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Abstract: Despite an increasing emphasis on the use of collaborative learning in classrooms, 
there is still much to be understood about how to successfully implement it. In particular, it is 
still unclear what the role of teachers should be during collaborative learning activities and how 
we can better support and guide teachers in their implementation of collaborative activities. In 
this study, we investigated how digital learning environments can be leveraged to support 
collaborative learning through data-driven models of students’ collaborative interactions by 
matching video and log data. The models successfully detected off-task behavior (43.2% above 
chance-level accuracy) and task-related talk (34.5% above chance) as students solved problems 
using a collaborative sketching tool. Future work will investigate how these models can be used 
to allow instructors to intervene effectively to support collaborative learning through the use of 
data-driven tools which will provide them with live information about the students’ behaviors. 

Major issues and theoretical approaches 
Collaborative problem solving is an important skill (Hesse, Care, Buder, Sassenberg, & Griffin, 2015), and its 
prominence in international education and assessment systems has been increasing (e.g. ABET, 2015; NRC, 2012; 
OECD, 2017).  However, there is still much to be understood about how to successfully implement collaborative 
learning in classrooms (Nokes-Malach, Richey, & Gadgil, 2015), and in particular, how teachers can be most 
effective in supporting students’ interactions (e.g. Webb et al., 2009). Kaendler and colleagues (2015) identified 
a key role that teachers play in monitoring and intervening when groups struggle, and prior work indicates the 
relevance of teacher interventions is important for successful group outcomes (e.g. Dekker & Elshout-Mohr, 
2004). However, while master teachers are more likely to have developed expertise about assessing how and when 
to intervene, more novice teachers may struggle with this. For example, earlier work has shown that almost all 
interventions made by graduate teaching assistants were content focused, with very few interventions focused on 
supporting students’ collaborative interactions (Mercier, Shehab & Kessler, under review). Thus, there is a need 
to explore ways to provide insight into the group processes for novice teachers, allowing them to understand more 
about what is going on within groups, and intervene appropriately (e.g. Alavi & Dillenbourg, 2012) .  
 In this paper, we present initial work towards creating a data-driven teacher tool that automatically 
provides such insight. Building on a project that sought to create a shared representation tool for engineering 
students, we developed prediction models by matching log data from the student tool to video analysis of their 
interaction behaviors. Our results indicate that there is potential in using logs of student actions to assess the 
quality of their interactions, which could be implemented in a teacher tool to augment their observations and 
provide insight into when and how best to intervene.  

Collaborative learning  
The value of collaborative learning for both learning and transfer and as a way to increase persistence and interest 
in STEM fields has been identified across a range of studies (e.g. Barron 2003; Gasiewski et al., 2012). However, 
variation in the quality of outcome has been recorded in both classroom and laboratory studies (Nokes-Malach et 
al., 2015), and success is most often associated with the quality of student interactions during collaborations 
(Kaendler, et al., 2015). Hesse and colleagues (2015) identified behaviors that are most associated with successful 
interactions, dividing them into social skills and cognitive skills. There is an increasing recognition that students 
need help developing these skills, and that merely placing students in groups is not sufficient for groups to function 
well (Authors, under review; Borge & White, 2016). Teachers play a key role in intervening to support groups as 
they develop these skills, needing to make a quick assessment as to whether students need support in relation to 
the social or cognitive collaborative processes, or in relation to the course content. Initial work in this area points 
towards productive insights being provided either by student actions—for example, by changing the color of a 
lamp (Alavi & Dillenbourg, 2012) or posting a tweet (Mercier, Rattray, & Lavery, 2015)—or by insight 
automatically provided to the teacher by the software the students are using (Martinez-Maldonado, Yacef, & Kay, 
2015; Mericer, 2016). Thus, our primary question in this paper is how can we automatically detect students’ 
collaborative interaction patterns and use them to provide insight to teachers?  



