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ABSTRACT
Systematically unfair education systems lead to different
levels of learning for students from different demographic
groups, which, in the context of AI-driven education, has
inspired work on mitigating unfairness in machine learning
methods. However, unfairness mitigation methods may lead
to unintended consequences for classrooms and students.
We examined preprocessing and postprocessing unfairness
mitigation algorithms in the context of a large dataset, the
State of Texas Assessments of Academic Readiness (STAAR)
outcome data, to investigate these issues. We evaluated
each unfairness mitigation algorithm across multiple ma-
chine learning models using different definitions of fairness.
We then evaluated how unfairness mitigation impacts clas-
sifications of students across different combinations of ma-
chine learning models, unfairness mitigation methods, and
definitions of fairness. On average, unfairness mitigation
methods led to a 22% improvement in fairness. When ex-
amining the impacts of unfairness mitigation methods on
predictions, we found that these methods led to models that
can and did overgeneralize groups. Consequently, predic-
tions made by such models may not reach the intended au-
diences. We discuss the implications for AI-driven interven-
tions and student support.
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1. INTRODUCTION
Student assessment has been plagued with biases against
students from different demographic groups [2]. Various fair-
ness metrics have been designed to evaluate the severity of
biases [27], including biases in automatic assessments pow-
ered by machine learning [13]. Researchers have explored
methods for mitigating such biases [3, 16, 21], including for
assessment-related tasks such as student grade prediction
[18]. However, the implications of applying unfairness mit-

igation methods to educational datasets are currently not
well understood. In this paper, we explore unfairness mitiga-
tion on the State of Texas Assessments of Academic Readi-
ness (STAAR) dataset [25], including examples of what im-
pacts might be felt by students when models are optimized
for different definitions of fairness.

The influx of data stemming from education contexts has
allowed computational methods to be used for understand-
ing education [4]. Alongside the creation of computer-based
assessment methods, researchers have also analyzed current
assessment data with machine learning and other compu-
tational methods [17]. These forms of analysis allowed re-
searchers to uncover new biases towards different demographic
groups in education and assessment methods [3]. Moreover,
newer methods do not necessarily fix the biases present in
traditional assessments [21]. However, the newer methods
are needed when dealing with complex (e.g., nonlinear, mul-
timodal) educational datasets—as are new methods to ad-
dress biases present in computational analyses [7, 8].

Biases in the field of education have differing definitions,
differing impacts, and can come from different places within
educational and social systems [3]. In the study presented
in this paper we are unable to disentangle the systemic bi-
ases present in assessment systems, as is often the case with
educational data that concerns specific contexts, learning
environments, or topics. Instead, we focused on biases in
statistical measurements and biases present in the machine
learning models. In particular, we investigate how unfair-
ness mitigation methods and machine learning models im-
pact student representations in data (and predictions), and
if the biases found in these methods are analogous to bi-
ases in assessments—which may come from the assessments
themselves or from systemic biases. In this paper, we ex-
plore these issues by addressing two research questions:

Research Question 1 (RQ1): Do demographic differences in
standardized assessment scores correspond to biases in ma-
chine learning models? Standardized tests often contain bi-
ases [21]. Machine learning models have been shown to ex-
acerbate biases that are present in training data [5]. RQ1
therefore examines the link between test score differences
(including biases) and the biases that are found in machine
learning models trained on closely related data from the
same students. By comparing the biases that machine learn-
ing models elicit and the biases present in standardized test
data, we are able to disentangle some of the sources of bias



that occur in data-driven assessment, and thereby inform fu-
ture work on mitigating such biases. In alignment with pre-
vious work [3], we expect that biases present in standardized
assessments and machine learning models will not perfectly
align. If the biases do not align, differences between them in-
dicate that new biases may be introduced—or, ideally, that
there are opportunities for reducing such biases.

Research Question 2 (RQ2): What are the implications of ma-
chine learning unfairness mitigation methods when applied to
student test score prediction? Researching this provides in-
sight into the real-world implications for applying fairness
metric optimization to human-based datasets. These impli-
cations can provide insight into the types of interventions
that could take place in learning environments, because ap-
plying machine learning (or even expert-created) models to
the real world without substantively examining the possible
impacts can lead to dire consequences [1, 5].

By answering these two RQs, we tie test score biases and
machine learning biases together through unfairness miti-
gation strategies and examine the implications of applying
these strategies in education. By comparing the outputs
of unfairness-mitigated machine learning models with the
actual biases present in standardized tests we found a rela-
tionship between the two. Then, we showed how learning
environments and students are impacted from applying fair-
ness processes. Next, we address related research to position
our work in the space of educational data mining and AI
fairness research.

2. RELATED WORK
We focus on work related to fair AI methods and fair AI
used within educational data mining. For a more general
overview, see Fischer et al. [12]; we discuss fair AI, specifi-
cally, in the remainder of this section.

