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ABSTRACT
Students’ reading ability affects their outcomes in learning
software even outside of reading education, such as in math
education, which can result in unexpected and inequitable
outcomes. We analyze an adaptive learning software using
Bayesian Knowledge Tracing (BKT) to understand how the
fairness of the software is impacted when reading ability is
not modeled. We tested BKT model fairness by compar-
ing two years of data from 8,549 students who were clas-
sified as either ‘emerging’ or ‘non-emerging’ readers (i.e., a
measure of reading ability). We found that while BKT was
unbiased on average in terms of equal predictive accuracy
across groups, specific skills within the adaptive learning
software exhibited bias related to reading level. Addition-
ally, there were differences between the first-answer mastery
rates of the emerging and non-emerging readers (M=.687
and M=.776, difference CI=[0.075, 0.095]), indicating that
emerging reader status is predictive of mastery. Our findings
demonstrate significant group differences in BKT models re-
garding reading ability, exhibiting that it is important to
consider—and perhaps even model—reading as a separate
skill that differentially influences students’ outcomes.
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1. INTRODUCTION
Adaptive learning software has become a crucial tool in de-
livering personalized educational experiences to large num-
bers of students [41]. While the benefits of such software
are clear (e.g., [41, 40, 43, 28]), there is a growing concern
regarding different individual learning outcomes from inter-
actions with the software [39, 2, 3]. Previous research has
shown that reading ability is a strong indicator of math suc-
cess [30, 24], but less work has examined this relationship in
digital learning environments. This study builds on recent
work from Almoubayyed et al. that has sought to address
this gap, examining how differences in student reading abil-
ity relates to their outcomes in mathematics-focused adap-
tive learning software [2].

At the core of many adaptive learning systems is the Bayesian
Knowledge Tracing (BKT) algorithm. BKT is a method for
modeling and predicting student learning and knowledge
[16]. Specifically, BKT leverages probabilistic inference to
estimate a student’s mastery of specific skills or topics over
time based on their performance in different tasks that ex-
ercise a particular skill. BKT-driven systems can then pro-
vide more (or less) practice as needed to allow students to
progress at the pace that is most appropriate for each in-
dividual [16]. In this paper, we refer to the possible areas
of mastery as skills or knowledge components. While BKT
has proven effective in providing personalized learning expe-
riences and identifying knowledge gaps, concerns about its
fairness and equity have emerged [17].

Ensuring fairness in educational tools in crucial, as biased
predictions can disproportionately impact students from his-
torically underrepresented backgrounds, potentially exacer-



bating existing educational inequalities [33, 6]. Inequalities
can also come from other factors that effect how different
students interact with learning systems, such as disability
status, parental education levels, familiarity with technol-
ogy, and more. In our study, we focus on students’ reading
ability as one such dimension that could relate to how stu-
dents interact within an online learning system for mathe-
matics. Because low reading ability can reflect several im-
portant groups of students who are often underserved in
educational contexts (e.g., English language learners, stu-
dents with learning disabilities, students whose parents have
lower education levels, etc.), it is important to ensure that
the underlying algorithms that predict when a student has
mastered a skill are performing equally for these students.

Student reading ability is also important since research con-
nects it to students ability to learn new math concepts [47,
22, 45], and it has be used to predict long-term math under-
standing [24]. Ensuring fairness across student reading abil-
ities can improve current math-focused educational learning
systems by accounting for the different interactions and out-
comes that could be due to reading ability status.

Research on emerging readers now stretches back decades.
The term was introduced to emphasize the linguistic skills
and assets that should be drawn upon to help young chil-
dren acquire reading skills [51], and it has since expanded to
include adult learners as well as learners who have learning
disabilities [34, 36]. In this study, we operationalize emerg-
ing reader status algorithmically, using an existing model
that predicts if students are an emerging English language
learner using interactions in the introductory phases of the
learning session [2]. We then use BKT data to predict first-
answer mastery across the emerging reader groups. Through
the rest of the paper, we group students interacting with
the math education software platform, Carnegie Learning’s
MATHia [48], as either emerging readers or non-emerging
readers.

This paper focuses on three main research questions: RQ1:
Do emerging and non-emerging readers have different out-
comes with a mathematics-focused adaptive learning soft-
ware? RQ2: Is the MATHia BKT model (un)biased with
respect to the students who are emerging readers? RQ3: If
there is bias in the BKT models, can we mitigate it through
common unfairness mitigation strategies?

