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ABSTRACT
Students struggle with accurately assessing their own performance,
especially given little training to do so. We propose an AI-powered
training tool to help students improve “metacognitive calibration,”
or the ability to accurately predict their own learning, potentially en-
hancing learning outcomes by enabling students’ use ofmetacognition-
informed learning behaviors. We present results from a randomized
controlled trial (N = 133) assessing the effectiveness of the tool
in a college-level computer-based learning environment. The AI-
driven tool significantly improved learning gains compared to the
control group by 8.9% (t = -2.384, p = .019), and this effect was
significantly mediated by learning behaviors. Overconfident stu-
dents who received the intervention showed significantly greater
metacognitive calibration improvement than the control group by
4.1% (t = 2.001, p = .049). These insights highlight the value of AI-
powered metacognitive calibration training and the importance of
promoting specific metacognition-informed learning behaviors in
computer-based learning.
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1 INTRODUCTION
Metacognition, commonly referred to as thinking about one’s think-
ing, is a high-order thinking skill that includes crucial cognitive
activities such as planning, monitoring, reflecting, and evaluat-
ing one’s learning strategies and knowledge [27, 35, 54]. Among
the various metacognitive skills, metacognitive calibration—which
refers to the accuracy of students’ evaluation of their own knowl-
edge or learning—is particularly crucial [3, 70, 99]. Metacognitive
calibration enables students to allocate their time and effort more ef-
fectively because students can accurately judge howwell they know
a topic, allowing students to focus on learning challenging material
while spending less time on topics they have already mastered [20].
Such strategic allocation of time and study resources likely con-
tributes to the positive correlation observed between metacognitive
calibration and learning outcomes [47, 53, 98]. However, students
sometimes struggle to make accurate evaluations of their perfor-
mance [8, 17]. When students make inaccurate judgments of their
knowledge, it can lead to ineffective learning strategies and hinder
academic progress and outcomes [49]. Students’ challenges in accu-
rately assessing their understanding are particularly pronounced in
online learning environments, where limited external feedback may
exacerbate the problem [11, 21]. For instance, students in computer-
based learning environments may miss out on contextual cues and
real-time interactions with instructors and peers, which could be
crucial for evaluating their comprehension.

Although it is common for students to struggle to accurately
assess their own knowledge, this metacognitive miscalibration is
typically not an inadequacy on the part of students but rather a con-
sequence of inadequate support and practice. With proper guidance
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and assistance, students can enhance their metacognitive calibra-
tion abilities [1, 92]. Therefore, numerous interventions have been
developed to support metacognitive calibration in both traditional
and computer-based learning environments [8, 36, 40, 58, 63, 92].
In these metacognitive calibration interventions, a common ap-
proach employed is to provide feedback to students after their
assessments. This feedback focuses on the discrepancy between
how students perceive their performance and their actual results,
intending to make students more aware of any inaccuracies in their
self-evaluations [36, 40]. While such interventions can improve
students’ metacognitive calibration, these interventions are lim-
ited by the fact that feedback is only provided after the learning
process, once students’ performance scores are available. Feedback
provided only after assessments may miss crucial opportunities to
correct students’ miscalibration and influence students’ learning
strategies and behaviors earlier, before it is too late to adapt for the
assessment in question.

This limitation in the timing of interventions raises the central
questions of our paper: What if we train students’ metacognitive
calibration during the learning process, rather than after? Could
this earlier intervention lead to improved learning outcomes? If
so, what underlying mechanisms would explain these improve-
ments? For example, could these improvements be partly attribut-
able to behavioral changes, as we propose? Or perhaps unobserved
cognitive factors, such as increased attention to specific parts of
a lecture based on improved calibration? Answering these ques-
tions is crucial for human–computer interaction (HCI) researchers
and practitioners. Investigating whether early, real-time AI-driven
metacognitive support enhances learning outcomes or calibration
accuracy could provide valuable insights into the effectiveness
of early interventions in supporting metacognitive skills and im-
proving overall student learning. Additionally, if early intervention
improves learning outcomes, understanding the causal mechanisms
behind these effects could inform the design of learning software
to target specific factors (e.g., learning behaviors relevant to self-
regulated learning) that enhance student learning outcomes. By
prioritizing these factors in the development of learning interfaces,
researchers can develop proactive learning systems that provide
timely and effective support, ultimately improving both student
metacognitive calibration and learning outcomes.

In HCI research, various approaches have been proposed to mea-
sure and support facets of student cognitive behaviors [9, 13, 79, 96].
For instance, Cabales [13] developed Muse, a chatbot designed to
foster student metacognitive reflection, and Wang et al. [96] intro-
duced MindDot, a concept map-based learning system aimed at
promoting the use of comparative strategies. Although these tools
have proven effective in enhancing student metacognition, there
remains a lack of empirical studies on developing tools specifically
tailored to support metacognitive calibration. Since metacognition
and self-regulated learning are difficult to observe and measure
directly [5, 101], studies often miss the opportunities to closely
observe behavioral changes resulting from interventions, making
it difficult to understand the mechanisms linking the intervention
to learning outcomes. Therefore, tools designed to support stu-
dent metacognitive calibration typically operate on the theoretical
premise that improving calibration will lead to better academic
outcomes, but with few empirical specifics to inform the design of

educational software. This challenge is evident in specific domains,
such as computing education. As Prather et al. [74] highlighted,
although researchers are interested in measuring and supporting
student metacognition and self-regulated learning in programming
[15, 55, 89], there is a lack of research grounding the measurements
of self-regulated learning and metacognition in established litera-
ture, which limits the availability of empirical evidence necessary
to develop effective learning software.

Motivated by these limitations, we develop a novel artificial intel-
ligence (AI)-driven metacognitive calibration training tool that pro-
vides early, real-time feedback using the machine learning model-
predicted end-of-learning performance scores to correct students’
potential early miscalibration. We conducted a randomized con-
trolled trial (N = 133) to examine whether the early AI-driven
intervention leads to enhanced learning outcomes and metacogni-
tive calibration improvement, including across various potential
moderating factors such as race/ethnicity and gender. We mea-
sure metacognitive calibration based on students’ performance
estimations (i.e., predicted test grades), as this provides a direct and
widely used approach in education to assess calibration relative
to actual scores [32, 69]. While other facets, such as confidence
and peer-relative placement [57], may capture additional aspects
of calibration, our focus on performance estimations allows us to
assess calibration based on the alignment between students’ es-
timated test outcomes and objectively measured results, offering
quantifiable measure that supports the study’s objective. Further,
we examined student learning behaviors to determine whether the
intervention leads to different learning strategies, which in turn can
explain the enhanced learning outcome, if observed. We present
mediation analysis results that uncover the mechanisms underlying
the effectiveness of AI-driven interventions on student learning
outcomes, using two mediators that capture different categories of
learning behavior.

The following are the research questions we aim to answer:
• RQ1.Do studentswho receive anAI-poweredmetacognition-
supporting intervention improve their metacognitive cali-
bration more than their peers who do not receive the in-
tervention?
Hypothesis: We anticipate that students receiving the interven-
tion will improvemetacognitive calibrationmore than the control
group, consistent with previous studies [80, 92], as the real-time,
AI-predicted post-learning test score will help correct miscalibra-
tion. However, we expect improvements to vary across subgroups
based on confidence levels, gender, and race. We expect that both
overconfident and underconfident students will show similar
improvements, as the intervention will help both groups adjust
their overestimation or underestimation of their knowledge by
identifying gaps. However, we expect male students to show
greater improvement than females, based on prior studies [37],
and similar improvements among racial groups, as research has
shown mixed results [61].

