Computers & Education 86 (2015) 224—235

Contents lists available at ScienceDirect

Computers
Education

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

Modeling how incoming knowledge, persistence, affective @CmssMark
states, and in-game progress influence student learning from
an educational game

Valerie J. Shute **, Sidney D'Mello °, Ryan Baker ¢, Kyunghwa Cho ?,
Nigel Bosch °, Jaclyn Ocumpaugh ¢, Matthew Ventura ?, Victoria Almeda ©
2 Florida State University, USA

b University of Notre Dame, USA
€ Teachers College, Columbia University, USA

ARTICLE INFO ABSTRACT
Article history: This study investigated the relationships among incoming knowledge, persistence, affec-
Received 19 June 2015 tive states, in-game progress, and consequently learning outcomes for students using the

Received in revised form 28 July 2015
Accepted 3 August 2015
Available online 8 August 2015

game Physics Playground. We used structural equation modeling to examine these re-
lations. We tested three models, obtaining a model with good fit to the data. We found
evidence that both the pretest and the in-game measure of student performance signifi-
cantly predicted learning outcome, while the in-game measure of performance was pre-

iefévgfi:/is;tates dicted by pretest data, frustration, and engaged concentration. Moreover, we found
Learning evidence for two indirect paths from engaged concentration and frustration to learning,
Physics via the in-game progress measure. We discuss the importance of these findings, and
Persistence consider viable next steps concerning the design of effective learning supports within
Engagement game environments.

© 2015 Published by Elsevier Ltd.

1. Introduction

Good teachers are keenly aware that students differ along a number of important dimensions which can influence
learning. The process of learning new knowledge and skills can trigger a range of emotional responses, wide variation in
students' behaviors, and consequently varying learning outcomes. While one teacher cannot manage all of these individual
differences in a typical classroom setting, some educational games are beginning to model—with the goal to support—such
variation (e.g., Conati & Maclaren, 2009). The main goal of these adaptive educational games is to create an engaging and
flexible environment that supports learning for a broad range of learners. Accomplishing this goal depends largely on
accurately measuring relevant learner characteristics, such as the type and level of knowledge, skills, personality traits, as well
as dynamic cognitive and affective states —and then determining how to leverage the information to improve student
learning (Conati, 2002; Park & Lee, 2004; Shute & Zapata-Rivera, 2012; Shute, Lajoie, & Gluck, 2000; Snow, 1994). An
additional challenge involves doing all this within the context of a game without disrupting flow (Csikszentmihalyi, 1990),
which is often experienced while interacting with a well-designed game.
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This paper describes the results from a multi-method study, which assessed learners along multiple dimensions, including
field observations of student affect, measures of persistence and gameplay, and learning (i.e., conceptual physics under-
standing), within an educational game called Physics Playground (see Shute & Ventura, 2013). The primary aim of our
research is to establish the ways that specific affective states (e.g., frustration, confusion boredom, and engaged concentra-
tion), persistence, and in-game performance collectively influence learning. We use a structural equation modeling frame-
work to investigate how these factors interact to influence each other and ultimately learning. While individual pairs of these
measures have previously been researched, this paper represents — to the best of our knowledge — the first attempt to
integrate all of these factors into a comprehensive model.

We chose to use an educational game for our assessment and learning environment for several reasons. Educational games
have emerged as a genre of technology that has particularly high potential for creating rich and engaging learning experiences
that capture students' enthusiasm and promote meaningful learning (see Clark, Tanner-Smith, & Killingsworth, 2014 for a
recent meta-analysis). That is, core features of well-designed games (e.g., problem solving, adaptive challenges, and ongoing
feedback) can engender motivation, which in turn supports engagement and learning (e.g., Shute, Rieber, & Van Eck, 2011). In
addition, adaptive challenges and dynamic performance feedback in a game help to create an environment that can foster the
sense of flow (Csikszentmihalyi, 1990) and potentially cultivate the growth mindset that engenders effort-driven, challenge-
centered competency development (Dweck, 2006; Yeager & Dweck, 2012). These same good-game features can also
potentially influence persistence (or “learned industriousness,” see Eisenberger, 1992) where individuals who are required to
exert high effort in one task will continue to exert high effort in a subsequent task (Shute, Ventura, & Ke, 2015). Finally, games
allow us to use performance-based assessments of constructs like persistence and engagement which can be more authentic
and valid than their self-report measure counterparts (Duckworth & Yeager, 2015; Ventura & Shute, 2013).