In larger adaptive learning systems, students can master
many different, sometimes unrelated, skills. For example,
MATHia has over 600 groupings of skills called“workspaces.”
We examine bias towards emerging readers by testing BKT
model performance in two distinct but related processes.
The first analyzes the aggregate BKT model performance
on the most common workspaces in MATHia. The second
analyzes the bias within each of the most common skills
(i.e., the skills with the largest number of student interac-
tions). We performed a two-pronged approach to measure
the bias present within the learning session as a whole and
bias present in specific MATHia skills. The approach is im-
portant, as even if no bias is present in MATHia as a whole,
it could still be present in specific skills–particularly if some
skills are more reliant on reading ability than others. To
ensure that we are providing a comprehensive analysis of

fairness, we examine how students’ outcomes with MATHia
are captured in terms of three anti-discrimination criteria:
independence (i.e., equality of predicted outcomes), separa-
tion (i.e., equality of errors), and sufficiency (i.e., predic-
tions reflect the same accuracy per group) [7]. In addition,
we further apply an unfairness mitigation technique to serve
as a part of a future adaptive process that suggests improve-
ment to the models used.

Thus, our research has two main contributions. First, we
combine a statistical bootstrapping analysis with classical
fairness metrics to conduct a large-scale examination of dif-
ferences in emerging and non-emerging readers’ outcomes
with adaptive learning software. Second, we analyze the
effectiveness of reweighting, a bias mitigation method, on
BKT models. These results show that emerging readers
interact with MATHia in significantly different ways than
other students–suggesting that there is an unmodeled factor
(reading comprehension) in the curriculum that is affect-
ing students’ ability to achieve mastery. They also demon-
strate that, while bias is low overall within MATHia, emerg-
ing readers may not be well-served by BKT algorithms for
specific skills. In this way, we contribute to creating more
equitable learning environments while also introducing a
new category for consideration in this process, the emerg-
ing reader.

2. BACKGROUND
Richey et al. calls for a comprehensive view of modeling
math learners that would include modeling non-math factors
as well [47]. However, if these factors are less effective to stu-
dents with diverse backgrounds, adding additional modeling
could potentially widen the opportunity gap for students
who have historically been under served. In this section, we
discuss related work in emerging readers, adaptive learning
and the measurement and mitigation of algorithmic unfair-
ness.

2.1 Emerging Readers
Research has long shown that non-math factors can play a
key role in the success of math learning [11, 37], as math pro-
ficiency often requires some level of reading comprehension
[22]. Students’ reading ability can predict their ability to
solve math word problems and understanding the symbols
in traditional math [45]. Additionally, reading comprehen-
sion scores predict mastery across multiple math topics [24].

Researchers have found links between struggling readers and
protected classes of learners. Scammacca et al. surveyed in-
terventions for struggling readers across three decades and
found over 80 studies with a focus on improving reading
comprehension for students [49]. Alongside trying to help
struggling readers, other researchers have found connections
between reading ability and protected groups in education.
For example, Catone and Brady found that individual edu-
cation programs (IEPs) were specifically ineffective for stu-
dents who had word-level reading difficulties [13]. Also,
Klinger et al. found a complex relationship between students
whom are English language learners, struggling readers, and
students who have learning disabilities [35].

This study joins a growing body of research examining the
connection between reading comprehension and math learn-



ing within an adaptive learning software [47]. Here, we have
operationalized the term emerging readers algorithmically,
using a previously validated predictive model that forecasts
who will be able to pass state standardized English language
exams [2]. Emerging readers likely span a large range of de-
mographics including, for example, groups marginalized in
STEM or students from low socioeconomic status house-
holds.

2.2 MATHia Computer-based Learning Envi-
ronment

MATHia is an intelligent tutoring system that is used for
math mastery learning [48]. Specifically, MATHia is used in
middle schools and high schools in the United States for over
500,000 students. Because large numbers of students use
this system, and similar software like it, it is important that
diverse populations of users can receive equal benefits from
its implementation. Students interact with MATHia within
different“workspaces”that consist of multiple skills that stu-
dents can gain mastery in. The MATHia system provides
students with repeated practice until it determines a stu-
dent has gained mastery on all of the skills in a workspace.
MATHia determines mastery using the BKT algorithm [16].

Because skills address different mathematics topics and con-
cepts, each one addresses different math learning skills that
potentially require different amounts of English language
proficiency. In other words, there may be various English
skills which (e.g., comprehension), unlike math skills, are
typically not intentionally controlled or modeled during math
learning, but which nevertheless systematically influence stu-
dents’ progress.

