling each subtopic’s learning activity list simulates a null 

distribution in which students engage in the observed activities with no intentionality, i.e., 

without selecting their next activity based on previous activities. We adopted the same approach 

for calculating the frequencies of learning patterns for each subtopic, as provided in Table 2, 

when calculating the frequencies of each learning pattern using the shuffled data. By comparing 

the frequencies of learning patterns in the original data with those in the shuffled data, we aimed 

to investigate whether students’ engagement in learning patterns was intentional or merely 

random.  

Differing frequencies between randomly shuffled and original data in learning sequences 

would provide insight into the intentionality behind students’ actions. The rationale behind this 

comparison is that intentional actions tend to produce consistent learning patterns that are 

unlikely to occur by chance. For instance, if students are consciously engaging in learning 
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patterns (e.g., intentionally following a Read → Quiz sequence to check their understanding), we 

would expect the frequency of such learning pattern in the original data to differ from it in the 

shuffled data, where the order of actions is randomized. This difference suggests that students are 

deliberately choosing to engage in a specific learning pattern. In contrast, if students are 

engaging in learning patterns without clear intention—perhaps clicking on activities without 

much thought—we would expect the frequencies in the original and shuffled data to be similar. 

This similarity would indicate that the sequences are not the result of intentionally selecting an 

action based on the previous action(s). 

This approach to discerning whether students’ learning pattern is happening by a random 

chance or not is taken from research on sequence mining and permutation tests, which are used 

to identify patterns that significantly deviate from what would occur by chance (Pinxteren & 

Calders, 2021; Tonon & Vandin, 2019; Zhang et al., 2024). Specifically, Zhang et al. (2024) 

demonstrated the effectiveness of permutation tests in identifying statistically significant and 

nonredundant patterns in educational data. The permutation test, as described by Zhang et al. 

(2024), is directly analogous to our approach since it involves creating a baseline of random data 

against which the original data is compared. In their study, permutation tests are used to shuffle 

the sequence of events in educational data to determine which patterns occur more frequently 

than would be expected by chance. This approach filters out random patterns, highlighting those 

that are statistically significant and likely to represent intentional patterns.  

Our analysis revealed differing frequencies for learning patterns across subtopics. The 

frequency of the learning sequence (Read → Quiz) was 79.4% in the original data but dropped to 

34.8% in the randomly shuffled data. This difference in frequencies implies that students were 

more likely to engage in the Read → Quiz sequence intentionally rather than randomly. 



 39 

Similarly, decreased frequencies for the Read → Quiz sequence across all subtopics in the 

shuffled data further support the idea that students’ engagement in this sequence was deliberate 

and less mindless. Furthermore, we observed varying frequencies in all other learning patterns as 

well. For instance, for certain specific learning pattern such as Quiz → Read, we observed 

increased frequencies in the shuffled data, suggesting that students engaged in these learning 

patterns less frequently than expected by random chance in the original data. Moreover, we 

observed similar frequencies in a few cases of the learning patterns across both the original and 

shuffled data, suggesting that certain sequences might be less dependent on intentionality. 

Although we acknowledge that some students might have engaged in these learning patterns 

mindlessly, the consistent differences in frequencies between the original and shuffled data 

suggest that a substantial portion of students were engaging in these learning patterns 

intentionally.  

Table 2 

Frequencies of Learning Patterns across Subtopics 

Sequence Terminology Terminology 
(shuffled) 

Graph Graph 
(shuffled) 

Calculation Calculation 
(shuffled) 

Amalgamation Amalgamation 
(shuffled) 

Read → 
Quiz  

79.4% 34.8% 65.1% 34.0% 58.1% 32.5% 66.8% 28.8% 

Quiz → 
Read  

17.1% 32.4% 23.4% 37.3% 22.7% 30.0% 15.4% 28.4% 

Quiz → 
Quiz 

28.1% 32.0% 34.0% 33.0% 25.1% 26.6% 21.2% 22.1% 

Quiz → 
Examples 

47.6% 24.8% 33.0% 25.8% 23.3% 20.2% 32.7% 21.1% 

Read → 
Examples 

25.2% 23.8% 23.4% 21.5% 31.0% 18.7% 23.6% 23.1% 

Quiz → 
Summary 

27.1% 35.2% 24.4% 28.3% 24.1% 25.6% 22.1% 23.6% 
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Note. The percentages do not add up to 100% for each subtopic because the frequencies indicate 

the proportion of students engaged in each learning pattern across subtopics. The corresponding 

column labeled “shuffled” for each subtopic indicates the frequency of learning pattern 

calculated using shuffled data.  