We first discuss fairness research being done in AI, regardless
of domain. Many different research approaches have differ-
ing definitions of fairness and what fair AI looks like. For
example, Hu et al. increased fairness in part through com-
paring differing groups positive predictive rates [16]; others
have examined several different statistical definitions of fair-
ness [6], which can even be contradictory with each other
[11]. Work has also been done to explain many of the def-
initions of fairness that are used in fair AI research [26],
independent of domain.

There is an increasing body of work in the field of educa-
tional data mining that uses fair AI, including the impact
caused by algorithmic bias in education systems [3, 20]. This
research being done in educational data mining with fair AI
methods shows the growing use of machine learning in ed-
ucation research, complementing existing work in related
topics like fair assessment (e.g., [21, 2]). These publications
represent how biases are seen within different data mining
avenues.

Using similar connections made in previous work between
fair AI methods and educational data mining, we harness
machine learning models and unfairness mitigation methods
to examine performance differences between demographic
groups in standardized tests.

Table 1: Breakdown of Demographic Groups

Demographic Identifier # Occurrences % Sample

Female 672,545 17.7%

Male 670,664 17.6%

Economic disadvantage 648,716 17.1%

Hispanic 554,697 14.6%

White 440,972 11.6%

Special education 315,072 8.3%

African American 240,901 6.3%

Asian 125,308 3.3%

Two or more races 80,817 2.1%

Pacific Islander 1,273 0.03%

American Indian 1,050 0.02%

3. METHODS
We used the assessment database from the STAAR Texas
Education Agency dataset. These data were collected from
the Teaching Trust (a now defunct leadership development
group with the goal of eliminating opportunity gaps for stu-
dents) between 2012 and 2019 [25]. This dataset has in-
formation from over 5 million students, which is approx-
imately 10% of the public school students in the United
States. The data include at most one demographic iden-
tifier per student—e.g., a student’s race or gender might be
included, but not both. Table 1 contains the breakdown of
demographic-related information in the dataset.

3.1 Machine Learning Models
The three machine learning models we used were the logistic
regression, random forest, and extremely randomized trees
models. We used 5-fold cross validation and tuned hyper-
parameters via grid search. We trained all models using
scikit-learn [22]. The logistic regression used the default
hyperparameters from scikit-learn (i.e., a small L2 regu-
larization penalty). The random forest and extremely ran-
domized trees models underwent hyperparameter tuning for
the maximum depth of trees and the proportion of features
samples for each tree.

3.2 Model Evaluation
For each of the machine learning models we used four un-
fairness mitigation methods (described in more detail be-
low): disparate impact preprocessing, reweighing, equalized
odds postprocessing, and calibrated equalized odds postpro-
cessing. We evaluated each of these model/method combi-
nations in terms of accuracy measured via area under the
receiver operating characteristic curve (AUC) and four un-
fairness metrics: statistical parity difference, disparate im-
pact ratio, average odds difference, and equal opportunity
difference (described in the Appendix).

3.3 Unfairness Mitigation Algorithms
We implemented unfairness mitigation algorithms with the
AIF360 Python library [7].

3.3.1 Disparate Impact Preprocessing
Disparate impact preprocessing compares the label (passing
the STAAR test) base rate across groups. The algorithm



takes this rate and edits features of the original data so that
it is impossible to tell which group an individual belongs to.

3.3.2 Reweighing
The reweighing algorithm adds weight to each example dur-
ing model training based upon the proportion of students
students in different demographic groups and outcome (e.g.,
positive vs. negative class) groups. The equation for the
weight is given in Equation 1.

wpositive/group1 =
(Ngroup1)(Npositive)

(Nall)(Npositive/group1)
(1)

3.3.3 Equalized Odds Postprocessing
Equalized odds postprocessing works to optimize the equal-
ized odds fairness metric by changing predicted labels as
needed to satisfy the metric. Specifically, the algorithm
solves a linear program for probabilities. From these prob-
abilities, classification labels are given [15]. An equalized
odds predictor is made for this program from predicting on
equalized odds incentive measurements for all classes.

3.3.4 Calibrated Equalized Odds Postprocessing
Calibrated equalized odds postprocessing follows a similar
process to equalized odds postprocessing; however, it op-
timizes for equalized odds over a calibrated model output.
Calibrated output is found when probability predictions align
with the actual probability of observing the predicted out-
comes [23].

4. RESULTS
We describe our results with respect to the two research
questions outlined in the Introduction.

4.1 RQ1: Machine Learning Bias compared
to Assessment Bias

RQ1 asks if biases found in machine learning models are
analogous to the biases present in the STAAR assessment.
Table 2 contains the values of accuracy and fairness metrics
found after applying unfairness mitigation algorithms.