Well-designed games can also promote meaningful affective experiences for students, which is important given the
inevitable role that affect plays during learning (e.g., Calvo & D'Mello, 2011; Kim & Pekrun, 2014). This is particularly
important because affect can indirectly influence learning outcomes by modulating cognitive processes in significant ways
(see Fiedler & Beier, 2014). Positive affective states such as delight, excitement, and eureka are experienced when tasks are
completed, challenges are conquered, insights are unveiled, and major discoveries are made via creative exploration and
problem solving. However, not all affective states experienced in good games are necessarily positively experienced. For
example, students get confused when outcomes do not match expectations, when they encounter challenging impasses, and
when they are unsure about how to proceed (e.g., Andres et al., 2014; D’'Mello & Graesser, 2014a). Frustration occurs when
students make mistakes, get stuck, or when important goals are blocked (Kapoor, Burleson, & Picard, 2007). Gee has noted
that frustration is a characteristic aspect of many games, even highly successful games; though in a game context, even
frustration can be part of a challenging and enjoyable overall experience (Gee, 2007).

Mild levels of confusion and frustration are important parts of the effortful problem solving needed to successfully sur-
mount challenges and learn (D’Mello & Graesser, 2014b). However, intense or prolonged confusion and frustration can lead to
anxiety and possibly despair (Zeidner, 2007). When this occurs, students are at risk of becoming disinterested and disillu-
sioned which can lead to boredom and eventual disengagement (D'Mello & Graesser, 2012; Pekrun, Goetz, Daniels, Stupnisky,
& Perry, 2010). Instead of engaging deeply in creative exploration, struggling and disengaged students exhibit problematic
behaviors such as systematic guessing (Rodrigo et al., 2007) or looking for solutions rather than discovering them (e.g.,
Aleven, McLaren, Roll, & Koedinger, 2006; Nelson-Legall, 1987). These behaviors associated with boredom—and the negative
affect that triggers them (Baker, D'Mello, Rodrigo, & Graesser, 2010)—lead to poorer learning, lower self-efficacy, diminished
interest, and increased attrition (Csikszentmihalyi, 1975; Mann & Robinson, 2009; Patrick, Skinner, & Connell, 1993; Perkins &
Hill, 1985; San Pedro, Baker, Bowers, & Heffernan, 2013). To prevent this negative spiral, research is needed for developing
just-in-time, affect-sensitive interventions that help students persist through the “hard fun” of learning with games without
losing the qualities that make games uniquely engaging and effective. An important first step in this research is to understand
relationships between affect, in-game progress, and learning outcomes during game-play.

The current study is focused on modeling the relationships among affective states, in-game performance, persistence, and
outcome measures of understanding physics principles, within the context of the game Physics Playground. The data we used
in this paper were collected while students interacted with the game in their school's computer lab. A unique feature of the
research presented here is the use of behavioral and observational measures rather than self-report measures, where
possible. That is, surveys were only used for collecting student demographic information, but observational and performance-
based measures were used for the other constructs. Recent reports on how the various constructs targeted in this study are
currently measured underscore the overreliance on student self-report measures by the education research community (e.g.,
Atkins-Burnett, Fernandez, Akers, Jacobson, & Smither-Wulsin, 2012; Duckworth & Yeager, 2015; Farrington et al., 2012).

Currently, the field finds itself in a loop where self-report data informs theory and program interventions, which use self-
report measures to evaluate the program. However, self-report measures for constructs such as persistence (e.g., | work hard
no matter how difficult the task) have several limitations. First, they are subject to “social desirability effects” that can lead to
false reports about behavior, attitudes, and beliefs (Krosnick, 1999; Paulhaus, 1991). This refers to the tendency for people to
answer in line with what society or the researchers view as favorable rather than their actual beliefs. This effect can lead to the
inflation of scores related to good behaviors and/or the reduction of scores related to bad behaviors in the self-report. Another
issue with self-report is that people sometimes have different conceptual understandings of the questions (e.g., what it means
to “work hard” as part of a persistence question), leading to low reliability and validity (Lanyon & Goodstein, 1997). Finally,
self-report items often require that individuals have explicit knowledge of their skills and dispositions (see, e.g., Schmitt,
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1994), which is not always the case. People may find it difficult to accurately score themselves along the scales provided in a
self-report (e.g., the ambiguity between good and very good) because they possess different levels of knowledge about
themselves and/or different personalities (e.g., some are humble while others are more confident about themselves) and
these need to be compared to some implicit standard, which also varies from respondent to respondent. All of these
weaknesses may undermine self-report as a measure for these constructs. At the very least, they motivate a more objective
approach to measurement.

In this paper, we interweave disparate sources of objective data from students as they played Physics Playground. These
include: (a) log file data of in-game progress, (b) observational data on student affect during gameplay, (c) observations of on-
task and off-task behaviors during game-play, (d) performance-based measures of trait persistence, (e) estimates of prior
knowledge of Newtonian physics, and (f) learning outcome (i.e., physics understanding). Our main analytical approach
involved the construction of structural equation modeling (SEM) to simultaneously examine the relative contribution of all of
these variables to the development of conceptual physics understanding.