RQ1: Relationship Between Frequency of SRL-relevant Strategies and Subtopic  

Across different subtopics, we found heterogeneous frequencies of learning patterns 

potentially associated with SRL-relevant strategies such as Read → Quiz, Quiz → Quiz, and 

Quiz → Summary, depending on the subtopic of the study. The Read → Quiz learning pattern, 

possibly linked with the SRL-relevant strategy of seeking information, was significantly less 

prevalent in the Graphs subtopic (β = -.397, 95% CI [-.549, -.245], p < .001), the Calculation 

subtopic (β = -.492, 95% CI [-.644, -.341], p < .001), and the Amalgamation subtopic (β = -.405, 

95% CI [-.557, -.253], p < .001) compared to the Terminology subtopic. A comprehensive 

regression table is provided in Appendix Table 7. On the other hand, the Quiz → Quiz learning 

pattern, potentially implying the use of rehearsing and memorizing and repeating SRL-relevant 

strategies, was more frequent in both the Terminology and Graphs subtopics compared to 

Calculation and Amalgamation. This was evident for Terminology (β = .167, 95% CI 

[.012, .229], p = .030) and Graphs (β = .287, 95% CI [.099, .316], p < .001) compared to 

Calculation. Additionally, the frequency of the learning pattern, Quiz → Summary, potentially 

associated with keeping records and monitoring, seeking information, and search SRL-relevant 

strategies, was significantly higher in the Terminology subtopic compared to Graph (b = .29, 

95% CI [.134, .447], p < .001), Calculation (b = .489, 95% CI [.332, .645], p < .001), and 

Amalgamation (b = 0.36, 95% CI [.203, .516], p < .001). The significant variability we observed 
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in occurrences of learning patterns across subtopics suggests that students might adapt their 

frequency of specific learning patterns based on the subtopic under study.  

RQ2: Subtopic Heterogeneity in the Relationship Between SRL-relevant Strategies, Learning 

Gain, and Prior Knowledge 

We found significant results regarding the relationships between learning gain and the 

frequency of various learning patterns in an SRL context. In particular, we found that for the 

Graphs subtopic (relative to the reference level, Terminology), learning gain was significantly 

negatively related to the frequency of the learning pattern Quiz → Quiz, which we propose 

implies the use of rehearsing and memorizing and repeating SRL-relevant strategies (β = -.234, 

95% CI [-.445, -.023], p = .031). A comprehensive regression table is provided in Appendix 

Table 8. This result implies that—compared to studying the Terminology subtopic—when 

students study the Calculation subtopic, as their learning gain increases, the frequency of 

engaging in the Quiz → Quiz learning pattern decreases.  

Similarly, compared to the Graphs subtopic, students’ learning gains were significantly 

negatively associated to the Quiz → Quiz learning pattern in Calculation (β = -.352, 95% CI 

[-.555, -.148], p < .001). On the other hand, compared to the Calculation subtopic, learning gain 

was significantly positively related to the frequency of engaging in the Quiz → Quiz learning 

pattern in Amalgamation (b = .225, 95% CI [.011, .439], p = .225). For the Quiz → Example 

learning pattern, which we propose is associated with the SRL-relevant strategies of keeping 

records and monitoring, seeking information, and help-seeking, we found that, similar to the 

Quiz → Quiz learning pattern, learning gain was significantly negatively associated with the 

frequency of engaging in the Quiz → Example learning pattern for the Calculation subtopic 
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compared to the Terminology subtopic (b = -.289, 95% CI [-.527, -.051], p = .018). These 

varying relationships between learning gains and prior knowledge, and the use of learning 

patterns within this SRL context suggest that students with different levels of prior knowledge 

and learning gain might adjust their use of learning patterns depending on the subtopics.  

Analysis 2: Employing a Theory-driven Approach: Coherence Analysis 

In the second analysis, we employed coherence analysis and linear mixed-effect 

regressions to examine the relationship between SRL measures and learning gains across 

subtopics (RQ3).  

Method 

Coherence Analysis 

Coherence Analysis (CA) is a theory-based method that measures the use of 

metacognitive strategies via the order and timing of learning activities (Segedy et al., 2015). CA 

quantifies the extent to which specific learning activities work together (i.e., are coherent) to 

enact certain metacognitive strategies. For instance, if a student takes a quiz, then reviews the 

material relevant to any incorrect quiz answers, both taking the quiz and revisiting the content 

(such as reading) exemplify coherence. Coherent actions implicitly signify the utilization of 

metacognitive strategies, given that such an action involves a student assessing information 

gleaned from previous activities (such as perusing relevant material) and modulating their 

current actions (like taking a quiz) based on this information (Segedy et al., 2015; Zhang et al., 

2020). Coherent actions need not be sequential, but it is necessary to constrain the time interval 

between those actions since it is less clear (and perhaps less likely) that one action is informed by 

the results of a specific previous action if that previous action is in the distant past. Previous 

research in the context of Betty’s Brain revealed that students typically utilized the information 
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they encountered within five minutes of encountering it: coherent actions within this time span 

were positively correlated with assessment scores within a learning session as well as learning 

gains across a whole session (Segedy et al., 2015). We developed CA measures based on 

metacognitive theory to capture students’ use of metacognitive regulation during active learning, 

focusing on SRL skills like planning, monitoring, and managing their use of skills (Veenman, 

2016).  