On average we observed a 22% improvement in fairness met-
ric evaluation. However, different unfairness mitigation meth-
ods led to different trends in results. We found the dis-
parate impact preprocessing method had the smallest im-
pact, on average, across all fairness metrics. However, dis-
parate impact preprocessing yielded the highest accuracy
for each model, perhaps because it impacted the models the
least. For both the random forest and extremely random-
ized trees models, reweighing unfairness mitigation led to the
fairest predictions across all fairness metrics. We found that
for some unfairness mitigation methods, especially equalized
odds and calibrated equalized odds, the predictions were so
influenced that the accuracy was no better than chance level
(i.e., AUC ≤ .500).

4.2 RQ2: Unfairness Mitigation Implications
We answered RQ2 by analyzing each unfairness mitigation
algorithm’s impact on the STAAR data or models being
used. The disparate impact preprocessing algorithm re-
moved distinctions between groups in the dataset itself. The

disparate impact removal process preserves within-group rank-
ing of singular data points; however, group membership of
singular data points are changed so it is not possible to dis-
cern what groups individuals belong to. The reweighing
algorithm adds weights to different data points based on
frequency of group membership to remove bias. Equalized
odds postprocessing and calibrated equalized odds postpro-
cessing do not edit the original dataset. Instead, they change
output labels of singular data points with the objective of
maximizing the equalized odds of the classifications. Each
algorithm thus impacts either the student data itself or the
process used to classify students as passing or failing the as-
sessment, the implications of which need to be understood
to determine whether such methods are procedurally fair—
that is, whether the process by which decisions are made is
fair, not just the fairness of the decisions themselves [9, 6,
14].

We found that using these unfairness mitigation algorithms
resulted in unintended consequences for how students were
computationally represented. For example, after disparate
impact preprocessing, students who originally belonged to
one group were now considered part of a different group for
training. In the case of STAAR data, if the data were bi-
modal, with each group having their own pattern of demo-
graphic identifiers, students would be represented in data
with different demographic identifiers than they actually
have.

The impacts of each unfairness mitigation method are seen
in the manipulation of the STAAR data. For example, some
individuals in the “Female” demographic group were now in
the “Asian” demographic group after disparate impact pre-
processing; the algorithm preserved the within-group rank-
ing of individuals, but changed group membership in un-
intended ways. This may have created a more fair model
in terms of predictions, but while ignoring or confusing the
systemic education problem present in the data.

In contrast, the two equalized odds based algorithms effec-
tively changed whether or not students in the training data
passed or failed the assessment. This may be less drastic
than shifting students’ demographic identifiers; however, de-
cisions made upon this unfairness mitigation are imperfect
if they obfuscate the problem of unequal learning.

Finally, the reweighing algorithm introduces weights to stu-
dents for fairer classification. This method does not change
the students’ features, and thus might be considered a more
faithful representation of students. However, weighting stu-
dents may cause unintended effects as demographic group
and assessment score combinations become more impactful
to classification of others. This is especially true for students
from smaller groups, who may find their characteristics or
behaviors become far more important to a model’s decisions
than is desirable.

5. DISCUSSION
Our first research question predicted that demographic dif-
ferences in test scores do correspond to biases seen in ma-
chine learning models trained on those data. Our results
show that there were similarities between the biases present;
however, models can further propagate biases present in the



Table 2: Fairness metric calculations. The No Model row represents the metrics calculated on the original dataset (for metrics
that could be calculated from outcome labels in the dataset) for comparison to the rest of the algorithms.

Model Unfairness Mitigation AUC Stat Parity Diff Disp Imp Ratio Avg Odds Diff EqOpp Diff

No Model None – -.172 .766 – –

LogReg None .579 .113 1.419 .124 .162

RandFor None .623 -.621 0.379 -.639 -.529

Extra-Trees None .623 -.692 0.373 -.614 -.517

LogReg Disparate Impact .524 .112 1.427 .122 .161

LogReg Reweighing .474 .286 2.071 .293 .348

LogReg Equalized Odds .384 .306 1.875 .323 .333

LogReg Calibrated Equalized Odds .483 .483 2.391 .503 .486

RandFor Disparate Impact .512 -.675 0.325 -.692 -.586

RandFor Reweighing .522 .114 1.226 .123 .176

RandFor Equalized Odds .471 -.760 0.208 -.769 -.687

RandFor Calibrated Equalized Odds .472 -.438 0.232 -.425 -.398

Extra-Trees Disparate Impact .528 -.686 0.258 -.698 -.606

Extra-Trees Reweighing .518 .081 1.176 .089 .145

Extra-Trees Equalized Odds .436 -.605 0.291 0.605 -.539

Extra-Trees Calibrated Equalized Odds .445 -.665 0.235 -.668 -.597

data when trained on unfairness-mitigated data. This aligns
with other research on biases present in education [24].