Structural equation modeling (SEM) is a family of related statistical techniques for testing hypothesized relationships
among variables. SEM is often used as a confirmatory (a priori) technique where theory drives the specification of the model
(Hoyle, 1995); but exploratory SEM also exists (e.g., Asparouhov & Muthén, 2009). Generally, SEM analysis focuses on the fit of
the data to the theoretical model (Schumacker & Lomax, 1996). SEM also allows the analyst to make quantitative estimates of
model parameters in addition to estimating goodness of fit. An advantage of using SEM over other statistical analyses that
integrate multiple relationships into a single model is the inclusion of latent variables and the ability to extract measurement
error in the analysis (Cudek, du Toit, & Sorbom, 2001).!

2. Method
2.1. Participants

Our sample consisted of 137 8th and 9th grade students (57 male, 80 female) who were compensated with a $25 gift card
for participating in this study. Students were enrolled at a large K-12 school with a diverse population located in the
southeastern U.S. We selected students in the 8th and 9th grades because of the alignment of the Physics Playground content
to the Next Generation Sunshine State Standards relating to Newtonian Physics, at those grade levels. The students played
Physics Playground individually on computers located in the school's lab. They played in groups of about 20 students in each
of the 7 periods per day (i.e., one group of about 20 students during Period 1, another group during Period 2, and so on). There
were four sessions altogether across four days. The first session, Day 1, involved completing assessments (i.e., pretest of
physics, persistence performance measure, and demographic survey) and engaging in an orientation to the game. The second
and third sessions, Days 2 and 3, entailed playing the game for the full approximately hour-long sessions; and the fourth
session, Day 4, was divided into playing the game and then completing additional assessments (i.e., physics posttest and
questionnaire about the game).

2.2. Physics Playground

Physics Playground (PP, formerly “Newton's Playground,” see Shute & Ventura, 2013) is a 2D educational video game that
was developed to measure and help support middle and high school students' learning of conceptual physics related to
Newton's laws of force and motion, mass, gravity, potential and kinetic energy, and conservation of momentum. A problem
(or level) in PP requires the student to guide a green ball to a red balloon. The primary way to move the ball is by creating
simple machines or “agents of force and motion” as they are called in the game (i.e., ramps, levers, pendulums, and
springboards)—drawn with colored lines using the mouse—that “come to life” on the screen. A ramp is any line drawn that
helps to guide the ball in motion (e.g., to get the ball over a hole). A lever rotates around a fixed point, usually called a fulcrum,
and is useful when a student wants to move the ball vertically. A swinging pendulum directs an impulse tangent to its di-
rection of motion, and is typically used for exerting horizontal force. A springboard stores elastic potential energy provided by
a falling weight, and is useful when a student wants to move the ball vertically. Everything in the game obeys the basic rules of
physics relating to gravity and Newton's laws.

Fig. 1 displays a sample problem in PP (on the left). Here, the student must draw a pendulum using a pin (little black circle)
to make it swing down to hit the ball (surrounded by a heavy container hanging from a rope). In the depicted solution (on the
right), the student drew a pendulum that swings down to move the ball. To succeed, the student should manipulate the mass
distribution of the club and the angle from which it was dropped, to produce just the right amount of force to get the ball to
the balloon.

PP includes seven playgrounds (each one containing 10—11 problems, for a total of 74 problems) that get progressively
more difficult. Each problem is designed to be optimally solved by a particular agent (or agents) as discussed above. The
difficulty of a problem is based on a number of factors including the relative location of ball to balloon, obstacles between the
ball and balloon, and the number of agents required to solve the problem. PP also includes tutorial videos that show students

1 See Kline (2011) for an excellent introduction to structural equation modeling, from concept to techniques.
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Fig. 1. Pendulum solution for a simple Physics Playground problem.

how to create and use the various agents; these videos can be watched at any time during gameplay. PP is nonlinear in that
students have complete choice in selecting playgrounds and levels; however, there is a natural ordering to the interface that
many students follow. Progress in the game is represented by silver and gold trophies, which are displayed in the top left part
of the screen. While a silver trophy is obtained for any solution to a problem, students earn a gold trophy if a solution is under
a certain number of objects (the threshold varies by problem, but is typically < 3). Achieving a gold trophy (which is worth
double the points of a silver trophy) requires the efficient solution of a problem using the agent or agents that problem was
designed to involve. PP maintains detailed log files that record the problem, student actions and when they occurred, system
responses, trophies awarded, and so on.