2.3 Measuring Algorithmic Unfairness
Bias can be present in algorithms at any step of the ma-
chine learning lifecycle [42]. For example, Friedman and
College outline the multiple different kinds of biases as either
coming from the preexisting world, technical aspects of the
system, or some emergent property of the system being de-
ployed [21], and each of these have been found in educational
contexts [6, 21]. For example, Doroudi and Brunskill ana-
lyzed biases within knowledge tracing [17], and Zambrano
et al. investigated bias in BKT and carelessness detectors
[56]. Similarly, measuring bias in academic exams related to
student demographics has long been a topic in educational
research [29]. More recently, educational data mining re-
search has also focused on specific data biases [6] as well as
broad questions around ethics in AI-driven education [26].
These data biases can become an issue of unfairness because
of the types of harm that come from biased systems; in a
worst case, data bias can lead to avenues for educators to
make decisions based on prejudice or disrespect [5]. Fur-
thermore, certain researchers have found specific groups of
students who are impacted by bias. Yanagiura at al. found
that their collegiate early warning system had less predic-
tive accuracy for an at-risk group of students (defined as
belonging to two or more demographic or academic cate-
gories statistically associated with low GPA) [54] and Li et
al. found bias against students with disabilities when pre-
dicting standardized test scores in early childhood education
settings [38]. Furthermore, Finkelstein et al. found that
third grade Black students learned more in science using

their computer-based system when African-American Ver-
nacular English was used [19], versus the English typically
used in educational software. Baker and Hawn raised the
concern that we do not fully know which groups are im-
pacted by algorithmic bias [6], and the group studied in this
paper is not one of the groups they found in their review.
Also, researchers have found that lacking diverse represen-
tation of behaviors in students could lead to model bias [15].
Thus, possible biases in algorithms can result in unfairness
for students.

To measure algorithmic biases, researchers in related fields
have developed numerous ways to determine how biased the
decisions of an algorithm are. Barocas et al. list 19 dif-
ferent fairness metrics created between 1971 and 2017 [7].
Specifically, measurements of fairness are split into either
procedural or statistical guidelines [23]. Procedural fairness
measures are geared towards making sure that statistically
similar data points are treated similarly [18]. Alternatively,
other definitions of fairness involve ensuring that all students
are given the pedagogical strategies that they specifically
need. For example, Hardt et al.’s equal opportunity measure
tests if the true positive rate is balanced across groups [25] in
order to prevent unwanted discrimination. Other measures
analyze the probabilities of error rates [55], the difference in
selection rates between groups [7], or even domain-specific
concerns, such as measuring model discrimination indepen-
dent of model performance [52]. Due to the many ways to
measure fairness, many methods for mitigating unfairness
have also been proposed.

2.4 Mitigating Unfairness
Unfairness mitigation strategies are grouped into prepro-
cessing, inprocessing, and postprocesing methods based on
where the strategy is applied in a machine learning pipeline.
Preprocessing involves distorting the input data to remove
correlations to sensitive features (e.g., reweighting [32], learn-
ing fair representations [57], and optimized preprocessing
[10]); inprocessing adds constraints to the training or opti-
mization processes (e.g., adversarial debiasing [58] and the
meta-fair classifier [14]); postprocessing adjusts classifier out-
comes (e.g., equalized odds postprocessing [25] and the reject
option classification [32, 9]). In education, bias mitigation
methods are also used. Kizilcek and Lee reference different
areas within an educational algorithm where bias can be mit-
igated [33]. For example, Jiang et al. compared reweight-
ing, the disparate impact remover preprocessing method,
and the equalized odds postprocessing method to mitigate
unfairness in synthetic educational data [31]. Hu and Rang-
wala compared the learning fair representations technique to
their own domain-specific inprocessing technique for reduc-
ing bias in identifying at-risk students [27]. Furthermore,
Stinar and Bosch analyzed how unfairness mitigation meth-
ods distort education data in unintended ways [50]. These
outlined unfairness methods still require adaptations or ex-
plorations within BKT (similar to how Xu et al. adapted
methods for Markov modeling [53])

3. METHODS
In the following subsections, we describe our data collection
and methodology in detail. In short, Carnegie Learning pro-
vided us with BKT data of students across the entire dura-
tion of two school years, estimated the probability of stu-



dents being emerging readers, then used these predictions
as the group categories for fairness analyses of the BKT
models. Finally, we adapted a common unfairness mitiga-
tion strategy to attempt bias mitigation within the BKT
models.

3.1 Bayesian Knowledge Tracing (BKT)
The BKT model represents a student’s knowledge in terms
of mastering specific skills. BKT assumes that the mas-
tery process for each skill follows a hidden Markov process
with the probability of mastery being updated as the stu-
dent completes more problems related to the skill. The BKT
model is based on four parameters: (i) the probability of a
student already having a skill mastered, (ii) the probability
the student masters the skill after a problem, (iii) the prob-
ability of guessing a problem correctly without mastery, (iv)
the probability of incorrectly answering a problem despite
mastering the skill (i.e., “slipping”).