• RQ2. Do students receiving an AI-powered metacognition-
supporting intervention demonstrate better learning out-
comes than the control group?
Hypothesis: We hypothesize that students receiving the AI-
powered intervention will achieve greater learning gains than
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those in the control group. The intervention is expected to correct
miscalibration, allowing students to adjust their learning strate-
gies and behaviors, ultimately leading to improved academic
performance.

• RQ3. Do students’ learning behaviors mediate the impact
of an AI-powered metacognitive calibration support tool
on learning gains?
Hypothesis: We hypothesize that students’ learning behaviors
(i.e., what types of studying activities they choose and in what
order) will mediate the effect of the intervention on learning
gains. Specifically, we expect the intervention to lead to behav-
iors informed by improved metacognitive calibration, which will
subsequently result in improved learning outcomes. By enabling
students to actively manage and adjust their learning strategies,
the intervention is expected to indirectly enhance learning gains
through changes in learning behaviors.

We anticipate that our work will contribute the following:

(1) We developed an AI-driven intervention that provides early,
real-time metacognitive calibration support by using AI-
predicted students’ end-of-learning scores, aiming to correct
any early miscalibration students might have.

(2) Our study is the first to investigate the mechanisms of how
and why an early AI-powered metacognitive support tool en-
hances student learning gains, specifically by using student
learning behaviors as mediators.

(3) We advocate for a shift toward early interventions that take
into account the nuances of student confidence levels, whether
they are more prone to overconfidence or underconfidence,
while encouraging engagement in targeted learning behav-
iors.

2 RELATEDWORK
2.1 Metacognitive Calibration and

Self-regulated Learning in Computer-based
Learning Environments

Metacognition involves understanding and regulating one’s cog-
nitive processes, allowing students to continuously evaluate their
knowledge and select effective learning strategies for different tasks
accordingly [19, 27, 35]. Given the complex nature of metacognition,
various theoretical models have been proposed to conceptualize and
formalize different facets of metacognition, each offering a different
perspective [12, 30, 35, 72, 81]. For instance, Efklides [30] highlights
three key components of metacognition: metacognitive knowledge,
experience, and skills. In Efklides’s model, metacognitive knowl-
edge refers to an individual’s understanding of personal, task, and
strategy-related factors, including self-awareness. Metacognitive ex-
periences, on the other hand, manifest through real-time judgments,
estimates, feelings, and task-specific knowledge [29]. Therefore,
when students estimate their own understanding or performance
(i.e., metacognitive judgments), they are engaging in metacogni-
tive experiences. Moreover, this metacognitive judgment measured
based on test performance can be further distinguished by their
grain size [42]. For instance, global judgments relate to overall test

performance (at the test level), while local judgments focus on each
individual question or item within the test.

Metacognitive skills involve the deliberate application of strate-
gies to regulate cognitive processes. These skills include a variety of
strategies, such as planning, monitoring, regulating cognitive activ-
ities, and evaluating the outcomes of task execution. Metacognitive
calibration refers to the degree to which students’ self-assessment
of their understanding aligns with external measures, such as per-
formance scores [87]. When students are well-calibrated, their self-
assessments closely match their actual performance, allowing them
to make informed decisions about study strategies and areas need-
ing improvement. While the exact categorization of metacognitive
calibration within the scope of metacognition, and consequently
its measurement, has not yet reached consensus [2], researchers
agree that calibration is a key skill of metacognitive monitoring
[95], which refers to an individual’s awareness of their cognitive
processes, such as comprehension or task performance [106].

Metacognitive calibration has commonly been measured by cal-
culating the difference between a student’s perceived and actual
performance on an assessment [32, 69]. Such measurement has
enabled the identification of notable differences in metacognitive
calibration between low- and high-achieving students [68]. While
low-achievers are more prone to overconfidence—an issue related to
but distinct from overestimation—high-achieving students typically
demonstrate better calibration [41, 50]. However, high-achieving
students may sometimes show underconfidence [38]. Underconfi-
dent students may waste effort over-studying material they already
understand, while overconfident students risk neglecting areas that
need more attention, potentially leading to poorer outcomes. This
contrast between overconfidence in low-achievers and underconfi-
dence in high-achievers emphasizes the complexity of supporting
metacognitive calibration, highlighting the need for tailored inter-
ventions to effectively address these distinct challenges.

Moreover, positive associations are further demonstrated be-
tweenmetacognition and academic performance, as well as between
metacognition and learning strategies [1, 43, 73, 97]. Sun et al. [88]
identified positive relationships between students’ metacognitive
experience and academic performance for English as a foreign
language students. Particularly in relation to metacognitive calibra-
tion, Zhou [108] found a positive association between university
students’ metacognitive calibration and their online information
search performance scores. Zhao and Ye [106] explored the effect
of metacognitive calibration accuracy in computer-based learning
environments, and they found that learners with better calibration
performed better on both exams and assignments. The significance
of metacognition is also well-established in self-regulated learning
(SRL) research, where metacognitive strategies (e.g., goal setting,
self-reflection, and self-evaluation) are a central component of many
SRL models [31, 66, 71, 100, 109, 110].

While it is known that both metacognitive calibration and the
use of SRL strategies are associated with improved academic perfor-
mance [44, 45, 103], the specific mechanisms through which these
elements interact and lead to enhanced learning outcomes remain
unclear. Although students with strong SRL skills achieve better
learning outcomes [25, 94], it is still unknown whether the effective-
ness of interventions aimed at improving metacognitive calibration
directly translates into more effective use of SRL strategies and,
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consequently, better academic performance. Understanding the un-
derlying mechanisms, particularly the role of behavioral changes, is
crucial for developing interventions that not only enhance students’
calibration but also foster more meaningful engagement with SRL
strategies. Our study seeks to fill this gap by investigating whether
early interventions targeting metacognitive calibration influence
students’ engagement with SRL strategies and, if so, how these
changes contribute to improved learning outcomes.

2.2 Metacognitive Calibration Supporting Tools
Given that students often struggle to accurately assess their own
performance, numerous tools have been developed to enhance stu-
dents’ metacognitive calibration skills [8, 36, 92]. Studies employed
numerous approaches to developing these tools. One common ap-
proach is presenting student-facing dashboards, which often pro-
vide students with performance information [36, 40, 65, 80, 92],
usually after the assessments. For instance, Foster et al. [36] ob-
served that students’ calibration accuracy did not improve after
receiving feedback on their perceived and actual test results. Saenz
et al. [80] conducted a study comparing the effectiveness of five
different interventions to improve students’ calibration skills. These
five approaches included: 1) salient feedback, which provided clear
information on both performance and prediction accuracy, 2) a
review session where students revisited test questions and their
performance grade predictions, 3) an incentive-based approach
where students had the opportunity to earn $50 for accurate pre-
dictions, 4) a motivational lecture focused on the importance of
personal motivations and the role of academic information in mak-
ing accurate predictions, and 5) reflective practices that required
students to reflect on their predictions over an extended period
without receiving any feedback. The results revealed that only the
motivational lecture and salient feedback enhanced students’ pre-
diction accuracy. On the other hand, Callender et al. [14] found that
both incentives and feedback had a positive impact on improving
student metacognitive calibration, while Miller [56] discovered that
feedback did not lead to a significant improvement in calibration
performance, except for lower-performing students.

Urban and Urban [92] found that combining SRL training, peer
evaluation, and calibration feedback led to improvements in stu-
dents’ calibration abilities. However, Emory and Luo [32] found
no difference between the control and intervention group who
received metacognitive monitoring interventions in terms of the
relative and absolute metacognitive calibration accuracy of com-
munity college students in computer-based learning environments.
This result highlights the need for more focused research on the
effectiveness of calibration training tools in online settings, partic-
ularly for diverse student populations such as those in community
colleges. In sum, while some approaches, such as salient feedback
and motivational lectures, show promise, inconsistent results re-
garding the effectiveness of these tools underscore that calibration
is difficult to change. These findings further highlight the need for
more targeted interventions designed to proactively teach calibra-
tion skills and explore the potential impact of providing feedback
before, rather than after, student assessments.