2.3. Procedure

Students played Physics Playground for about 2.5 h in total (across the four sessions spanning 4 day as described earlier).
The study took place in one of the school's computer labs. The computer lab contained about 30 computers, each with a
monitor, mouse, keyboard, webcam, and headphones.

We administered a 15-min qualitative physics pretest during the first session and an isomorphic posttest at the end of the
fourth session (both online). We also administered an online performance-based measure of persistence during the first
session (see Ventura & Shute, 2013 for a validation study of the measure) as well as a demographics survey collecting in-
formation about students' age, gender, and so on. After completing the Day 1 measures, the students were introduced to
Physics Playground. The instructions were as follows:

You will now play a video game called Physics Playground. In this game your goal is to get a ball to a balloon. In each problem
you will need to draw what we call “agents” to help move the ball around the screen. Please begin with playground 1 which
shows you the basics of the game. Also at any time you can click on the text at the bottom of the screen labeled “agent menu”
to watch a video of each agent. When you solve a problem you will be given a gold or silver trophy for the agent you used to
solve the problem. You get 1 point for a silver trophy and 2 points for gold trophy. Your total score for each agent is displayed
in the top left part of the screen. Your overall goal in the game is to get as many points as possible for each agent. Good luck!

Students began the first session by watching the agent tutorial videos and then were instructed to begin playing play-
ground 1. After students finished playground 1 they were allowed to play any playground they wanted but were told that
higher numbered playgrounds are harder. Proctors were instructed to tell students to watch the agent tutorial videos if they
were stumped on a problem.

2.4. Measures

2.4.1. Physics understanding

We used a qualitative physics test consisting of 32 pictorial multiple choice items. Its purpose is to assess implicit
knowledge of Newton's three laws, balance, mass, conservation and transfer of momentum, gravity, and potential and kinetic
energy (see Masson, Bub, & Lalonde, 2011; Reiner, Proffit, & Salthouse, 2005). We split the qualitative physics test into two
matched forms that were counterbalanced between pretest and posttest (Form A = 16 items; Form B = 16 items). For
example, Fig. 2 shows an item involving a pendulum. The correct answer is “B.” Reliability for the physics test was acceptable
(Form A: o, = .72; Form B: o = .73; see Shute, Ventura, & Kim, 2013). Two physics experts reviewed the tests and provided
recommendations. The tests were then piloted with students prior to administration.
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Fig. 2. Two example test items from the qualitative physics test.

24.2. Persistence

Following the completion of the physics measure on Day 1, we administered a short performance-based measure of
persistence (PMP) that measures how much effort people exert in difficult tasks (Ventura, Shute, & Zhao, 2012). The PMP is
administered online (in an Internet browser), and presents a variety of hard and easy problems (e.g., picture comparison
tasks) one at a time over a series of trials. Individuals make their response and press the “guess” button. If the answer is
incorrect, the screen displays “incorrect” and the individual can try again (for up to 180 s). At any time the individual can also
choose to select the “skip” button to leave the current trial and go on to the next one. If the individual guesses correctly, the
person is told that he or she is correct. A trial is classified as “solved” if the person accurately completes the trial. A trial is
classified as unsolved if the person skips the trial or is timed out after 180 s. Time spent on unsolved trials is the critical
information in the PMP that informs the assessment of persistence. Although the time spent on solved trials is likely a
function of persistence as well, it may be dependent on background knowledge or ability in relation to the respective
problem.

In this study, we used 6 problems—3 easy and 3 impossible (i.e., where students are told that four differences exist when
there are really only three differences — see Fig. 3 for an example). The instrument has been validated previously (see Ventura
& Shute, 2013) against a game-based assessment of persistence (significantly correlated) and a self-report survey of
persistence (not significantly correlated).

2.4.3. Observation of affective states

Students' affective states and on-task vs. off-task behaviors were observed during their interactions with Physics Play-
ground, using the Baker-Rodrigo-Ocumpaugh Monitoring Protocol (BROMP) for field observations (Ocumpaugh, Baker, &
Rodrigo, 2015). In BROMP, trained observers perform live affect and behavior annotations by observing students one at a
time, using a round-robin technique (observing one student until visible affect is detected or 20 s have elapsed and moving on
to the next student). The observers use peripheral vision or side glances and make a holistic judgment of the students’ affect
based on facial expressions, speech, body posture, specific gestures, and information on the computer screen (e.g., whether a
student is progressing or struggling). It is not always possible to observe both affect and behavior in situations where students
cannot be observed (e.g., bathroom breaks, occlusions) or where the observer is not confident about an observation; in these
cases the observer records a “?”.