Modeling student behavior from action logs 
Researchers in the field of Educational Data Mining (Baker & Yacef, 2009) have studied how machine learning 
approaches can be used to build student models that are able to detect when students using digital learning 
environments are engaging in specific behaviors, or to infer the student’s current state of mind. This is achieved 
by collecting detailed logs of students’ actions within the learning environment. Those logs are then analyzed 
using machine learning algorithms to find relationships between the students’ actions and the modeled construct. 
For example, a model might learn that repeatedly submitting the same answer on a homework problem is 
indicative of frustration. 

Action logs have been used to model a variety of constructs across multiple types of digital learning 
environments, such as students’ disengagement in intelligent tutoring systems, where models were trained to 
detect when students attempt to “game the system” (Baker, Corbett, Roll, & Koedinger, 2008; Paquette, de 
Carvahlo, Baker, & Ocumpaugh, 2014). Gaming the system is a type of off-task behavior in which students exploit 
a computerized tutor’s functionalities to guess an answer or have the tutor provide them with the answer. Sabourin, 
Mott, and Lester (2013) studied how action logs can be used to model self-regulated learning behaviors in an 
educational game called Crystal Island. Gobert, Sao Pedro, Raziuddin, and Baker (2013) used action logs to assess 
whether students were showing behaviors related to the usage of science inquiry skills. In addition, action logs 
have been used to detect students’ states of mind, such as their affective states (Baker et al., 2012; Kai et al., 2015; 
Paquette, et al., 2014; Pardos, Baker, San Pedro, Gowda, & Gowda, 2014) or whether they are mind-wandering 
(Mills & D’Mello, 2015). This type of research has been conducted in many types of learning environments 
including intelligent tutors, educational games, and science simulation microworlds. 

C-STEPS 
The study presented in this paper was conducted using C-STEPS (Collaborative Support Tools for Engineering 
Problem Solving). This software is a web-based application whose main functionality is to provide students with 
a shared digital environment to support the creation of joint representations while engaged in collaborative 
problem solving. C-STEPS is presented on tablets, which are synchronized for each group, so members of a group 
share their work (and therefore, their problem-solving representations) with their teammates (Figure 1). As the 
students use C-STEPS, a detailed record of their actions is stored in logfiles. 

In this paper, we focus on connecting students’ actions within C-STEPS to video analysis of their 
collaborative interactions between group members. The specific research questions addressed in this paper are: 

1. Are there associations between the types of interactions identified in the video and the patterns in the 
logfile data? 

2. What insight into group processes do the logfile data provide that could inform teachers about the status 
of the group or appropriate intervention strategies? 

 

  
Figure 1. Students using C-STEPS on synchronized tablets. 

Methods 

Design 
This study is part of a multi-year design-based implementation research project focused on collaborative learning 
in a large introductory engineering course. This project aligns with college goals to increase the use of 
collaborative learning across core introductory courses, and students engage in collaborative problem-solving 
activities in all discussion sections in this sequence. The research team work closely with the faculty (some who 
are on the research team) and TAs on task design and cultural change issues within the program. Four discussion 



sections (classes) attended their regularly scheduled class in an instrumented lab classroom for three consecutive 
weeks during which the data for this study was collected. During those sessions, students were grouped in teams 
of four (although due to attendance issues, group sizes ranged from 2-5) to complete collaborative engineering 
tasks using C-STEPS on either a set of tablet computers or a multi-touch table.  

This paper focuses on students who used the tablet computers while solving the tasks. Multi-touch table 
data were not included because logged actions were fundamentally different. Data from week 1 were also 
discarded due to data collection issues, and as this week was seen as an introductory week for students to become 
familiar with the software. In total, 82 unique participants (25 female and 57 male) used the tablet computers in 
14 groups in week 2 and 11 groups in week 3. All of these students gave consent to participate in the study. 

Data sources 
We used data collected from two sources. First, video and audio recordings were collected, providing us with rich 
information about how students in each group collaborated with each other. Second, action logfiles, containing a 
detailed list of all the students’ actions on the tablets, were collected. Each logfile contained information necessary 
to reconstruct the students’ problem-solving process. This included lists of point coordinates for each of the 
students’ drawing segments, records of when students used clear screen and undo functionalities, screen scrolling 
actions, and other actions. In addition, timestamps were recorded to indicate the exact time of each action. 