We defined two universal CA measures—coherent quiz and coherent reading—and 

computed these two CA measures for each subtopic, resulting in four unique, subtopic-specific 

sets of CA measurements. These subtopic-specific CA measurements capture the variability in 

SRL-relevant strategies as students navigate each subtopic. The “coherent quiz” CA measure 

refers to the cumulative time a student spent engaging in reading activities within the five 

minutes prior to taking quizzes on the topics in those readings. The reading activities 

encompassed three types: studying the primary reading material, reading worked-out examples, 

and reading summary pages. Collectively, these three actions are referred to as “reading” actions 

within the context of this study. As such, the coherent quiz action was quantified based on the 

total time students allocated to reading activities before undertaking the quiz within a five-

minute window. Coherent quiz behavior indicates that students are thoughtfully allocating their 

time to read and understand the necessary information before testing their understanding of that 

information by taking the quiz. Coherent quiz behavior thus exemplifies one usage of 

metacognitive strategies as students self-regulate their review and assessment processes. 

Similarly, the decision to utilize the information within a specific time frame (the five-minute 

window) indicates the students’ awareness of the relevance and retention of the information.  
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A related CA measure, “coherent reading” refers to students’ time spent reading material 

related to the questions they missed in the quiz. We calculated coherent reading by tallying the 

time students spent studying the related material of missed quiz questions within a five-minute 

window following the quiz. Coherent reading represents a metacognitive strategy that comes 

after a quiz, wherein students identified their knowledge gaps through quiz results and 

immediately dedicated time to addressing these gaps by focusing on the specific areas of 

misunderstanding. Such an approach highlights a student’s capability to monitor their learning 

progress, recognize their errors, and take the necessary action to improve—key elements of 

metacognitive strategy use. Hence, coherent reading serves as a valuable indicator of the 

application of metacognitive strategies in the learning process.  

The effectiveness of CA constructs was demonstrated by Segedy et al. (2015) in the 

Betty’s Brain learning platform, where students are expected to teach a virtual agent by 

developing a causal map. The researchers measured five CA constructs: edit frequency, 

unsupported edit percentage, information viewing time, potential generation time, and used 

potential time (Segedy et al., 2015). Potential generation and information viewing time are 

closely aligned with coherent quiz and coherent reading constructs from this study. Potential 

generation is quantified by the amount of time students spend viewing information that could 

support their subsequent action, which is editing causal map in Betty’s Brain. Likewise, coherent 

quiz is measured by the total time students spend reading relevant material before taking the 

quiz, where reading time supports students’ quiz attempt. Similarly, information viewing time 

refers to the time spent reviewing graded answers or resource pages, corresponding to coherent 

reading measurement, which totals the time spent reviewing material related to missed quiz 

questions.  
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Investigating the Relationship Between Metacognitive Strategy Use and Learning Gain with 

Linear Mixed-effects Regression 

We explored the relationships between the topic, coherent reading, and coherent quiz 

actions on learning gains via mixed-effects regression. In RQ3, learning gain was the dependent 

variable, and predictor variables were the study subtopic name and two different CA measures: 

coherent reading and coherent quiz. We also included the interaction terms between subtopics 

and CA measures to examine how the association between learning gain and coherent behaviors 

differed across different subtopics. The regression model included a random effect for participant 

ID to account for the hierarchical nature of the data.   

Analysis 2 Results  

RQ3: Relationship Between the Use of Metacognitive Strategies and Learning Gain across 

Subtopics  

For the main effects of coherent reading and coherent quiz, we observed a statistically 

significant negative effect of coherent quiz on learning gain only when the Calculation subtopic 

was the reference variable (b = -4.393, 95% CI [-8.172, -.610], p = .023).  A comprehensive 

regression table is provided in Appendix Table 9. We found a significant negative interaction 

between the Calculation subtopic and coherent quiz measures, compared to the Terminology 

subtopic (b = -6.212, 95% CI [-12.043, -.373], p = .037) and compared to the Graphs subtopic (b 

= -11.066, 95% CI [-19.685, -2.441], p = .013). These negative interactions indicate that coherent 

quiz behavior was less effective for learning in the Calculation subtopic, relative to others. As 

students spent more time engaging in coherent quiz actions, the learning gain decreased on that 

subtopic compared to other subtopics. One potential explanation is that the distinct nature of the 

Calculation subtopic, which heavily focuses heavily on solving mathematical problems, may not 
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benefit as much from preparatory reading before a quiz, as is demonstrated by a coherent quiz 

activity. This lack of benefit might be because direct engagement with quiz questions that require 

problem-solving might be more advantageous for enhancing understanding of the material within 

the Calculation subtopic. In contrast, for subtopics such as Graphs or Terminology, where 

conceptual understanding is crucial, spending time on reading before a quiz might improve 

students’ comprehension, although significant results were not observed. This divergence in 

SRL-relevant strategy effectiveness highlights the need for a more context-dependent approach 

to supporting students’ SRL in computer-based online learning environments. Further, these 

findings imply that certain SRL behaviors may be more beneficial than others within specific 

subtopics, indicating that the effectiveness of SRL-relevant strategies might vary, even within a 

single domain.  