Although studies generally show that post-feedback metacog-
nitive support positively impacts student learning, many existing

tools, such as dashboards, have a significant limitation: these tools
often provide feedback (e.g., performance discrepancies) without
offering guidance on how to interpret and act upon that feedback.
Providing feedback alone approach leaves students to navigate the
information on their own, often failing to encourage deeper reflec-
tion or the examination of strategies that may have contributed to
their performance gaps. While these tools may indirectly improve
student metacognitive calibration, Dunlosky and Thiede [28] fur-
ther emphasizes the limitations of such tools, noting that simply
providing accurate performance feedback does not necessarily lead
to deeper cognitive processing or improvements in learning strate-
gies. Moreover, as students continue studying, their judgments of
their own performance are likely to change, highlighting the lim-
itation of these tools in failing to provide real-time interventions
that could offer timely support.

This need for early, real-time proactive intervention is especially
critical in computer-based learning environments, where students
are often required to exercise greater levels of metacognitive skills
and independence, placing considerable demands on their metacog-
nitive abilities [51]. As Tankelevitch et al. [90] argue, AI-driven
systems can impose high metacognitive demands on users. Such
challenges highlight the need for more targeted research into the
development of metacognitive calibration tools that can effectively
enhance metacognitive skills, especially within online learning con-
texts [4]. AI-driven approaches present a promising avenue for
addressing the limitations of current metacognitive support tools,
particularly by focusing on early-stage metacognitive calibration.

HCI research has explored supporting metacognition and self-
regulated learning across various domains [13, 26, 79, 96]. For
instance, Desai and Chin [26] developed Health Buddy, a voice
agent to support self-regulated learning, while Reza and Yoon [79]
developed the Computer-Assisted Shadowing Trainer, to support
self-regulation in foreign language listening practice. Moreover,
numerous studies have leveraged AI-driven approaches to sup-
port learners in online education. Recent work has particularly
explored the potential of AI, especially large language models, to
assist learners in various contexts, such as coding [16, 59, 104],
inspiring motivation [18], and teaching mathematical language
[105].

Despite the potential of AI, there have been relatively few studies
leveraging AI techniques to design tools specifically for supporting
student metacognitive calibration. By using machine learning to
predict students’ real-time performance based on their trace data—
which are the digital footprints students leave as they interact with
learning interfaces, including clicks, submission, or time spent on
tasks—AI-driven feedback can deliver more precise and timely feed-
back. This approach may addresses a key limitation of traditional
tools that rely on post-assessment feedback and miss out on captur-
ing the nuances of students’ interactions with the online learning
platforms. In our study, we developed an AI-driven intervention
that offers early, real-time metacognitive calibration support, pro-
viding immediate feedback to teach students to improve calibration
and enhance student learning outcomes.
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3 RESEARCH CONTEXT AND DATA
3.1 Self-guided Online Learning System
We developed a self-guided online learning system that allowed
students to study introductory statistics at their own pace. The
learning system had four distinct subtopics, each visually repre-
sented by icons shown in Figure 1. Each subtopic-specific module
contained four different learning activities: a reading, a quiz, a set
of worked examples, and a summary. Each learning activity was
designed with a specific learning objective and students had the
freedom to choose the order of the learning activities, regardless
of the subtopic, and to revisit activities as much as desired. The
readings, which consisted of four to six pages, provided comprehen-
sive information on the subject matter. The quizzes, consisting of
approximately 10 questions each, allowed students to assess their
understanding of the material. After completing a quiz, students
were informed whether their answers were correct or incorrect,
but correct answers for the incorrect responses were not revealed,
encouraging self-guided learning. The examples not only included
the correct answers but also walked students through the proper
methods to approach and solve the problems. The summaries of-
fered a brief recap of each module’s key concepts, enabling students
to quickly review the material for each subtopic. While students
were not required to complete all the subtopics during the learning
session, the system allowed them to revisit and repeat any activity
as desired.

Participants began the study by completing a demographics
survey and taking a pretest regarding the introductory statistics
content which was covered in the learning session. The pretest
was designed to assess students’ prior knowledge of the material,
and after completing the pretest, they were asked to estimate their
performance without seeing their actual scores. We used the stu-
dents’ estimated and actual pretest scores to evaluate their initial
metacognitive calibration, which is explained in detail in Section
4.2. Afterward, students engaged in a 60-minute self-paced learn-
ing session, with a timer that displayed the remaining time only
during active interaction with the software, helping to maintain
their focus. The study, lasting approximately 90 minutes, required
students to interact with the system to learn foundational concepts
in statistics. Participants took a posttest and were once again asked
to estimate their scores. Similarly, we used students’ estimated
and actual posttest scores to measure their posttest metacognitive
calibration.

3.2 Data Collection
The study included 134 college students recruited from the online
platform Prolific [67]. One participant was excluded for not com-
pleting the introductory survey, resulting in a final sample of 133
college students from North America. The study was approved by
institutional review board (IRB), and each student consented to
the data being collected. Data were collected in January 2024. Par-
ticipants reported demographics in open-ended text boxes, which
we provide to contextualize the research and enable comparisons
in future research (e.g., meta-analytic measurement of effect het-
erogeneity). For gender, 48.1% of participants identified as male,
46.6% as female, and 5.3% as non-binary. Regarding race, 33.8% of
participants identified asWhite, 25.6% as Black, 18.0% as multiracial,

12.8% as Asian, 9.0% as Hispanic/Latinx, and one additional group
not specified due to identifiability concerns with small group size.
Each student was compensated $20 USD on completion.

The students were randomly assigned to either the control (n =
53) or experiment (n = 80) conditions by employing unequal ran-
domization probabilities, which is a commonmethod in randomized
controlled study when there is a need to prioritize detailed analysis
of the intervention group [91]. Therefore, we intentionally assigned
more students to the intervention group to gather additional data
about the intervention (e.g., usability perceptions) that we intend
to analyze for future work on intervention improvements. Students
in the control condition completed the online learning session as
outlined above. Students in the experiment condition received in-
terventions along with AI-predicted posttest grade three times (at
15, 30, and 45 minutes) during the hour-long learning session. We
provide further elaboration on the AI-driven interventions students
received in the following section.

3.3 AI-driven Metacognitive Calibration
Intervention

For the experimental group, we designed an AI-powered interven-
tion to train students’ metacognitive calibration. The intervention
provided students with an AI-predicted posttest grade and guid-
ance on interpreting and using this prediction grade to improve
their metacognitive calibration. The interventions encouraged stu-
dents to reflect on their performance with prompts such as, “Take
a moment to reflect on our prediction. How does it compare to
the score you predicted for yourself?” These reflective prompts
encouraged students to consider potential misalignments between
their own estimations and the AI-predicted scores. Additionally,
students were encouraged to evaluate their knowledge and focus
on sections where they felt they were struggling. We leveraged
an AI model to automatically predict students’ potential learning
outcomes based on both performance and interaction data collected
during the learning session: 1) Performance data: This included a
pretest score and quiz scores for each of the four subtopics, which
served as effective indicators of students’ comprehension of content
for different topics during the learning session. 2) Interaction data:
These data comprised the time spent on each topic and the number
of times each topic was accessed, providing quantitative measures
of the time and effort a student spent on each topic in the learning
session.