Observations of different students are conducted in a pre-determined order to maintain a representative sampling of
students' affect, rather than focusing on the most interesting (but not most prevalent) things occurring in the classroom.
Every BROMP observer is trained and tested with respect to the protocol and must achieve agreement of kappa > 0.6 with a
certified BROMP observer before being certified. The coding process is implemented using the HART application for Android
devices (Ocumpaugh et al., in press), which enforces the protocol while facilitating data collection. In this study, observation-
codes recorded in HART were synchronized with the videos recorded on the individual computers and with log-files of
gameplay using Internet time servers.

It should be noted that there are many possible affect annotation schemes, each with their strengths and weaknesses (see
Porayska-Pomsta, Mavrikis, D'Mello, Conati, & Baker, 2013 for a recent review). BROMP was selected for this study because it
affords real-time affect annotation of a large number of students without interrupting or biasing the measures by asking
students to self-report affect. It has been shown to achieve adequate reliability across dozens of studies with a variety of
learning environments (Ocumpaugh, Baker, & Rodrigo, 2015) and from observing students during the first day of data
collection. However, due to observer error, delight was not coded during the first and second day of data collection, and will
not be included in this paper's analyses. In addition to affect, student behaviors were coded as on task when looking at their
own computer and playing the game, on-task conversation when conversing with other students about what was happening
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Fig. 3. Screenshot of picture-comparison item (persistence measure).

on their own or others' screens or about physics concepts, and off task in other situations (e.g., task-unrelated conversation,
watching other students without conversation, using a cellphone).

Webcams were used to capture student facial expressions for use in further analysis. This data is beyond the scope of the
current paper's research questions, but see Bosch et al. (2015) and D'Mello et al. (2015).

3. Results

We first examine whether or not the participating students learned any physics-related knowledge from playing the game.
Next, we present details on the BROMP coding, before proceeding with the SEM analyses.

3.1. Learning

Did students who played Physics Playground for 2.5 h actually learn any physics principles (despite the fact that there was
no instructional support in the game)? We began by examining the pretest and posttest data by form (i.e., Forms A and B,
counterbalanced between pretest and posttest). The range of possible scores on each test was from 0 to 16 (the latter rep-
resenting a perfect score). Because pretest scores indicated that Form B was more difficult than Form A, we equated the scores
using the linear linking function (Holland, Dorans, & Petersen, 2007; Kolen & Brennan, 2004).? Using the equated scores, we
then computed a repeated measures ANOVA on the pretest and posttest data. The ANOVA indicated a significant increase
from pretest (M = 6.99; SE = 0.18; 95% CI [6.65—7.35]) to posttest (M = 7.50, SE = 0.17; 95% CI [7.20—7.83]); F(1,127) = 7.70,
p = .006. Partial eta-squared = 0.06, a medium effect size. Moreover, when we examined gender differences relative to pretest
to posttest gains, the interaction was not significant: F(1, 126) = 0.67; p > .05. This suggests that both males and females
improved comparably. These results replicate prior findings using the game (e.g., Shute et al., 2013).

3.2. Affective states and task-related behaviors

The affective states we observed (via BROMP observations) included: frustration, confusion, boredom, engaged concen-
tration, and delight. We additionally captured the following behaviors: off-task behaviors, on-task gameplay, and on-task
conversation about the game. We obtained 1767 observations of affective states and 1899 observations of on-task/off-task
behavior during the two days of observational data used in this study (i.e., Days 2 and 3).

The overall number of observations made during gameplay, per affective state across Days 2 and 3 were: engaged con-
centration (1378; 78%), frustration (212; 12%), boredom (88; 5%), confusion (35; 2%), and delight (34; 2%). On-task behavior
occurred 77% of the time, on-task conversation 18%, and off-task behavior was seen in just 5% of the observations, a much
lower proportion than seen for other types of educational technology (e.g., Cocea, Hershkovitz, & Baker, 2009) or in tradi-
tional classrooms (Karweit & Slavin, 1982). The distributions of affective state variables were highly skewed, so for our SEM
analysis we transformed the data within each affective state into five levels (1—5) based on the range of data for that

2 The transformation involved setting z-scores of the two forms to be equal such that (A — Mean,)/SDa = (B — Meang)/SDg. Therefore, the linear equating
transformation from Form B to A is: B = Meang + [SDg « ((A — Meana)/SDa)].
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Table 1
Correlations among affective variables.
Confusion Boredom Engaged concentration
Frustration 0.29** -0.18* -0.76*
Confusion 0.01 -0.40**
Boredom -0.36™*

**p < .01 level; *p < .05.

particular state. Note that we did not include on-task/off-task behavior in the SEM analysis since students were almost always
on-task, thus there was very little variance in the data. Delight was also excluded as it was only recorded during Day 3.