Discussion 

By leveraging data collected from 210 college students engaged in a computer-based 

learning environment for introductory statistics with diverse subtopics, we addressed three 

research questions. At a high level, we found: 

RQ1. We observed a significant variability in frequencies of learning patterns across 

subtopics within an SRL context.  

RQ2. Students with different levels of prior knowledge and learning gains exhibited 

varying degrees of engagement of learning patterns potentially associated with SRL-

relevant strategies across subtopics.  

RQ3. In the calculation subtopic, engaging in coherent quiz activities had a negative 

impact on learning gains.   
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Theoretical Implications  

Our findings contribute to the refinement of both SRL theory and its practical application 

within computer-based learning environments. We first situate findings regarding learning 

patterns potentially associated with SRL-relevant strategies and outcome heterogeneity within 

SRL models, contributing to understanding and refining these models. Students employing 

different learning patterns across various subtopics within an SRL context (RQ1) suggests that 

the dimension of contextual variability could be incorporated into SRL models to account for 

variations of learning patterns within an SRL context depending on the specific subtopic of the 

study. In Zimmerman’s model and in Winne and Hadwin’s model, we suggest adding the 

dimension of contextual variability, which would acknowledge and account for variations of 

learning patterns possibly related to SRL-relevant strategies depending on the specific subtopic 

of the study. Specifically, the performance phase of Zimmerman’s cyclical model could be 

augmented to reflect that students might execute the metacognitive strategies differently across 

subtopics, and that doing so is beneficial for learning when variations in strategy are congruent 

with heterogeneous task demands. Similarly, in the operation phase of Winne and Hadwin’s 

model, where students employ learning strategies, we propose an enhanced emphasis on the role 

of subtopic heterogeneity. This involves students not just deploying a generic set of strategies 

across all tasks but adaptively selecting and modifying their strategies based on each subtopic's 

specific demands and nature. By doing so, students can better align their efforts with the unique 

requirements of different subtopics, thereby potentially enhancing their overall learning 

effectiveness. We investigated heterogeneity in learning patterns within an SRL context utilizing 

complementary data-driven and theory-informed methods, which also could provide 

opportunities to extend SRL theory by considering how the findings of open-ended, data-driven 
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methods indicate areas for expanding theory-driven methods (i.e., CA, in this case). Specifically, 

we demonstrated how using a data-driven method, specifically sequential pattern mining, helped 

us in potentially associating students’ frequent learning patterns to SRL-relevant strategies. This 

possible alignment, combined with linear regression, allowed us to uncover the potentially 

heterogeneous nature of learning patterns within an SRL context. Furthermore, these preliminary 

insights into heterogeneity prompted us to examine it by constructing CA measures which were 

designed to capture students’ use of metacognitive regulation. However, since this theory-driven 

approach can be adapted to measure other aspects of students’ learning strategies, our study also 

highlights how the theory-driven coherence analysis, in this case, can be further expanded to 

explore other manifestations of SRL, thereby extending SRL theory.  

Practical Implications  

Our findings suggest that it becomes crucial to consider the heterogeneous nature of 

learning patterns potentially associated with SRL-relevant strategies and outcomes when it 

comes to designing SRL-supportive learning environments, given that refinements to SRL 

theoretical models should result in corresponding changes to the ways that SRL skills that are 

taught to students (e.g., to set expectations for the outcome of applying a particular SRL skill in 

context). The variability in learning patterns across different subtopics in an SRL context (RQ1-

2), combined with the finding that the effectiveness of metacognitive strategies is not uniform 

across all subtopics (RQ3), collectively offers insights for developing personalized SRL 

supporting tools in computer-based learning environments.  

These insights direct us towards the development of SRL supporting tools that are not 

merely adaptive to students, but also to specific content they are engaging with. Such tools 

would benefit from incorporating more tailored approaches that can do more than track and 
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encourage frequent SRL-relevant strategies; they would also analyze the effectiveness of these 

strategies in relation to the learner’s performance in the current context. By doing so, SRL 

supporting tools can guide learners away from over-relying on strategies that are less effective 

for a given subtopic and steer them towards alternative approaches that are better suited to the 

demands of the subtopics. Furthermore, the potential of data-driven AI systems to develop such 

personalized SRL supporting tools is significant. By data-driven AI systems, we refer to artificial 

intelligent systems that leverage data-driven algorithms or advanced computational techniques 

such as machine learning, explainable AI methods, or predictive analytics. Specifically, by 

leveraging insights into the variability of learning patterns effectiveness across subtopics and 

individual differences in an SRL context, AI systems can use machine learning algorithms to 

predict or identify the most effective SRL-relevant strategies for a given subtopic, and 

subsequently provide personalized recommendations. For instance, adopting a personalized and 

context-sensitive approach would enable the SRL supporting systems to recommend more 

effective strategies for calculation-related subtopics, where attempting repeated quizzes may be 

effective in computer-based learning environments. However, it still necessitates further 

investigation into the heterogeneous characteristics of SRL and its effectiveness on learning in 

future research.  