To predict learning outcomes based on the student performance
and interaction data, we employed a random forest model with an
attention mechanism [93]. Training data were taken from a pre-
vious unrelated study in the same learning platform, which did
not have AI-powered interventions. We used the random forest
model [10] because of its effectiveness in handling tabular student
data and its computational efficiency, allowing it to produce real-
time predictions during interventions with minimal disruption to
students’ learning. The attention mechanism was included due to
its success in various AI applications through learning to assign
adaptive importance to different input features. This adaptability is
crucial since students may demonstrate different behaviors during
the learning process, leading to different factors contributing to
their final outcomes. For instance, one student may achieve high
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Figure 1: Screenshot of the main page menu of the self-guided online learning system

final grades by spending more time on challenging topics, while
another may do so by keeping an effective learning pace. The at-
tention mechanism captures these adaptive differences in feature
importance, allowing our AI model to predict learning outcomes
for each student more effectively.

The intervention presented studentswith theAI-predicted posttest
score, along with corresponding guidance, a visualization of stu-
dents’ performance and interaction data compared to the average
data of all students, and indications of how important each type of
interaction data was for prediction as measured by the attention
weights learned by our random forest model (example in Figure 2).
To represent these weights, we used variations in color darkness
in our input data graph: darker colors indicate higher importance
weights, while lighter colors denote lower weights. We also ran-
domly assigned students in the experiment condition to receive
slight variations on this intervention, one without attention weights
visualized by color darkness and one with no graph. However, the
core functionality of the intervention remained the same, includ-
ing the AI-predicted learning outcome. We grouped these three
experiment condition variations together for analysis, given that
they share the same purpose and core functionality, and plan to
explore potential differences in usability and user perceptions in
future work with larger samples that will afford statistical power
for comparisons between variations.

4 MEASURES
4.1 Student Learning Behaviors
To assess students’ learning behaviors, we used SRL-related learning
measures established in another study, where trace data from the
computer-based learning environment were analyzed [52]. Specif-
ically, SRL-related strategies were conceptualized as sequences
of learning activities—Read, Quiz, Example, and Summary—each
representing the student’s engagement in that learning activity.
Using constrained sequential pattern discovery [46, 64, 102, 107],
six frequent learning sequences were identified: Read→ Quiz, Quiz
→ Read, Quiz → Quiz, Quiz → Example, Read → Example, and
Quiz → Summary. For this study, we categorized the six frequent
learning patterns into two broader categories of learning patterns:
seeking knowledge and seeking assessment (Table 1). This grouping
was based on the similarity of the learning strategies that each
frequent learning strategy was associated with. Frequent learning
patterns such as Quiz→ Read, Quiz→ Example, Read→ Example,
and Quiz → Summary are categorized under the seeking knowl-
edge learning pattern category. For instance, the patterns Quiz
→ Read, Quiz → Example, and Quiz → Summary suggest that
after taking a quiz, students attempt to review reading material,
examples, or summaries. Such behaviors potentially indicate that
students identified knowledge gaps through the quiz and sought
additional information to fill those gaps or to further consolidate
their understanding. Detailed descriptions of how each frequent
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Figure 2: Screenshot of the experiment condition intervention with an attention-weighted visualization of interaction and
performance data alongside the AI-predicted posttest score. The attention weights are represented through variations in color
darkness, with darker colors indicating higher importance.

learning pattern fits into the categories of learning patterns are
provided in Table 1.

Seeking assessment reflects students’ use of learning strategies
where students evaluate their comprehension through assessments
(e.g., taking a quiz) to evaluate how much of the material students
have objectively understood. This category of learning patterns
includes frequent learning patterns like Read → Quiz and Quiz →
Quiz. These learning patterns, such as taking a quiz after reading
or completing multiple quizzes, suggest that students are actively
assessing their knowledge to identify areas needing improvement
[82]. Using the two categories of learning patterns, we counted the
frequency of corresponding learning patterns by analyzing students’
trace data. We transformed the trace data into a comprehensive
list of learning activities, capturing the entire sequence of actions

students engaged in during the learning session. We then used
this list to tally the occurrences of frequent learning patterns. To
measure the seeking knowledge strategy, we aggregated the counts
for Quiz→ Read, Quiz→ Example, Read→ Example, and Quiz→
Summary sequences. Read → Quiz and Quiz → Quiz sequences
were used to assess the seeking assessment strategy.

4.2 Metacognitive Calibration
We asked students to estimate their pretest and posttest scores
as percentages (i.e., “What do you think your grade will be on
the test you just took? (0%–100%)”) after taking their pretest and
posttest. These estimations were used to assess students’ initial
and final levels of metacognitive calibration by comparing students’
perceived pretest and posttest performance to actual scores.
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Table 1: Categories of student learning patterns and their corresponding frequent patterns are presented. The “Associated
Learning Strategies” column outlines the potential use of SRL-related strategies for each frequent pattern, as supported by the
literature. The “Description” column provides further detail on how each frequent learning pattern fits within the two broader
categories of learning patterns.

Categories of Frequent Associated learning Description
learning learning strategies
patterns patterns

Seeking Quiz→ • Keeping records Students identify gaps in their knowledge from a quiz
knowledge Read and monitoring [111] and respond by seeking additional information by

• Seeking information [111] reading, helping them fill those gaps and enhance
• Search [83] their understanding.

Quiz→ • Keeping records Seeking clarification by reviewing examples
Examples and monitoring [111] to understand how to approach or solve questions

• Seeking information [111] correctly, thereby enhancing or consolidating
• Help-seeking [23] understanding of the material.

Read→ • Seeking information [111] Seeking to further reinforce understanding from
Examples • Elaboration [83] reading material to see how the material is applied

in practice by going through worked-out examples.

Quiz→ • Keeping records After taking the quiz, students seek to clarify or
Summary and monitoring [111] reinforce students’ understanding by reviewing

• Seeking information [111] summarized concepts. This helps address any gaps or
• Search [83] consolidate students’ knowledge, leading to a more

cohesive grasp of the material.

Seeking Read→ • Seeking evaluation [111] When students read material and take quiz, they
assessment Quiz are assessing their understanding, enabling students

to evaluate their performance.

Quiz→ • Rehearsing and Active efforts to engage in self-assessment help
Quiz memorizing [111] students evaluate and reassess their understanding.

• Repeating [83] Students continuously test their knowledge to
monitor learning progress and identify areas needing
improvement.

• Initial Metacognitive calibration (Initial-MC): We calcu-
lated initial-MC by subtracting the actual pretest scores from
the estimated scores, using this difference as a metric for ini-
tial calibration. Initial-MC allows us to assess the degree of
students’ metacognitive calibration (i.e., how accurately stu-
dents are aware of their own performance) before students
begin the learning session.

• PostMetacognitive calibration (Post-MC): We subtracted
the actual posttest scores from the students’ predicted posttest
grades for post-MC. Post-MC allows us to assess the extent of
students’ metacognitive calibration after the learning session
(and thus after interventions if they were in the experiment
condition).

Both negative and positive values in initial-MC and post-MC
assessments reflect students’ confidence levels regarding their per-
formance.We adapted the approaches used in prior research [85, 86]

to measure confidence. These approaches assess confidence in test-
taking contexts by asking students, immediately after completing
a test, how confident they are in their performance or how well
they believe they performed. A negative value in initial-MC and
post-MC suggests that students estimated a lower score than they
actually achieved, indicating underconfidence. Conversely, a pos-
itive value in initial-MC and post-MC indicates overconfidence,
meaning students anticipated a higher grade than they achieved.
A value of zero in both the initial-MC and post-MC assessments
suggests that students made minimal error in evaluating their per-
formance, indicating neither underconfidence nor overconfidence.