Data from videos and logfiles were synchronized with each other, allowing us to associate the students’ 
actions on the tablets (logfiles) to their collaborative interactions (observed through video). The synchronized data 
were then segmented in one-minute clips for further analysis. We chose a length of one minute so that clips were 
long enough to observe meaningful collaboration behaviors while simultaneously being short enough to reduce 
the chance of observing multiple collaborative interactions. In total, 1,128 clips were extracted. 

Coding of collaborative interaction  
A subset of the videos was used to develop an emergent coding scheme of types of student interactions. The codes 
are shown in Table 1. The task relatedness, peer interaction, and tablet usage dimensions involved codes that were 
mutually exclusive; e.g., a group was either on task or off task during a one-minute clip. The talk content and 
teaching assistant (TA) interaction dimension were not mutually exclusive and each specific code was marked as 
being observed if a significant portion of the one-minute clip involved the code. For example, a clip could be 
marked as containing both task-related talk and other talk. 

To determine reliability, two trained coders independently coded 60 video clips. The interrater reliability 
(Cohen’s kappa) is reported in Table 1. Once interrater reliability was established, the remaining clips were coded 
by the two coders. Table 1 provides a count of how many instances of each code were identified in the dataset.  

These codes were selected for this initial work, with a recognition of the need to expand the coding 
scheme to more complex collaborative behavior in later work. They are also drawn from prior research with this 
population, where there is evidence of TAs disrupting productive on-task collaborations when they intervene. One 
goal of the interface is to help TAs recognize good collaborations, as well as intervene to support groups.  

Logfile feature extraction 
Logfiles were processed to compute features that indicated how groups of students used the tablets during each 
one-minute clip. The features we computed provide information about 1) the total quantity of actions, such as 
how many line segments were drawn, how many times the screen was cleared, or how many time students undid 
their last action; 2) the location of the actions, such as the horizontal and vertical positions of drawings; and 3) 
student co-interaction, such as how many different students drew on the tablet during the clip and the difference 
between the students’ scroll position. Overall, 28 features were computed from the logfile. A detailed list of those 
28 features is provided in the result section (Table 3). 

Detecting collaborative behaviors from logfile data 
Predictive models were trained to detect the students’ collaborative interactions using RapidMiner 5.3 (Mierswa, 
Wurst, Klinkenberg, Scholz, & Euler, 2006), a graphical data mining toolkit that allows users to apply machine 
learning algorithms to their data without requiring computer programming expertise. Each model was designed 
to detect whether students were engaged in a specific type of interaction or not. For example, whether students 
were off-task or not, engaging in task relevant discussion or not, and so on. Models were created for codes related 
to off-task behavior, no talk, task-related talk, other talk and peer interaction (Table 1). We did not create models 
for TA interaction, since this information would not be relevant to report to the TA, and tablet usage, since the 
action logs already provided us with detailed information about the groups’ usage of the tablets. 
 



Table 1. Coding scheme of student interactions, including interrater reliability and number of each code identified. 
 

Dimension Code Definition and Examples Cohen’s kappa Count 

Task relatedness 

On task 
The clip shows that at least one of the group members 
appears to be on task (e.g. two students solving 
problems on the tablet) 

0.95 905 

Off task 
The clip shows that all group members appear to be 
off task (e.g. two students are texting using their 
phone) 

 223 

Talk content 

No talk The clip shows that group members are not talking to 
one another or to the teaching assistant (TA) 

0.88 207 

Task talk 
The clip shows that at least two group members or at 
least one group member and the TA are talking about 
task-related topics 

 707 

Other talk 

The clip shows that at least two group members or at 
least one group member and the TA are talking about 
topics that are not related to the task (e.g. socializing 
or technology issues) 