Our targeted affective variables are inter-related, as shown in the correlation matrix in Table 1. Engaged concentration was
significantly and negatively related to frustration, confusion, and boredom. That is not surprising as those three affective
states (i.e., frustration, confusion, and boredom) are typically considered to be negatively valenced. Second, frustration was
positively related to confusion, but negatively related to boredom, complementing research that shows that confusion is
frequently seen as a precursor to frustration (see D'Mello & Graesser, 2012) and these states tend to co-occur (Bosch &
D'Mello, 2014). The negative relationship between frustration and boredom can be understood as follows. A person needs
to be adequately invested in the learning process to experience frustration, but those who are experiencing boredom may not
be sufficiently invested to even experience frustration. Finally, there was no relation between confusion and boredom.

3.3. Structural equation modeling

We conducted structural equation modeling (SEM) to predict the learning outcome from our key variables: prior
knowledge (i.e., pretest score), persistence, affective states, and in-game performance data. Our approach started out as
confirmatory, but rather than leaving inappropriate links in a theoretical model, we wanted to test and refine our theoretical
model. Consequently, we used an approach that was primarily confirmatory but also took into consideration which of several
principled models was most appropriate. Our SEM models were estimated using lavaan—an R-package for structural
equation modeling—using maximum likelihood robust (MLR) estimation to fit the non-normal data to our hypothesized
model (Rosseel, 2012). Full Information Maximum Likelihood (FIML) estimation was used to handle the occasional missing
values.

Prior to conducting the full SEM, we conducted confirmatory factor analysis (CFA) to estimate our in-game and learning
constructs, each construct having four indicators. The results of the CFA yielded the following: x° (19) = 17.8, p = .54. The
Comparative Fit Index (CFI) = 1.00, the root mean square error of approximation (RMSEA) = 0.00 (90% CI: 0.00—0.069), and
the standardized root mean residual (SRMR) = 0.04, all of which suggest a good fit of the two single-factor constructs (i.e., in-
game performance and learning) with the data.?

Having verified the adequacy of the measurement model, we proceeded with the structural model by specifying direc-
tionality among our two factors (i.e., in-game performance and learning outcome) and six observed variables (i.e., pretest,
persistence, frustration, engaged concentration, confusion, and boredom). The rationale for the hypothesized model was that
individuals' level of persistence (as measured via the picture comparison task) and incoming knowledge (physics pretest
score) would influence their affective states as well as how they played the game—such as fueling engaged concentration that
would enable a person to stick with a hard level and try various ways to solve it. Once immersed in gameplay, affective states
would change dependent on difficulties and successes in solving the games' levels. We hypothesized that affective states
would influence performance in the game as evidenced by the in-game construct, which consisted of the number of gold
trophies received for ramp, lever, pendulum, and springboard solutions. Covariance relationships were added between the
affect variables since they are expected to covary. Finally, we predicted that the degree to which an individual was successful
in the game (gold trophy data) would positively predict learning outcome (i.e., posttest score).

We tested three similar models based on the rationale above. The first two models were the same except for the re-
lationships involving affective states. In Model 1, we linked the four affective states to in-game behaviors and also directly to
the outcome measure. In Model 2, affective states were only linked to the in-game measure. We did not include the direct
relationships among the affective states and learning outcome because the results from the first model showed no significant
paths. Findings revealed that Model 2 was not statistically different from Model 1 (x° (4) = 2.38, p = .67). Model 2 was a
simpler model, which may be preferred.

3 Structural Equation Modeling (SEM), CFA specifically, relies on several statistical tests to determine the adequacy of model fit to the data. The chi-square
test indicates the amount of difference between expected and observed covariance matrices. A chi-square value close to zero indicates little difference
between the expected and observed covariance matrices. The Comparative Fit Index (CFI) compares the fit of the baseline model (which assumes there is no
causal relationship among variables) to the theoretical model. CFI ranges from 0 to 1 with a larger value indicating better model fit. Acceptable model fit is
indicated by a CFI value of 0.90 or greater (Hu & Bentler, 1999). Root Mean Square Error of Approximation (RMSEA) is equal to the discrepancy function
adjusted for model degrees of freedom. A smaller RMSEA value indicates better model fit. Acceptable model fit is indicated by an RMSEA value of 0.06 or
less (Hu & Bentler, 1999; Kline, 2011).
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Fig. 4. Model 2 with parameter estimates. Notes: (1) **p < .05; *p < .10; (2) Black links = positive coefficients, dashed links = negative coefficients, grey
links = non-significant; (3) All variables are positively scaled; (4) R = ramp; L = lever; P = pendulum; S = springboard.

Model 2 included two latent measurement models for the in-game measure and learning, and six observed variables. Each
of the latent constructs had four indicators measuring the construct. The fit indices of Model 2 were: ¥? (61) = 57.6, p = .60;
CFI = 1.00; RMSEA = 0.00 (90% confidence interval: 0.00—0.05), and SRMR = 0.05. Fig. 4 shows the results of the parameter
estimates from the SEM analysis.