• Change inMetacognitive calibration (ΔMC):We assessed
the change in students’ metacognitive calibration by calcu-
lating the difference between their initial-MC and post-MC
measures. We subtracted the initial-MC from the post-MC to
determine how students’ metacognitive calibration shifted
after the learning session. This change provides insight into



Learning Behavior as a Mediator of Metacognitive Intervention on Learning Outcomes CHI ’25, April 26-May 1, 2025, Yokohama, Japan

how students’ awareness of their performance evolved. For
the intervention group, in particular, this shift is crucial as it
allows us to assess the effectiveness of the intervention in
enhancing students’ ability to accurately evaluate their own
performance.

A positive ΔMC indicates that students’ post-MC is higher than
their initial-MC, whereas a negative ΔMC means students’ initial-
MC was greater than their post-MC. A zero ΔMC suggests that the
student’s metacognitive calibration remained unchanged before
and after the learning session. We refer readers to Table 2, which
provides examples and interpretations of both positive and nega-
tive ΔMC cases, offering a clearer understanding of the potential
shifts in metacognitive calibration. These changes in metacogni-
tive calibration can occur regardless of whether students initially
exhibited overconfidence (MC > 0), underconfidence (MC < 0), or
had accurate calibration (MC = 0).

We measured metacognitive calibration improvement by calculat-
ing the average of the absolute value of ΔMC for instances where
students showed enhanced metacognitive calibration following the
learning session. By “enhancement in metacognitive calibration,”
we refer to cases where students showed a shift in the direction of
perfect calibration after the learning session. This includes students
who were initially underconfident and exhibited a positive ΔMC,
whether they became less underconfident, achieved perfect calibra-
tion, or shifted to overconfidence (an over-correction possibility
that merits exploration in future work with intervention design
changes). Similarly, for students who were initially overconfident,
a negative ΔMC indicates a shift in the expected direction away
from overconfidence. The extent of improvement in metacogni-
tive calibration provides valuable insights into how much students
enhanced their ability to accurately assess their performance.

• Metacognitive calibration improvement |ΔMC|: We as-
sessed the magnitude of students’ improvement in metacog-
nitive calibration by calculating the absolute values of ΔMC
for instances where students demonstrated enhanced cali-
bration following the learning session. |ΔMC| allows us to
quantify the extent of calibration improvement, providing
a clear measure of how much students adjusted their self-
assessment accuracy after engaging in the learning session.

A larger ΔMC reflects greater improvement in self-assessment
accuracy. For example, if Student A was initially underconfident
with an initial-MC of -8 and became less underconfident with a
post-MC of -5, their improvement in metacognitive calibration is
moderate, with a change of 3 points. In contrast, if Student B also
started with an initial-MC of -5 but achieved perfect calibration
with a post-MC of 0, their improvement is much greater, with a
change of 5 points.

5 METHODS
5.1 RQ1. Impact of AI-powered intervention on

student metacognitive calibration
We assessed metacognitive calibration improvements across three
subgroups—initial confidence levels, gender, and race/ethnicity—by
comparing control and intervention groups to evaluate the effective-
ness of the AI-driven tool in enhancing metacognitive calibration.

For initial confidence, we compared improvements between under-
confident (i.e., students with initial-MC < 0) and overconfident (i.e.,
students with initial-MC > 0) students in both groups, investigating
whether the tool’s impact varied based on the confidence level.
For demographics, we analyzed metacognitive calibration improve-
ment between female and male students and across race/ethnicity
groups (White, Black, Asian, and Multiracial). To maximize the use
of available data in gender- and race-related analyses, we did not
further subdivide these groups (e.g., by initial confidence level) as
subgroup sample sizes were already small.

5.2 RQ2. Effectiveness of AI-powered
intervention on student learning outcomes

We ran a linear regression analysis to examine how learning gains
were influenced by the intervention and demographic variables (i.e.,
race and gender). The dependent variable, student learning gain,
measured as the difference between pretest and posttest grades, is
a continuous variable. The independent variables included group
(a binary variable indicating whether a student was in the control
or intervention group), race (categorized as White, Black, Asian,
Hispanic/Latinx, and Multiracial), gender (categorized as male and
female), the interaction between group and race, and the interac-
tion between group and gender. Participants who identified as a
member of very small race/ethnicity or gender groups (n ≤ 7) were
excluded due to anonymity concerns and the small sample sizes.
This regression model enabled us to assess the main effects of group,
race, and gender, as well as any interaction effects between these
variables on learning gain. We checked the assumptions of linear
regression, ensuring that linearity, independence, homoscedasticity,
and normality were met.

5.3 RQ3. Mediating role of learning behaviors
in AI intervention effects on learning gains

To explore whether students’ learning behaviors mediated the ef-
fects of our AI-powered intervention on learning gains, we con-
ducted a multiple mediator analysis [34]. We hypothesized that the
intervention would influence learning gains through two specific
mediators: seeking knowledge and seeking assessment (see Figure 3).
We further discuss how our preliminary analysis results on me-
diator and outcome variables informed the development of the
proposed mediation path diagram in section 6.3.1. In our mediation
model, the independent variable was Intervention, a binary variable
coded as 0 for the control group and 1 for the intervention group.
The two mediator variables were seeking knowledge and seeking as-
sessment, which were measured as count variables representing the
frequency of each behavior. To approximate normal distributions,
we applied square-root transformations to these mediator variables.
The dependent variable was learning gain, a continuous variable
calculated as the difference between pretest and posttest grades,
which follows a normal distribution. We analyzed mediation within
a path analysis framework using the structural equation modeling
(SEM) software package, Mplus version 8 [62]. Mediation effects
were estimated using the product of coefficients approach, consis-
tent with the methods proposed by Preacher and Hayes [75, 76].
We employed a maximum likelihood estimator with standard errors
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Table 2: Examples of changes in metacognitive calibration (ΔMC) are presented for two cases, one where the value is positive
and one where it is negative. The “Cases” column outlines potential scenarios for initial and post-calibration conditions. The
“Example” column provides specific values to illustrate each case, while the “Interpretation” column explains how to interpret
the corresponding scenario.

ΔMC Cases Example Interpretation

Initial overconfidence Post-MC > 0 Initial-MC=10, Post-MC=15, Initially overconfident and
(Initial-MC>0) ΔMC = 5 became more overconfident

Post-MC<0 Initial-MC=-2, Post-MC=-1, Initially underconfident and
ΔMC=1 became less underconfident

Positive Initial underconfidence Post-MC=0 Initial-MC=-1, Post-MC=0, Initially underconfident and
(ΔMC>0) (Initial-MC<0) ΔMC=0 achieved perfect calibration

Post-MC>0 Initial-MC=-1, Post-MC=1 Initally underconfident
ΔMC=2 and became overconfident

Initial perfect calibration Post-MC>0 Initial-MC=0, Post-MC=1 Initial perfect calibration
(Initial-MC=0) ΔMC=1 and became overconfident

Initial underconfidence Post-MC < 0 Initial-MC=-3, Post-MC=-5, Initially underconfident and
(Initial-MC<0) ΔMC = -2 became more underconfident

Post-MC<0 Initial-MC=1, Post-MC=-1, Initially overconfident and
ΔMC=-2 became underconfident

Negative Initial overconfidence Post-MC=0 Initial-MC=3, Post-MC=0, Initially overconfident and
(ΔMC<0) (Initial-MC<0) ΔMC=-3 achieved perfect calibration

Post-MC>0 Initial-MC=15, Post-MC=10 Initally overconfident
ΔMC=-5 and became less overconfident

Initial perfect calibration Post-MC<0 Initial-MC=-1, Post-MC=-1 Initial perfect calibration
(Initial-MC=0) ΔMC=-1 and became underconfident

robust to violations of normality to account for any deviations from
normality in the data.