Methodological Implications  

In addition to the theoretical and practical contributions, our work introduces a 

complementary methodological approach that integrates cSPADE and mixed-effects regression 

modeling. This method enhances the utility of cSPADE’s sequential pattern outputs by enabling 

statistically robust explorations of temporal patterns in SRL. Although SRL measurement is a 

complex and evolving field (Fan et al., 2022; Hilpert et al., 2023), as our understanding deepens 
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and our analytical tools improve, we anticipate the emergence of new measurement approaches 

that offer even richer insights into SRL. This study is a step in that direction, demonstrating the 

power of combining complementary analytical approaches in uncovering the complex dynamics 

of SRL. Our approach paves the way for future research and practical implementations that 

consider the multidimensional nature of heterogeneous subtopics and its association with 

students’ learning gain and prior knowledge in both theory and application.  

Limitations 

In this section, we discuss several limitations of our study. First, the online learning 

environment we developed might differ from some other online learning environments, such as 

semester-long computer-based courses where the duration of the learning period is longer and 

students typically have more diverse options for learning activities. Further research is needed to 

explore whether our findings regarding heterogeneity in learning patterns within an SRL context 

can be generalized to other online learning environments, such as massive open online courses. 

Second, we highlight the challenge of measuring SRL using trace data in online learning 

environments. SRL is a multifaceted concept encompassing a variety of cognitive, 

metacognitive, emotional, and motivational aspects, which are sometimes internal to students 

and difficult to measure directly (Greene & Azevedo, 2010; Winne & Perry, 2000). 

Consequently, no single measurement method or construct can capture all dimensions of SRL, 

necessitating the use of more diverse methods for its measurement and conceptualization. Our 

study focuses on investigating students’ engagement in learning patterns within an SRL context 

in terms of the sequences of actions they engage in during learning. Although our method of 

investigating SRL-relevant strategies is not capable of capturing all aspects related to SRL, we 

argue that students’ choices regarding the order of engaging in learning activities, as 



 51 

demonstrated by sequences of actions, can still provide insights into their potential use of SRL-

relevant strategies.  

Lastly, we acknowledge that there are limitations when potentially associating each 

learning sequence with corresponding SRL-relevant strategies. Each learning sequence (e.g., 

Quiz → Quiz) identified using sequential pattern mining might imply more than one possible 

SRL-relevant strategy than we associated in the study. For instance, a frequent learning pattern, 

Quiz → Quiz, which we categorize as a potential SRL-relevant strategy of rehearsing and 

memorizing, might also imply other SRL-relevant strategies, such as those related to self-

evaluation. Altogether, despite the limitations we discussed, we argue that our study contributes 

to the discovery of the heterogeneous nature of learning patterns within an SRL context in 

computer-based learning environments.  

Conclusion  

SRL skills are invaluable in online educational environments, yet much remains to be 

discovered regarding what drives differences in what SRL skills are most relevant and helpful in 

which context. This paper contributes to enriching our understanding of the heterogeneous nature 

of learning patterns in an SRL context via complementary data-driven and theory-informed 

methods, revealing areas where SRL theories could be enhanced by data-driven insights, while 

also demonstrating the potential for integrating theoretical insights into data-driven AI systems 

for teaching SRL skills via a prototype SRL training intervention. Lastly, our findings suggest 

that understanding learning patterns across different subtopics can inform the design of 

interventions tailored to the specific characteristics of each subtopic, thereby enhancing learning 

outcomes.   
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Appendix 

Table 1  

Distribution of Students by Race and Ethnicity  

Race/ethnicity 
category 

Local (n=112) Prolific (n=98) Responses 

White 63 (56.3%) 54 (55.1%) White, Caucasian, European/Middle East and North 
Africa White/Hispanic, White/Mexican 

Asian 28 (25%) 16 (16.3%) Asian, Asian American, Asian/White, Chinese 
American, Indian, Chinese, East Asian, Filipino, 
Korean American, South Asian, Middle Eastern, 
South Asian 

Black 9 (8.04%) 12 (12.2%) Black, African American, Black – Caribbean 
American, Black American 

Latinx/Hispanic 9 (8.04%) 11 (11.2%) Chicano, Hispanic, Latina(o), Mexican, Mexican 
American 

Others 3 (2.62%) 5 (5.2%) Prefer not to answer, Guyanese American, Pacific 
Islander, Native American, Black and Mexican 