According to our hypothesized model, learning—as measured via the physics posttest—is a function of incoming
knowledge (pretest) and in-game performance, while in-game performance is a function of incoming knowledge and various
affective states. The learning construct for our measurement model, labeled “posttest” in Fig. 4, shows that the lever and
springboard subscales are significantly related to learning (the ramp sub-scale was fixed at 1.0 to identify the model). For the
in-game performance measure, the factor loadings for gold trophies related to lever, pendulum, and springboard were sig-
nificant (the ramp gold trophy was set to 1.0).

We speculated that persistence would differentially influence various affective states (e.g., positively predicting engaged
concentration and frustration), but that was not the case. Thus, we created our final model (Model 3), shown in Fig. 5, which
eliminated persistence and additionally eliminated one of the indicators of our learning construct (i.e., pendulum posttest*)
given its non-significant relation to learning. The fit indices of the revised measurement model were good ¥? (13) = 12.8,
p = .46; CFI = 1.00; RMSEA = 0.00 (90% confidence interval: 0.00—0.08), and SRMR = 0.04, so we proceeded with the
structural model (Model 3).

Fit indices for Model 3 were good: x? (42) = 43.2, p = .42; CFI = 0.99; RMSEA = 0.02 (90% confidence interval: 0.00—0.06),
and SRMR = 0.04. Within the model, pretest was a positive, significant predictor of in-game performance (b = 0.13, p = .003).
Additionally, frustration (b = 0.33, p = .048) and engaged concentration (b = 0.38, p = .012) positively predicted in-game
performance. Pretest (b = 0.17, p < .001) and the in-game measure (b = 0.15, p = .031) were both significant predictors of
learning, as expected. Pretest also significantly predicted engaged concentration (b = 0.12, p = .035).

Several indirect paths were also tested: Engagement — In-Game Performance — Posttest (p = .042) and Frustration — In-
Game Performance — Posttest (p = .086). These suggest that there may be two paths to success—one through engaged
concentration and the other through frustration (albeit the latter is marginally significant). Two additional indirect paths
were tested: Pretest — In-Game Performance — Posttest (p = .045); and one path that was not significant:
Pretest — Engagement — In-Game Performance — Posttest (p = .147). In short, affective states influence learning via shaping
in-game performance while incoming knowledge influences learning directly as well as indirectly via in-game performance.

4 Results were identical when we tested a version of Model 3 with persistence eliminated but with pendulum posttest included as an indicator of our
learning construct.
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4. Discussion

Well-designed games are intentionally created to support motivation and engagement, but the mechanisms by which
these constructs engender learning are not entirely understood. In particular, researchers do not fully understand how these
constructs interact with students’ prior knowledge and performance within the system. In this research, we sought to explore
the various relationships among incoming knowledge, persistence, affective states, in-game progress, and learning.

In terms of learning from the game, we found that students did significantly improve from pretest to posttest, and the 95%
confidence intervals show clear differences between the pretest and posttest score distributions. Thus an improvement from
6.99 to 7.50 may not seem like much, but it occurred without any instructional intervention. In another study (Kim & Shute, in
press) using undergraduate students rather than middle school students, the test means were slightly higher than reported in
the current study (pretest = 10.4; posttest = 11.0), but the scores are still far from perfect, likely due to the conceptual dif-
ficulty of the content. Future research in this area can focus on designing and incorporating instructional interventions into
the game (i.e., visualizations, explanations) towards the goal of personalized and more formal physics learning.

The results of our SEM analyses revealed that incoming knowledge predicted engaged concentration, in-game progress
(i.e., receipt of gold trophies for ramp, lever, pendulum, and springboard), and learning outcome. Perhaps more interesting is
the finding that the affective states of frustration and engaged concentration influenced the learning outcome indirectly by
way of in-game performance. We did not find that either confusion or boredom predicted in-game progress, likely due to
their states being rarely observed among the students in this study, thus having no meaningful variability. The findings for
engaged concentration and frustration confirm our basic hypothesis.

The influence of engaged concentration on in-game behaviors and learning might be expected, but the effects of frus-
tration are a little more interesting. Educators often work to minimize student frustration, but a number of studies suggest
that this tendency may have unintended consequences. In work with educational games, Gee (2007) has suggested that
adaptive challenges could help players to achieve a state of “pleasurable frustration,” which motivates players to overcome
obstacles, constraints, and hard problems. Players who experience this pleasurable frustration may persevere because
reaching for goals and ultimately succeeding is highly rewarding. McGonigal (2011) has referred to this as a positive kind of
stress, called eustress, which is actually good for us, providing a sense of motivation and desire to succeed. We see this
pleasant frustration (or eustress) as a positive aspect of video games because it shows that students are being pushed to their
limits, a requirement for teaching in the zone of proximal development (Vygotsky, 1978). Some degree of repeated frustration
can also prepare students for tolerating frustration, a common emotional response in education and in life in general.