6 RESULTS
6.1 RQ1. Impact of AI-powered intervention on

student metacognitive calibration
InRQ1, we examined whether students who received the AI-driven
intervention showed enhanced metacognitive calibration, aiming
to evaluate the effectiveness of the early intervention in improving
metacognitive calibration. We anticipated similar improvements for
overconfident and underconfident students, as well as across racial
groups, with greater improvement expected for male students com-
pared to females. Results partially supported our hypothesis. We
observed varying improvements in metacognitive calibration across
student groups, including those categorized by initial confidence
level, gender, and race, which may suggest differential impacts of
AI-driven support on student metacognitive improvement (Appen-
dix Table 3). Students with initial underconfidence who received the
intervention exhibited an average improvement in metacognitive
calibration that was not significantly better than the control group:
|ΔMC| (absolute value of change in metacognitive calibration) in the
control group was 12.7% versus 15.0% in the intervention group, t =
0.293, p = .771. For students who had initial overconfidence, students

in the intervention group showed 4.1% better metacognitive cali-
bration enhancement (control: 12.2%, intervention: 16.3%, t = 2.001,
p = .049). This significantly greater improvement in metacognitive
calibration for overconfident students implies that the AI-driven
tool could be especially beneficial in supporting overconfident stu-
dents in enhancing their metacognitive calibration. We observed no
significant per-group effects of the intervention on metacognitive
calibration across gender or race/ethnicity (Table 3), indicating no
evidence of moderation, though subsample sizes were especially
small for some groups so future work will be needed to establish a
tight confidence interval.

6.2 RQ2. Effectiveness of AI-powered
intervention on student learning outcomes

Building on the findings fromRQ1, where we explored the effective-
ness of the intervention in improving metacognitive calibration, we
investigate in RQ2 whether this real-time AI-powered intervention
enhances learning outcomes. We hypothesized that students receiv-
ing the AI-powered intervention would achieve greater learning
gains than those in the control group. Our results support this hy-
pothesis. On average, students in the intervention group achieved
higher learning gains, with a mean of 16.3% (SD = 22.0%, n = 80),
compared to a mean gain of 7.4% (SD = 20.0%, n = 53) in the control
group. The difference was statistically significant (t = -2.384, p =
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.019), indicating the effectiveness of the metacognitive calibration
intervention in improving learning outcomes. When accounting
for additional factors such as race/ethnicity and gender in a lin-
ear regression model, the effect of the intervention was no longer
statistically significant (p = .248), possibly because of the loss of
statistical power due to inclusion of demographic variables (Appen-
dix Table 4). The regression analysis revealed no significant main
or interaction effects of demographic variables on learning gains,
indicating no evidence of differential effects on learning overall nor
due to the intervention itself, though like the main intervention
effect in this model, more data may be needed to improve statistical
power for such fine-grained effects to emerge. However, it remains
promising that no significantly inequitable results emerged from
these data.

6.3 RQ3. Mediating role of learning behaviors
in AI intervention effects on learning gains

6.3.1 Preliminary analysis results. Our preliminary analyses on
mediators and outcome variables informed the development of the
proposed mediation path diagram (Figure 3). A univariate anal-
ysis of the two categories of learning patterns across the entire
student sample (N = 133) revealed that students engaged more
frequently in seeking knowledge than in seeking assessment. On
average, students employed the seeking knowledge 8.917 times (SD
= 6.879), while students engaged in seeking assessment 5.910 times
(SD = 4.626) during a self-paced learning session. However, we
observed that students in the intervention group (n = 80) engaged
more frequently in both seeking knowledge and seeking assess-
ment than those in the control group (n = 53). The control group
showed a mean of 7.585 times (SD = 6.576) for seeking knowledge
and a mean of 5.019 times (SD = 4.992) for seeking assessment. In
comparison, the intervention group demonstrated higher means
of 9.800 times (SD = 6.973) for seeking knowledge and 6.063 times
(SD = 3.623) for seeking assessment. Given our hypothesis that
the intervention would lead to better learning outcomes, we fur-
ther examined the associations between these two categories of
learning patterns and learning gains to determine whether these
behaviors could potentially mediate the anticipated effects of the
intervention. The Spearman rho analysis [84] revealed a significant
association between seeking knowledge and learning gains (𝜌 =
.597, p <.001), whereas the association between seeking assessment
and learning gains was not statistically significant (𝜌 = .113, p =
.194). These preliminary findings suggest that both seeking knowl-
edge and seeking assessment may serve as mediators in explaining
the relationship between the AI-driven intervention and student
learning gains, with seeking knowledge potentially emerging as
the stronger mediator.

6.3.2 Mediation analysis results. From RQ2, we observed that
students who received the AI-powered intervention showed in-
creased learning gains. In RQ3, we examine through mediation
analysis whether this improvement was partly due to the interven-
tion prompting students to adapt their behaviors. That is, does the
intervention improve learning in part because it causes students
to adapt their behaviors? Unstandardized parameter estimates for
the mediation model are presented in Figure 3, with corresponding

standard error (SE) estimates provided in parentheses. We also pro-
vide bias-corrected and accelerated (BCa) 95% confidence intervals
(CIs) calculated through 10,000 bootstrap samples. Regressing seek-
ing knowledge on the intervention showed that the intervention
significantly increased engagement in seeking knowledge (𝑎1 =
.460 (.213), p = .031, BCa 95% CI = [.110, .807]). This result indicates
that students who received the intervention engaged in seeking
knowledge behavior 0.460 times more than those who did not re-
ceive the intervention. Conversely, there was no significant effect
of the intervention on seeking assessment (𝑎2 = .170 (.171), p = .318,
BCa 95% CI = [-.118, .437]).

Regressing seeking knowledge and seeking assessment, the two
potential mediating paths, on learning gain showed that two me-
diators had different directions of effect on learning gain. Seeking
knowledge significantly increased the learning gain (𝑏1 = 13.745
(1.545), p < .001, BCa 95% CI = [11.211, 16.289]), while seeking
assessment significantly decreased the learning gain (𝑏2 = -7.596
(1.736), p < .001, BCa 95% CI = [-10.438, -4.781]). An insignificant
direct effect of the intervention was observed after the mediators
were included in the regression c’ = 3.929 (2.972), p = .186, BCa
95% CI = [-1.102, 8.722]). The insignificant direct effect of the in-
tervention implies that after including the two mediators in the
regression model, the effect of the intervention on learning gains
became insignificant, indicating that the relationship between the
intervention and learning gains may be fully mediated by the me-
diator variables. However, we found that only seeking knowledge
significantly mediated the effects of the intervention on learning
gain (𝑎1𝑏1 = 6.327 (3.068), p = .039, BCa 95% CI = [1.564, 11.692];
𝑎2𝑏2 = -1.293 (1.397), p = .355, BCa 95% CI = [-3.882, .673]). In other
words, the effect of the intervention on student learning gain is ac-
counted for by seeking knowledge learning pattern category rather
than having a direct effect on learning outcomes. This finding in-
dicates that the intervention enhances students’ learning gains by
fostering greater engagement in seeking knowledge, which in turn
drives the observed improvements in learning outcomes. We report
the effect size for the indirect effect, 𝑎1𝑏1, by computing the product
of the standardized regression coefficients for 𝑎1 and 𝑏1, consis-
tent with the completely standardized indirect effect proposed by
Preacher and Kelley [77]. We obtained 𝛽𝑎1 = .186 and 𝛽𝑏1 = .680,
resulting in 𝛽𝑎1𝑏1 = .126 for the completely standardized indirect
effect. According to Cohen [22], 𝛽𝑎1𝑏1 = .126 indicates a medium
mediation effect.