 278 

Peer interaction 

No peer 
interaction 

The clip does not show any verbal interaction 
between group members 

0.87 357 

Peer 
interaction 

The clip shows verbal interactions between group 
members 

 771 

TA interaction 

Not present The clip does not show any presence of the TA 0.91 682 

Whole class 
The clip shows that the TA is interacting with the 
whole class (e.g. the TA is making a whole class 
announcement) 

 130 

Group The clip shows that the TA is interacting with at least 
one group member 

 316 

Tablet usage 
Tablet used The clip shows that at least one of the group members 

had their eyes, fingers, or stylus on the tablet 
1.00 1034 

Not used The clip shows that none of the group members were 
using the tablet 

 94 

Model training 
Since the type of relationship between the students’ collaborative interactions and their actions on the tablet was 
unknown (e.g., linear or piecewise relationships), we initially tested three algorithms that capture different types 
of relationships: C4.5, a decision tree based approach; RIPPER, a decision rule based approach; and naïve Bayes, 
a probability distribution based approach. Those well-known algorithms were chosen based on related research 
in digital learning environments (Baker et al., 2012; Pardos et al., 2014). The naïve Bayes algorithm matched 
student actions best, and was selected for our final models. 

Model performance evaluation 
We evaluated models with two different performance indicators: Cohen’s kappa (Cohen, 1960) and AUC (Area 
Under the receiving operating characteristic Curve) computed using the A′ approach (Hanley & McNeil, 1982). 
Kappa is computed in the same way as when assessing interrater agreement and measures the degree to which a 
model is better than chance at identifying a group’s behavior. In this context, a kappa of 0 indicates a model that 
performs at chance level whereas a kappa of 1 indicates a perfect model. Kappa is useful for evaluating models 
with imbalanced codes (e.g., 80.23% on-task and 19.77% off-task behavior) because it adjusts chance level for 
imbalance, unlike accuracy, which may be skewed by predicting the most frequently observed interaction (e.g., 
80.23% accuracy by predicting everything as on-task given its prior proportion in Table 2). 

AUC was computed using the A′ approach (Hanley & McNeil, 1982). A′ is the probability that, given 
two examples of different codes, the model will be able to correctly classify the examples. Thus, an A′ of 0.5 
indicates a model that performs at chance level, whereas an A′ of 1 indicates a perfect model. Unlike kappa, A′ 
evaluates the model across all possible tradeoffs between correct predictions of the positive code (the code of 
interest) and incorrect predictions of the negative code. This provides a complementary perspective on model 
performance in conjunction with kappa. 



Model validation 
Each model was validated using five-fold group-level cross validation. Using this approach, the full set of 1,128 
clips was randomly separated into 5 subsets, each including the data for 5 of the 25 groups. Then, predictive 
models were trained using 4 of the 5 subsets with the remaining subset used as a held-out test set. This process 
was repeated five times so that each of the 5 subsets was used as the held-out test set exactly once. Performance 
of the model was then evaluated on the aggregated predictions of the five held-out test sets. By going through this 
process, we evaluated the performance of the models when predicting student interactions for new (unseen) groups 
of students. This was done to avoid reporting results of models that were over-fit to the training data. 

Feature selection 
Forward selection was used during model training, within each cross-validation fold, to find the smallest set of 
features that produces the best predictive model. Using this approach, features were introduced in the model one 
at a time, based on their predictive power. First, predictive models including only one feature were trained with 
each of the available features. The feature resulting in the model with the highest performance (measured as the 
sum of kappa and A′) was added to the set of selected features. Then, additional models were trained combining 
the selected feature and each of the remaining features, producing a list of models built using two features. Out of 
those, the best one was selected and the newly added feature was included in the set of selected features. This 
process was repeated, adding one new feature each time, until no increase in performance was observed.  

Results 
Table 2 provides a summary of the performance of the trained predictive models for each of the five predicted 
types of interactions. Proportions of the behaviors are reported to provide information about data imbalances. For 
example, in our data, 19.77% of clips were coded as off task (223 out of 1,128 clips). Note that the proportions 
do not sum to 100% as none of the five behaviors codes were mutually exclusive.  
 