Different types of biases can be measured in our machine
learning models that can not be measured within STAAR.
Models might include biases that are separate from biases
present in the test scores, indicating that machine learn-
ing models may exacerbate biases already present in data
or even introduce new biases. Additionally, putting assess-
ment data into a machine learning pipeline with unfairness
mitigation can lead to negative implications as theorized by
RQ2.

Our expectation for RQ2 was that applying unfairness miti-
gation strategies would lead to unintended real-world conse-
quences for students. Indeed, unfairness mitigation strate-
gies manipulated data in ways that could be perceived as
unfair, especially with respect to procedural fairness. We
investigated this by examining how unfairness mitigation im-
pacted the STAAR data and the classifications made. RQ2
results show if one is planning to administer data-driven
interventions in education, applying unfairness mitigation
will likely overgeneralize groups. Thus, students who re-
quire intervention may not receive it and students who do
not need intervention may receive one, not because of model
inaccuracies necessarily but because of unfairness mitigation
strategies. For example, if students with differing amount
of background knowledge are misrepresented, learning out-
comes could be negatively impacted [19]. This imprecision
of groups that comes with unfairness mitigation can lead
to unintended consequences when applied to real-world ap-
plications. Thus, unfairness mitigation methods must be
applied with caution.

5.1 Limitations and Future Work
The study in this paper explored one prediction task, which—
though representative of a large proportion of U.S. students—

is not representative of all assessments nor any of the other
educational outcomes and constructs of possible interest.
Similarly, we examined a few machine learning models with
a selection of preprocessing and postprocessing unfairness
mitigation algorithms. We focused on methods that are
common in (or well suited to) education data contexts, but
the space of possible models and unfairness mitigation algo-
rithms is far larger. Thus, future work would benefit from
working with other educational datasets, machine learning
models, and unfairness mitigation algorithms to further ex-
amine how these methods can impact the representations of
students in data analysis. Finally, a nearly insurmountable
limitation of this work is that we are unable to disentangle
the systemic biases that lead to different amounts of learning
(e.g., structural racism and classism) versus the assessment
biases (e.g., lack of cultural responsiveness) and algorith-
mic biases that contribute to biased measurement. We are
unable to resolve this problem, but we do evaluate the align-
ment of these biases in this paper, and suggest that future
work with quasi-experimental analyses may be one possible
route to address this limitation.

5.2 Conclusion
Education is plagued with unfairness for differing demo-
graphic groups [10]. Unfairness mitigation methods have
potential to reduce unfairness in data-driven assessment and
student support, but when applied to educational datasets
these methods may lead to unintended negative consequences.
We explored machine learning pipelines with unfairness mit-
igation methods applied, and examined how these methods
would affect the representations of individual students. We
expect that these findings will guide the selection of unfair-
ness mitigation methods in future work, and hope that with
our findings in mind, when decisions are made from mod-
els based on educational data, less harm is done to students
from a lack of caution when choosing models and algorithm.
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APPENDIX
A. FAIRNESS METRICS
We measured fairness according to four quantitative defi-
nitions, detailed below. The combination of these metrics
allowed us to holistically judge the impact of the unfairness
mitigation algorithms on the machine learning models.

A.1 Statistical Parity Difference
The statistical parity difference metric compares the differ-
ence between the groups’ probability of being predicted to
pass the assessment. A value of 0 indicates both groups were
predicted to pass the assessment with equal probability. A
positive value means one group is predicted to pass the as-
sessment more, a negative value means the other group is
predicted to pass the assessment more.

SP = P (Ŷ = 1|D = group2)− P (Ŷ = 1|D = group1) (2)

A.2 Disparate Impact Ratio
Disparate impact ratio is the ratio of the differing groups
being predicted to pass the assessment. A value of 1 indi-
cates that both groups are predicted to pass the assessment
with equal probability. A value greater than 1 indicates that
one group is predicted to pass the assessment more than the
other group, while a value less than 1 indicates the opposite.

DI =
P (Ŷ = 1|D = group2)

P (Ŷ = 1|D = group1)
(3)

A.3 Average Odds Difference
Average odds difference measures the average of the differ-
ence in the false positive rate and the true positive rate for
the differing groups. A value of 0 indicates an equality of
odds. A value of -1 or 1 indicates maximum possible in-
equality.

AO =

(FPRgroup2 − FPRgroup1)+

(TPRgroup2 − TPRgroup1)

2
(4)

A.4 Equal Opportunity Difference
The equal opportunity difference metric compares the differ-
ence in true positive rates between the two groups. A value
of 0 indicates equality between groups. A value of -1 or 1
indicates high inequality.

EO = TPRgroup2 − TPRgroup1 (5)