7 DISCUSSION
We discuss the implications of our findings for each research ques-
tion and offer insights relevant to HCI. We examined the effective-
ness of the real-time, AI-driven metacognitive calibration support
tool by addressing three research questions, using data collected
from 133 college students recruited from Prolific in an online learn-
ing environment. Our key findings are as follows:

• RQ1. Overconfident students who received the intervention
showed significantly greater metacognitive calibration im-
provement than the control group by 4.1% (t = 2.001, p =
.049). We did not observe differences in the improvement in
metacognitive calibration across gender and race/ethnicity
groups.
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a1b1 = 6.327 (3.068), p = .039,  BCa 95% CI = [1.564, 11.692] 

a2b2 = -1.293 (1.397), p = .355,  BCa 95% CI = [-3.882, .673] 
 

c’  = 3.929(2.972), p = .186, 

BCa 95% CI = [-1.102, 8.722] 

b1 = 13.745 (1.545), p < .001,

 BCa 95% CI = [11.211, 16.289]  

b2 = -7.596 (1.736), p < .001,

BCa 95% CI = [-10.438, -4.781]

a2 = .170 (.171), p = .318,

BCa 95% CI = [-.118, .437]

a1 = .460 (.213), p = .031, 

BCa 95% CI = [.110, .807]

Figure 3: Path diagram showing the results of a multiple mediator analysis. The intervention is a binary variable indicating
whether a student was in the control or intervention group. The two mediators, seeking knowledge and seeking assessment,
represent distinct categories of student learning patterns. The outcome variable is learning gain. Unstandardized parameter
estimates for the mediation model are presented with standard errors (SE) in parentheses, along with bias-corrected and
accelerated (BCa) 95% confidence intervals (CIs) from 10,000 bootstrap samples.

• RQ2. We found a significant difference in learning gains
between the control and intervention groups, with students
who received the intervention achieving a mean learning
gain of 16.3% compared to the control group. Regression
analysis showed no significant effects of race, gender, or
their interactions on the intervention’s effectiveness.

• RQ3. Seeking knowledge, rather than seeking assessment,
mediates the effect of the AI-driven intervention on learning
gains. This finding highlights that students who received the
intervention engaged more in seeking knowledge behaviors,
which, in turn, led to increased learning gains.

7.1 RQ1. Impact of AI-powered intervention on
student metacognitive calibration

We observed greater improvements in metacognitive calibration in
the intervention group compared to the control group for students
who were initially overconfident among various subgroups (i.e.,
initial confidence levels, gender, and race/ethnicity). This finding
aligns with prior studies demonstrating the benefits of metacogni-
tive support, often provided ad hoc, in enhancing metacognitive

calibration [14, 65, 92]. However, while previous research has gen-
erally highlighted the effectiveness of interventions in improving
metacognitive calibration, the literature also reflects inconsisten-
cies, with some studies reporting no effects [32, 56]. While these
inconsistencies pose challenges for researchers in identifying effec-
tive approaches to supporting metacognition, our novel approach
to providing early feedback contributes to this growing body of
research by showing that improvements can be achieved through
early, real-time AI-driven interventions. To build on this work, com-
parative studies are needed to evaluate different approaches and
determine whether they result in varying levels of improvement.

We observed overall improvements in metacognitive calibration
in the control group as well, although the extent of this improve-
ment was greater for the intervention group. This overall improve-
ment across groupswas expected, as control group students also had
opportunities to assess their knowledge through quizzes, reviewing
incorrect answers, and gaining insights into their understanding.
Because most participants were unfamiliar with statistics, spend-
ing an hour engaging with the material likely aided all students
in improving their ability to estimate their knowledge more accu-
rately. Furthermore, unlike previous studies that lacked various
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subgroup-specific analyses (e.g., [14, 80]), our work examined the
effectiveness of real-time interventions across diverse subgroups of
students. This approach addresses a gap in the literature regarding
whether metacognitive support benefits all students equally, an es-
sential step toward designing personalized interventions. Notably,
the significant improvement among initially overconfident students
who received the intervention, compared to those in the control
group, suggests that early AI-driven support is particularly effective
in helping these students recalibrate their self-assessments. How-
ever, while we observed significant improvements for overconfident
students, no significant differences were found for underconfident
students, highlighting the complexity of supporting metacogni-
tive calibration based on student confidence levels. Our findings
suggest that interventions aimed at improving metacognitive cali-
bration should be tailored to address the specific needs of students,
taking into account whether they are more likely to exhibit over-
confidence or underconfidence. To this end, future research should
explore how underconfident and overconfident students differ in
their use of learning strategies upon receiving interventions. These
insights would enable the development of personalized early AI-
driven interventions that could target each group’s specific needs
and challenges, ensuring more effective support for recalibrating
self-assessments and enhancing overall learning outcomes.

7.2 RQ2. Effectiveness of AI-powered
intervention on student learning outcomes

The significant difference in learning gains, with the intervention
group achieving a mean gain of 16.3% compared to 7.4% in the con-
trol group, highlights the effectiveness of early AI-driven support
in improving learning outcomes in computer-based learning envi-
ronments. This finding extends previous research on metacognitive
calibration interventions, which has predominantly focused on im-
proving calibration accuracy while often overlooking their impact
on learning outcomes [63, 92] or reporting non-significant impacts
on performance [8, 80]. While we observed improved learning out-
comes among students who received the intervention, we encour-
age future studies to explore how students perceive early, real-time
AI-driven interventions and their views on how the intervention
impacts learning outcomes and metacognitive calibration. Gather-
ing qualitative insights into which aspects of early interventions
students find helpful, discouraging, or potentially disruptive will
be essential for refining the specifics of these interventions—such
as the optimal timing and frequency of delivery—and ensuring the
effectiveness of early metacognitive calibration tools. For example,
certain groups, such as students with Attention Deficit Hyperac-
tivity Disorder (ADHD), might perceive these early interventions
as disruptive, since these students might adopt different learning
strategies and demonstrate behavioral differences [24, 78] when
interacting with learning interfaces in computer-based learning
environments. Understanding these diverse perspectives will allow
for the refinement of early interventions and the personalization
of these tools to better meet the needs of various student groups.

We did not observe significantmain effects of gender or race/ethnicity
and gender on learning gains, suggesting that the intervention did
not result in significant differential effects across these demographic
factors. However, the intervention leverages machine learning to

predict student learning outcomes, which may raise questions re-
garding the issues of fairness. These variations may reflect inherent
biases in the model, as research has shown that machine learning
models can exhibit predictive discrepancies [6, 7, 48], especially
when certain groups are underrepresented in the training data. This
highlights the need for further investigation with larger samples to
determine if there are indeed no differences between groups.

7.3 RQ3. Mediating role of learning behaviors
in AI intervention effects on learning gains

Seeking knowledge, rather than seeking assessment, was the only
significant mediator in the effect of the AI-driven intervention on
learning gains. The intervention significantly increased student
engagement in seeking knowledge behaviors, while no significant
increase was observed in seeking assessment behaviors. This result
suggests that the intervention encouraged students to adopt seek-
ing knowledge strategies, which, in turn, led to improved learning
outcomes. Most importantly, our finding contributes to the line of
research on supporting student metacognitive calibration, specifi-
cally by highlighting how supporting calibration leads to learning
outcomes—a relationship that has not been thoroughly explored in
previous research [8, 63, 80].