Table 2. Performance metrics and number of selected features for each of the five predictive models. 
 

Type of Collaborative Interaction Proportion Kappa A′ # Selected Logfile Features 
Off task 19.77% 0.432 0.748 10 
No talk 18.35% 0.231 0.650 8 
Task talk 62.68% 0.345 0.683 7 
Other talk 24.65% 0.135 0.541 14 
Peer interaction 68.35% 0.225 0.682 4 

 
We investigated which of the students’ actions on the tablets were predictive of collaborative interactions 

by examining individual features that were selected by each predictive model. For each feature, the naïve Bayes 
algorithm fits two normal distributions, one for positive prediction (e.g., the students are talking about the task) 
and one for the negative prediction (e.g., the students are not talking about the task). This results in pairs of means 
and standard deviations associated to each of the logfile features in the model. We used those values to calculate 
effect sizes, using Cohen’s d, that show how much the logfile features differed between predicted codes. Table 3 
provides a complete list of the 28 features used in the predictive models, as well as d for each selected feature 
(blank spaces indicate that the feature was not selected). 

Conclusions and Implications 
Our findings show that students’ action on a collaborative tool on tablet computers were indicative of their 
collaborative interactions with each other. As can be seen in Table 2, model performance was uneven, ranging 
from kappa = 0.135 to 0.432 and A′ = 0.541 to 0.748, but each model performed above chance level. We expect 
that the two predictive models that were most successful, off task (kappa = 0.432; A′ = 0.748) and task talk 
(kappa = 0.345; A′ = 0.683), will be particularly useful for informing teachers about the status of the groups as 
they solve the task. Indeed, although it can be easy for a teacher to observe whether students are touching their 
tablets; it is difficult for them to quickly evaluate whether student actions are on task without focusing their 
attention on each individual group. Similarly, it can be difficult for teachers to evaluate whether the students’ 
discussions are related to the task without making an effort to listen to the content of conversations. 

Further analysis of the features selected for each of our predictive models shows which of the students’ 
actions and patterns of actions were most predictive of the types of interactions the students engaged in. As can 
be seen in Table 3, some features, such as the cumulative number of events for a group and the number of students 



who executed at least one action on their tablet within the one-minute clip, were selected for multiple models and 
had larger differences between behaviors (as measured using Cohen’s d). Conversely, other features, such as the 
minimum and maximum horizontal positions of drawings, were infrequently selected or had small effect sizes.  
 
Table 3. Cohen’s d (absolute value) for each of the 28 logfile features used to build predictive models. 
 

Logfile feature Off-
Task 

No-
Talk 

Task-
Solving 

Other 
Talk 

Peer 
Inter. 

Number of total events 0.169  0.062   
Cumulative number of events in the session 0.707 0.434 0.331 0.006  
Proportion of time students spent drawing     0.532 
Number of lines drawn  0.185  0.019  
Total length of lines drawn  0.207  0.323  
Number of points drawn      
Number of points erased  0.106  0.179  
Number of times students used pointer functionality (displays a 
temporary dot on all tablets in the group) 0.013     

Number of time entire screen was cleared (all drawing erased) 0.111     
Number of undo actions    0.202  
Number of students who drew at least once     0.704 
Number of students who scrolled at least once    0.078  
Number of students who performed at least one action on their tablet 0.519 0.627 0.447  0.608 
Proportion of time students spent executing actions on the tablet      
Maximum number of students simultaneously executing actions on the 
tablet    0.161  

Number of times students scrolled  0.007 0.025 0.127  
Standard deviation of scroll position while scrolling (captures speed) 0.100     
Range of scroll positions  0.047 0.127   
Maximum difference between different students' scroll positions 0.547  0.250 0.070  
Mean difference between different students' scroll positions    0.044  
Minimum horizontal position of drawings    0.081  
Maximum horizontal position of drawings      
Minimum vertical position of drawings   0.144 0.181  
Maximum vertical position of drawings      
Horizontal position of the center of mass of drawings 0.460 0.221  0.127  
Vertical position of the center of mass of drawings 0.445   0.032 0.309 
Horizontal position of the drawing center of mass relative to the 
horizontal range of drawing      