 

Table 2 

Distribution of Students by Gender  

Gender 
category 

Local (n=112) Prolific (n=98) Responses 

Female 83 (74.1%)  44 (44.9%) Female, Woman, Cisgender Woman  
Male 26 (23.2%) 44 (44.9%) Male, Man, Cisgender Male 
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Additional 
(grouped for 
anonymity)   

3 (2.7%) 10 (10.2%)  Non-binary (Non binary, they), Transgender 
(Transgender man, Transman, Transmasculine), 
Queer (Genderqueer), Prefer not to answer 

 

Table 3 

Distribution of Students by English as a First Language 

English as a first language category Local (n=112) Prolific (n=98) 
English is the only first language 84 (75.0%)  77 (78.6%) 
English is among the multiple first languages  17 (15.2%) 14 (14.3%) 
English is not my first language; I Prefer not to answer 11 (9.8%) 7 (7.1%)  
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Table 4 

Distribution of Students by Age 

Age category Local (n=112) Prolific (n=98) 
18-20 84 (75%) 23 (23.5%) 
21-25 24 (21.4%) 42 (42.9%) 
26-30 2 (1.79%) 13 (13.4%) 
31-35 1 (0.905%)  10 (10.1%)  
Over 35 1 (0.905%)  10 (10.1%)  

 
Table 5 

Distribution of Students by Class Standing 

Class standing category Local (n=112) Prolific (n=98) 
Freshmen 8 (7.14%) 6 (6.12%) 
Sophomore 54 (48.2%) 15 (15.3%) 
Junior 34 (9.8%)  40 (40.8%)  
Senior 9 (8.04%)  30 (30.6%)  
Graduate or Professional 6 (5.35%)  2 (2.06%)  
Prefer not to answer 1 (0.86 %) 5 (5.12%) 
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Table 6  

Full questions for test A and test B and the corresponding correct response rate for each 

question. 

Test A Test A  
correct 
response 
rate 

Test B Test B 
correct 
response 
rate 

Identify each of the following variables. 
 
a. The time it takes to run a marathon 
b. The choice of diet (vegetarian or non-
vegetarian)  

o a: quantitative and discrete & b: 
categorical and nominal 

o a: quantitative and discrete & b: 
categorical and ordinal 

o a: quantitative and continuous & b: 
categorical and nominal 

o a: quantitative and continuous & b: 
categorical and ordinal 

48.8% Identify each of the following variables. 
 
a. Number of pets in family 
b. Choice of auto to buy (domestic or 
import) 

o a: quantitative and discrete & b: 
categorical and nominal 

o a: quantitative and discrete & b: 
categorical and ordinal 

o a: quantitative and continuous 
& b: categorical and nominal 

o a: quantitative and continuous 
& b: categorical and ordinal 

54.1% 

Describe the association found in the graph 
below. 

 
o Positive linear association 
o Positive nonlinear association 
o Negative linear association 
o Negative nonlinear association 

65.7% Describe the association found in the 
graph below. 

 
o Positive linear association 
o Negative linear association 
o Negative nonlinear association 
o Neither positive nor negative 

linear association 

60.4% 

Which of the following variables will most 
likely to follow a normal curve? 

o The distribution of time to complete 
the course for all of the competitors 
in the Boston Marathon 

o The distribution of difference 
between the weight today and the 
weight tomorrow of the cows at a 
large dairy farm 

o The distribution of age of death from 
heart disease 

o The distribution of individual 
incomes in the U.S. 

27.5% Which of the following variables is most 
likely to follow a normal curve? 
 

o The distribution of height of 
female college students 

o The distribution of age of death 
from cancer 

o The distribution of scores on a 
difficult exam 

o The distribution of the 
household income in the U.S. 

46.9% 

The histogram below displays the number of 
CDs owned from a sample of STAT 100 

58.5% Describe the shapes of the following 
histograms. 

42.0% 
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students. What shape is displayed on this 
histogram? 

 
o Symmetric 
o Skewed to the right 
o Skewed to the left 
o No clear trend 

 
o A: skewed to the left & B: 

symmetric and unimodal 
o A: skewed to the right & B: 

symmetric and bimodal 
o A: skewed to the left & B: 

symmetric and bimodal 
o A: skewed to the right & B: 

symmetric and unimodal 

Choose which type of statistics describes the 
following.  
 
A prediction has been made that 5% of school 
students will participate in the oratorical 
contest. 

o Descriptive 
o Inferential 
o Survey 
o Percentage 

88.4% Choose which type of statistics describes 
the following.  
 