One possible explanation for why seeking knowledge emerged
as the only significant mediator could be attributed to the nature
of the intervention feedback students received during learning.
Since the metacognitive calibration intervention was intended to
help students better understand their own level of knowledge, we
might expect this to result in more behaviors acting upon that
understanding—i.e., seeking knowledge to address identified knowl-
edge gaps. In contrast, receiving the AI-predicted posttest grade
along with their quiz performance for each subtopic during the
intervention may not do much to motivate even more (potentially
redundant) assessment, and could even reduce students’ reliance
on seeking assessment behaviors such as the frequent learning
patterns of Quiz → Quiz and Read→ Quiz.

Our contribution to understanding the mechanisms by which the
early AI-driven intervention enhanced learning outcomes through
student behavioral patterns has important practical implications,
which we discuss further in the next section. Specifically, inter-
ventions can be designed to be more effective by encouraging stu-
dents to engage in targeted learning behaviors, such as seeking
knowledge, rather than solely providing feedback on discrepancies
between their estimated and actual performance. This approach
could lead to even greater improvements in learning outcomes.

7.4 HCI Implications
The results of this research offer practical implications for designing
learning interfaces that enhance students’ metacognitive calibra-
tion in computer-based learning environments. A key contribution
of this work lies in uncovering the mechanisms through which
real-time AI-driven intervention significantly increases student
behaviors and, subsequently, learning outcomes. Specifically, our
findings on RQ3 highlight that the intervention led to increased
engagement in seeking knowledge behaviors, which mediated the
improvement in learning gains. Understanding this mechanism
is crucial for HCI researchers and practitioners as it is important
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to design learning interfaces that account for how interventions
impact students’ interactions (which we measure as self-regulated
learning-relevant in this study).

By gaining insight into the specific behaviors that contribute
to enhanced learning outcomes, researchers and practitioners can
create interfaces that not only provide feedback but also actively en-
courage and facilitate these impactful behaviors (e.g., [33, 60]). For
instance, functions could be designed to promote seeking knowl-
edge behaviors (spending time on materials that students have not
mastered or find challenging), which could be supported by learn-
ing interfaces. Tankelevitch et al. [90] noted that incorporating
metacognitive support strategies into generative AI systems could
reduce the metacognitive demands on users. Likewise, researchers
could consider incorporating features that facilitate these behaviors,
through diverse ways such as adaptive content recommendations.

Incorporating features designed to promote students’ engage-
ment in seeking knowledge into learning interfaces may lead to
greater engagement in seeking knowledge behaviors, ultimately re-
sulting in even greater learning gains. Future studies could explore
whether incorporating these features, specifically designed to tar-
get seeking knowledge behaviors, indeed enhances metacognitive
calibration as well as learning outcomes. Moreover, as suggested
by our results on RQ1 and RQ2, there may be potential variations
across subgroups of students, which could be another avenue for
future research.

Aligned with the findings from RQ1 and RQ2, our early, real-
time AI-driven approach presents a promising alternative to post
hoc feedback for supporting student metacognitive calibration in
computer-based learning environments. By integrating AI-driven
methods capable of real-time analysis of student interactions, HCI
researchers and practitioners can design learning systems that in-
clude features to promote seeking knowledge behaviors, empower-
ing students to adjust their self-assessments and learning strategies
during the learning process. In sum, understanding how interven-
tions affect students’ interactions with learning interfaces is vital
for designing systems that support actions leading to improved
learning. By focusing on promoting beneficial behaviors like seek-
ing knowledge, HCI practitioners can develop interfaces that not
only support metacognitive calibration but also enhance overall
learning experiences.

8 LIMITATIONS
Although we observed few significant differences between groups
in terms of the intervention’s effect on metacognitive calibration
(RQ1) and learning outcomes (RQ2), these findings may have been
influenced by insufficient sample size. Future studies should aim
to replicate these results with larger, more diverse populations to
uncover what heterogeneous treatment effects there may be. Addi-
tionally, our online learning systemmay differ from other platforms,
such as massive open online courses and semester-long online col-
lege courses. These platforms typically offer longer learning periods,
a wider variety of learning activities, and distinct platform features.
Future research should investigate whether our findings can be gen-
eralized to other online learning environments. We grouped three
slight variations of the AI-driven interventions (i.e., one without
attention weights visualized by color darkness and one with no

graph). While the core functionality of the interventions, including
AI-predicted posttest grades with reflective prompts, remained the
same, the small sample size limited our ability to thoroughly analyze
differences across the three variations. Future work will explore
these differences in greater depth with larger samples, enabling
more robust comparisons and providing insights into whether spe-
cific graphical details lead to differential impacts.

We assessed metacognitive calibration based on students’ es-
timations of their own performance (i.e., predicted pretest and
posttest grades). Measuring metacognitive calibration using stu-
dents’ estimation of their performance compared to their actual
grade has been a common approach in literature [32, 39, 69]. How-
ever, metacognitive calibration comprises multiple facets [29, 30],
including confidence and placement [57], which may not have been
fully captured in this study. Future studies could examine whether
our early, real-time intervention approach can be applied to these
additional facets of metacognitive calibration or explore how dif-
ferent facets might require distinct forms of support. Such studies
could provide a deeper and more holistic understanding of how to
enhance student metacognitive calibration effectively.

9 CONCLUSION
Supporting students in making accurate judgments about their per-
formance is critical for enhancing learning outcomes, particularly
in computer-based learning environments. The effectiveness of our
early AI-driven intervention in improving metacognitive calibra-
tion for overconfident students, along with the observed increase
in learning gains, highlights the value of early interventions for
metacognitive calibration. Additionally, this result paves the way
for applying advanced AI approaches to develop even more so-
phisticated early interventions that use the same approach for a
variety of upcoming assessments (e.g., quizzes, exams) where stu-
dents might benefit from learning how to self-evaluate accurately
in advance of the assessment and adjust their learning accordingly.
Our work in identifying the mechanisms behind the intervention’s
impact on student learning outcomes also highlights the impor-
tance of promoting targeted learning behaviors in computer-based
environments. In particular, the findings of RQ3 could be beneficial
in designing and developing learning interfaces that facilitate the
types of knowledge-seeking activities students are likely to benefit
from after a metacognitive calibration intervention.
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Table 3: The t-test results on metacognitive calibration improvement between control and intervention conditions, analyzed
across student initial confidence levels, gender, and race/ethnicity.

Group Number of Metacognitive
Statistics (t, p)Students calibration

improvement

Initial confidence
Initial underconfidence Control (n = 19) 12.7% t = 0.293

Intervention (n = 35) 15.0% p = .771

Initial overconfidence Control (n = 31) 12.2% t = 2.001
Intervention (n = 42) 16.3% p = .049

Gender
Female Control (n = 28) 16.0% t = 0.316

Intervention (n = 34) 16.8% p = .753

Male Control (n = 22) 14.3% t = 1.513
Intervention (n = 42) 19.1% p = .135

Race/ethnicity

White Control (n=19) 16.0% t = 0.704
Intervention (n = 25) 19.1% p = .486

Black Control (n = 13) 20.3% t = 0.396
Intervention (n = 21) 15.0% p = .695

Asian Control (n = 6) 11.7% t = 1.716
Intervention (n = 8) 20.1% p = .107

Multiracial Control (n = 7) 6.5% t = 1.999
Intervention (n = 17) 17.8% p = .058

Table 4: Table of regression results for RQ1. In the race/ethnicity category, White serves as the reference group, while Male is
the reference group for the gender category.

Dependent Variable Independent Variable Coefficient p-value

Learning Gain

Intercept 6.114 .334
Group 9.283 .248
Black 6.545 .426
Asian 6.269 .487
Hispanic/Latinx -11.865 .289
Multiracial 9.927 .343
Female -2.290 .725
Group × Black -4.663 .659
Group × Asian 0.205 .987
Group × Hispanic/Latinx 7.656 .600
Group ×Multiracial -4.837 .699
Group × Female 0.630 .939
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