Vertical position of the drawing center of mass relative to the vertical 
range of drawing 0.037     

 
As expected, the number of students who performed at least one action on their tablet during the one-

minute clip, was a strong predictor of the types of collaborative interactions. This feature was selected for four of 
the five models and achieved some of the highest values for d (ranging from 0.447 to 0.627). This strong predictive 
power is interesting as it suggests that the students’ collaboration is indeed observable in their tablet activity, 
rather than the collaboration only being observable outside of the collaborative tool. 

The cumulative number of interaction events since the beginning of the task was also a strong predictor. 
It was one of only two features that was selected in four different models, and it had large d values (up to 0.707) 
in most models except for “other talk” (d = 0.006). This finding is interesting since the cumulative number of 
events does not simply capture the events within the current one-minute clip. Rather, it indicates how much 



students used the tablets since the beginning of the task. As such, it suggests that prior behavior is predictive of 
current collaboration. 

Both the vertical and horizontal position of drawings on the worksheet were effective predictors of the 
types of student interactions. Vertical position of the drawing is an indicator of how far the students have made it 
through the worksheet, since students tend to work from top to bottom. Similarly, writing is usually done from 
left to right. As such, the horizontal position of actions on the worksheet can be used to identify productive work 
since unproductive drawing (e.g., doodling) is less likely to start at the left side of the worksheet. Overall, the 
vertical positions of the drawing interactions were more predictive than the horizontal positions, and the center of 
mass of the drawing was more predictive than other indicators of location (e.g., as minimum and maximum 
positions).  

The students’ scroll position were also predictive of key types of student interactions, perhaps because 
scroll features can be an indicator of progress on the task. Students who are scrolled further down are more likely 
to have made more progress towards completing the task. The strongest predictor related to scroll position was 
the maximum difference between students scrolling position, an indicator of whether students are paying attention 
to the same part of the worksheet. 
 This work is in its early stages and future data collection and model refinement will be necessary to 
improve predictions and incorporate them into tools for teachers. However, the potential of this method is clear 
from these initial findings. Future work will focus on improving models by taking advantage of additional data 
sources that are available in a live classroom setting. For example, Viswanathan and VanLehn (2017) have 
successfully combined audio data, collected using unidirectional headset microphones, with action logs to identify 
different types of collaboration. Although distributing individual headsets to each student in a live classroom is 
not feasible, we are investigating how the audio captured by the tablets’ integrated microphones can improve our 
models. Similarly, future work will explore how the tablets’ accelerometers can be used to improve models. Data 
from accelerometer could be used to give us insights about when students turn and move their tablets—for 
example, to show their perspective to a teammate. In addition, this early work identified simple interaction 
behaviors, while later work will address behaviors drawn from the research on successful groups. 

Supporting students during collaborative learning is essential for effective implementation of this form 
of pedagogy, which is being used more extensively across higher education. However, we have found that 
instructors rarely have the expertise to assess and intervene successfully to support collaborative interactions 
(Mercier, Shehab & Kessler, under review), focusing almost exclusively on content rather than feedback to groups 
about their problem-solving processes. There is value of giving instructors real-time insight into group processes 
during class, rather than relying on their prior knowledge of collaboration to decide how to intervene or 
retroactively analyzing groups through video analysis. By matching tablet action logs to video analysis, we plan 
to leverage the automatic analysis of student actions on tablets to give instructors insight into which groups need 
attention, and perhaps even guidance about the types of intervention that might be needed. Such guidance will not 
only improve collaborative learning for students, but also teach instructors about collaborative interactions and 
help them to better assess groups themselves. Further research will address the question of how to best provide 
insights to the instructor in an actionable and meaningful way. 
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