Previous survey found that 85% of 
college students do not have a car by 
displaying numerical summaries. 

o Descriptive 
o Inferential 
o Both descriptive and inferential 
o Percentage 

48.8% 

Which of the following is true about 
independent variables? 

o An independent variable is 
sometimes called the response 
variable 

o An independent variable is 
sometimes called the explanatory 
variable 

o An independent variable can be 
found along the y-axis 

o An independent variable is usually 
the outcome of the study 

50.2% Which of the following is true about 
dependent variable? 

o Dependent variable is 
sometimes called the response 
variable 

o Dependent variable is 
sometimes called the 
explanatory variable 

o Dependent variable can be 
found along the x-axis 

o Dependent variable is used to 
explain other variables 

70.5% 

Which data point from the following ordered 
values could be considered as an outlier? 
 
                   0.1, 0.4, 1.5, 2.6, 13 

o 0.1 
o 0.4 
o 1.5 
o 2.6 
o 13 

89.4% Given the following data set, calculate 
the mean of the data set without the 
outlier. 

3, 4, 15, 2, 5, 1 
o 3 
o 5 
o 2 
o 15 

86.0% 

Which of the following is the range of 
possible values that a correlation can assume? 

o 0 to 1 
o -1 to 0 
o -1 to 1 
o 0 and above 

74.9% Which of the following is true about 
correlation?  

o The value of the correlation 
depends on the variables' units 

o The correlation value can be 
greater than 1 

o The correlation coefficient 
shows both the direction and the 

78.7% 
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strength of relationship between 
variables 

o Two variables do not have the 
same correlation no matter 
which is treated as the response 
variable and which is treated as 
the explanatory variable  

Generally, if mean is less than the median, the 
distribution is: 

o Skewed to the right 
o Skewed to the left 
o Symmetric 
o No distribution 

52.7% Generally, if mean is greater than the 
mode, the distribution is: 

o Skewed to the right 
o Skewed to the left 
o Symmetric 
o No distribution 

41.1% 

If the standard deviation of a dataset is 4, 
what is the variance? 

o 2 
o 4 
o 8 
o 16 

74.9% If the variance of a data set is 16, what is 
the standard deviation? 

o 4 
o 8 
o 16 
o 256 

63.3% 

A low standard deviation implies that data 
points are:  

o Clustered around the outlier 
o Distant from the outlier 
o Distant from the mean 
o Clustered around the mean 

72.0% A high standard deviation implies that 
data points are: 

o Clustered around the outlier 
o Distant from the outlier 
o Distant from the mean 
o Clustered around the mean 

59.4% 

Which of the following surveys would have 
the biggest margin of error? 

o A sample size of n = 10 
o A sample size of n = 100 
o A sample size of n = 10,000 
o A sample size of n = 100,000 

70.0% Suppose a margin of error for a poll is 
4%. What is the correct interpretation of 
the margin of error for this poll? In about 
95% of all samples of this size, the 
_________. 

o Difference between the sample 
percent and the population 
percent will be within 4% 

o Probability that the sample 
percent does not equal the 
population percent is 4% 

o Probability that the sample 
percent does equal the 
population percent is 4% 

o Difference between the sample 
percent and the population 
percent will exceed 4% 

68.6% 

Note. Each question in test A and test B is displayed in an order that aligns with the testing of 

similar statistical concepts. The correct response rate refers to the percentage of students 

answering each question correctly. Some of the images were adapted from Statistics: The Art and 
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Science of Learning from Data, 3rd edition by Alan Agresti and Christine Franklin (Pearson 

Education, 2013).  

 

Table 7  

Regression Table for RQ1 Model  

Dependent 
variable 

Independent  
variables 

Sequence  Terminology Graph Calculation Amalgamation 
Read → Quiz   

 
Reference 
variable 

 

-.397*** -.492*** -.405*** 
Quiz → Read  .032 -.056 -.071 
Quiz → Quiz  .120 -.167* -.267*** 
Quiz → Examples  -.061 -.147 -.037 
Read → Examples  -.117 .026 -.052 
Quiz → Summary  -.290*** -.489*** -.360*** 
Read → Quiz  .400***  

 
Reference 
variable 

 

-.095 -.008 
Quiz → Read  -.032 -.087 -.103 
Quiz → Quiz  -.120 -.287*** -.387*** 
Quiz → Examples  .061 -.086 .024 
Read → Examples  .117 .143 .065 
Quiz → Summary  .290*** -.200* -.069 
Read → Quiz  .492*** .095  

 
Reference 
variable 

 

.087 
Quiz → Read  .056 .087 -.016 
Quiz → Quiz  .167* .287*** -.100 
Quiz → Examples  .147 .086 .110 
Read → Examples  -.143 -.026 -.078 
Quiz → Summary  .489*** .199* .130 
Read → Quiz  .405*** .008 -.087  

 
Reference 
variable 

 

Quiz → Read  .071 .103 .016 
Quiz → Quiz  .267*** .387*** .100 
Quiz → Examples  .037 -.024 -.110 
Read → Examples  .052 -.065 .078 
Quiz → Summary  .360*** .069 -.120 