The challenge for researchers and designers is to determine the appropriate level of frustration for different types of
learners. Given that one can navigate through playgrounds with varying levels of difficulty, it is highly likely that students will
select different problem sequences. Students who want to be challenged may select higher numbered playgrounds, while
risk-averse students may avoid choosing more challenging levels altogether. Future research should investigate the potential
relationship between affect and student personalities, in order to better support how different types of learners deal with
frustration.
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The immediate goal of the research was to examine the direct and mediating variables influencing learning. Once iden-
tified, these can be used as the basis for instructional support. For instance, if a student is experiencing too many consecutive
periods of frustration, or has transitioned from frustration to boredom, some type of motivational support or intervention
may be necessary to get the student to reengage. There are a variety of potential responses a game can take when a student
encounters frustration, from supportive messages (D'Mello, Craig, Fike, & Graesser, 2009; Klein, Moon, & Picard, 2002) to
temporarily switching the student to a less challenging activity. Similarly, interventions might be designed around the finding
that confusion, which did not lead to learning in these models, was more common among those students who had shown
high levels of persistence. This relationship can be seen in Fig. 4. Prior research has shown that confusion appears to be
important in some learning contexts (D'Mello & Graesser, 2012). This relationship suggests that students might benefit from
targeted interventions, based on threshold levels of confusion, to prevent wheel-spinning (Beck & Gong, 2013) which occurs
when students are unable to successfully resolve their confusion (D'Mello & Graesser, 2014b). These interventions might be
designed to help students acquire the metacognitive awareness needed to differentiate between productive and unproductive
struggling so that they can make more efficient use of their learning opportunities. Future research in this area may involve
analyzing particular sequences of affective states relative outcome(s) rather than aggregated affective data as we used. This
could lead to more particular and effective rules to drive affective and other types of learning support.

Although predicted, we did not find any meaningful relationship involving persistence and other variables (e.g., affective
states) in the SEM models. This finding may have been due to a number of factors. First, in this study we used a shortened
version of the performance-based measure of persistence (i.e., 3 impossible and 3 easy items rather than 7 impossible and 7
easy items as we have used in past experiments; see Ventura & Shute, 2013) which may have reduced the reliability of the
measure. Second, we used aggregated percentages of affective states which could have further clouded any relations. Third,
while we found that our persistence measure significantly related to particular gameplay variables in a related study (Shute
etal.,, 2013), there was no correlation between persistence and any gameplay variable in the current study, casting more doubt
about the quality of the shortened persistence measure. Finally, the lack of relations between persistence and other variables
in our study may have been caused by the linear-relations constraint in SEM, discussed next.

This study is not without limitations. One limitation of SEM is that the techniques examine first-order (linear) relation-
ships between variables (albeit, power transformations may be made if a relationship between two variables seems
quadratic). Some of our data—such as the persistence variable—may have actually had quadratic relations with other vari-
ables. For instance, too little and too much persistence may be sub-optimal for success in the game and ultimately learning,
while some intermediate amount may be best. We focused on linear relationships as an initial step in this research. An
important next step would be to consider nonlinear relationships among constructs as well.

A second limitation pertains to the use of SEMs in general. Specifically, we proposed a structural model informed by theory
and showed that it had adequate fit from a statistical perspective. However, it is possible that alternate structural models
would also yield similarly good fits on the same data. Therefore, our proposed model and results should be taken as one
possible interpretation of the data. Other interpretations are also possible, akin to multiple theories being developed to
explain some phenomenon. An important future work item would be to structurally specify alternate models and compare
their fit to the present data.

The sample size of 137 students might also be a limitation as SEMs generally require large amounts of data due to the
number of parameter estimations needed (Kline, 2011). One common rule-of-thumb when using SEM is to use sample sizes of
at least 200 (or about 5—10 cases per parameter; see Kline, 2011). However, more recent papers suggest that smaller sample
sizes are sufficient (i.e., Sideridis, Simos, Papanicolaou, & Fletcher, 2014; Wolf, Harrington, Clark, & Miller, 2013).

In summary, by understanding the ways that affect interacts with student knowledge, persistence, performance, and
learning, we can learn to design systems that not only scaffold affect in order to promote better learning, but help to create
more persistent and more successful learners. In doing so, we can help learners to develop not just their knowledge of physics
and other content areas, but the types of self-regulated learning skills that will help them throughout their lives.
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