Note. The term “Reference variable” implies that an independent variable was used as the 

reference category within the model. Therefore, in interpreting the model, the outcomes for other 

independent variables are evaluated in comparison to this reference variable. The levels of 

significance are denoted as follows: * p < .05, ** p < .01, *** p < .001.  
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Table 8  

Regression Table for RQ2 Model  

Dependent 
variable 

Independent 
variables 
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Read → 
Quiz  

 
R
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-.408*** -.538*** -.412*** .038 .027  .046 .018 .020  .085 .071 -.078 
 

Quiz → 
Read  

.069 .027 -.043 -.079 -.023  -.021 -.147 -.002  .114 -.102 .090 

Quiz → 
Quiz  

.134 -.148 -.274** -.028 .061  .118 -.234* -.009  .276* -.007 .092 

Quiz → 
Examples  

-.137 -.180 -.117 .150 .211**  -.160 -.289* -.190  -.134 -.296* -.114 

Read → 
Examples  

-.073 .058 .000 -.085 -.095  .160 .174 .057  .189 .108 .018 

Quiz → 
Summary  

-.299*** -.512*** -.358*** .015*** .053***  -.043 -.034 -.017  .007 .036 -.064 

Read → 
Quiz  

.408*** 

 
R

ef
er

en
ce

 v
ar

ia
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-.130 -.004 .123 .073 -.046  -.028 -.026 -.084  -.014 -.163 

Quiz → 
Read  

-.069 -.042 -.112 .035 -.043 .021  -.127 .018 -.114  -.215 -.023 

Quiz → 
Quiz  

-.134** -.281*** -.408*** .248 .179* -.118  -.352*** -.127 -.276*  -.283** -.184 

Quiz → 
Examples  

.137 -.044 .020 .016 .051 .160  -.128 -.029 .134  -.162 .020 

Read → 
Examples  

.073 .131 .074 .104 .064 -.160  .014 -.103 -.189  -.082 -.171 

Quiz → 
Summary  

.299*** -.213* -.059 .021 .010 .043  .009 .027 -.007  .029 -.070 

Read → 
Quiz  

.299*** .130 

 
R

ef
er

en
ce

 v
ar

ia
bl
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.126 .109 .044 -.018 .028  .003 -.071 .014  -.149 

Quiz → 
Read  

-.027 .042 -.070 -.181* -.170 .147 .127  .145 .102 .215  .192 

Quiz → 
Quiz  

.148 .281*** -.126 -.035 -.173* .234* .352***  .225* .007 .283**  .099 

Quiz → 
Examples  

.180 .044 .064 -.146 -.077 .289* .128  .100 .296* .162  .182 

Read → 
Examples  

-.058 -.131 -.057 .022 .079 -.174 -.014  -.117 -.108 .082  -.089 
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Quiz → 
Summary  

.512*** .213* .154 .051 .019 .034 -.009  .018 -.036 -.029  -.100 

Read → 
Quiz  

.413*** .004 -.126 

 
R
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en
ce

 v
ar

ia
bl

e 

-.040 .047 -.020 .026 -.003  .078 .163 .149  

Quiz → 
Read  

.043 .112 .070 .011 -.025 .002 -.018 -.145  -.090 .023 -.192  

Quiz → 
Quiz  

.274** .408*** .126 .064 .052 .009 .127 -.225*  -.092 .184 -.099  

Quiz → 
Examples  

.117 -.020 -.064 .036 .022 .189 .029 -.100  .114 -.020 -.182  

Read → 
Examples  

.000 -.074 .057 -.067 -.038 -.057 .103 .117  -.018 .171 .089  

Quiz → 
Summary  

.358*** .059 -.154 -.049 .037 .017 -.027 -.018  .064 .070 .100  

Note. The term “Reference variable” implies that an independent variable was used as the reference category within the model. 

Therefore, in interpreting the model, the outcomes for other independent variables are evaluated in comparison to this reference 

variable. The levels of significance are denoted as follows: * p < .05, ** p < .01, *** p < .001.   
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Table 9  

Regression Table for RQ3 Model  

Dependent 
variable 

Independent 
Variables 
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Learning 
gain 

 

Reference 
variable 

 

6.971* 3.657 2.567 -.978 1.818  -.153 -.438 .718  4.854 -6.212* -.900 
 

-6.971* Reference 
variable 

 

-3.314 -4.405 -1.131 6.672 .153  -.285 .872 -4.854  -11.066* -5.755 

-3.657 3.314 Reference 
variable 

 

-1.091 -1.416 -4.393* .438 .285  1.157 6.212* 11.066*  5.311 

-2.567 4.405 1.091 Reference 
variable 

 

-.259 .918 -.718 -.0872 -1.157  .900 5.755 -5.311  

Note. The term “Reference variable” implies that an independent variable was used as the reference category within the model. 

Therefore, in interpreting the model, the outcomes for other independent variables are evaluated in comparison to this reference 

variable. The levels of significance are denoted as follows: * p < .05, ** p < .01, *** p < .001.   
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