Using the pyBKT package for BKT implementation, we pre-
dicted the probability of mastery given first question correct-
ness for each student across the 50 skills for each dataset
with the most student interactions [4].

3.2 Emerging Reader Estimator
The student category emerging reader is defined by an exist-
ing, validated reading comprehension model [2]. The read-
ing comprehension model estimates students’ reading com-
prehension ability from the introductory workspace within
MATHia (i.e., requiring only students’ first few interactions
with MATHia to estimate). Specifically, the estimator is
trained on four categories of engineered features from the in-
troductory workspace. The first is whether or not a student
gets the problem step correct on the first attempt. The sec-
ond is the total number of attempts per problem step. The
third is the number of feedback prompts that the student
has received per problem step. The final category tracks the
number of hints that the student requests per problem step.
The reading comprehension model was originally trained to
predict English Language Arts standardized test outcomes
as a probability; the lowest 25% of predicted probabilities
per grade level are then classified as emerging readers, while
the rest of students are classified as non-emerging readers.
Thus, our estimation of emerging reader status could con-
flate English language learner status with struggling reader
status. However, any early estimation of reading ability al-
lows for diverse types of support to be given to students.
Furthermore, it is often impossible to obtain demographic
details from all systems. Thus, reading ability is helpful,
especially in systems used at scale, where the developers or
researchers using data from the system are unlikely to have
access to test score or demographics data for all students
but can still estimate their emerging reader status.

3.3 Data
We analyzed two datasets consisting of students’ actions and
outcomes in MATHia provided by Carnegie Learning. The
two datasets are from the 2021–2022 and 2022–2023 school
years in several schools from one school district in the North-
eastern United States. We processed each dataset to con-
sider only the student actions from the top 50 skills ranked
by the number of students who completed each knowledge

component, given that there is a long tail of infrequently
used skills that are less relevant to characterizing BKT bias
than the common components. During interactions, the stu-
dents can either make an attempt at an answer or ask for
a hint. Correct/not-correct labels given to BKT models are
based on whether or not the student correctly answers on
their first attempt with no hint, which is taken as one piece
of evidence that the student has mastered that skill.

The 2021–2022 dataset consisted of 4,733 students interact-
ing with the MATHia software. Of these students, 3,617
(76.4%) were considered to be non-emerging readers, and
1,116 (23.6%) students were estimated to be emerging read-
ers; note that the percentages are not exactly 75%/25% due
to ties in the probability scores used to measure reading.
The 2022–2023 dataset contained interactions and outcomes
of 3,816 students with 2,895 (75.8%) being non-emerging
readers and 921 (24.2%) being emerging readers. This re-
sults in 8,549 students across both datasets. Since emerging
readers are defined as the 25% of students with the lowest es-
timation from the emerging reader estimator with students
grouped by year, our datasets, by definition, have represen-
tative samples of both emerging and non-emerging readers.
These data were collected from students at the same grade
level in each academic year.

3.4 Unfairness Mitigation
For our main analyses, we compared BKT models on the
original, unmodified datasets with the datasets preprocessed
using the reweighting unfairness mitigation algorithm [32].
To do this, we compared aggregate and per-knowledge com-
ponent performance measurements and fairness metrics to
identify bias in the BKT models. Furthermore, we per-
formed bootstrapping on the outputs to determine if there
were statistically significant differences between BKT esti-
mates for emerging and non-emerging readers.

Initially, we compared aggregate and per-knowledge-
component performance measurements and fairness metrics
to identify possible bias in the BKT models. We trained
the BKT models using five-fold cross-validation with the
options of 0, 0.05, and 0.1 for slip probabilities and 0, 0.1,
0.2, and 0.3 for guess probabilities. We evaluated the BKT
models using area under the curve (AUC) and root mean
square error (RMSE) alongside the statistical parity [7], dis-
parate impact [55], average odds difference [9], and equal
calibration definitions of fairness [12]. We define statistical
parity as difference in mastery rates between groups: specif-
ically, P (mastery|emerging) − P (mastery|nonemerging).
We then define disparate impact as the ratio of selection

rates between groups. That is, P (mastery|emerging)
P (mastery|nonemerging)

. Av-

erage odds is a relaxed equalized odds that provides the aver-
age difference in false positive and true positive rates across
groups. A value of 0 would indicate perfect fairness for sta-
tistical parity and average odds, whereas a value of 1 would
indicate perfect fairness for disparate impact. Our definition
of model calibration comes from Caruana and Niculescu-
Mizil [12]. Lastly, we calculate model calibration by finding
the true versus predicted probability across overlapping sam-
ples of 100 instances of the true and predicted values. We
then computed the difference in calibration between predic-
tions of emerging and non-emerging readers as a measure
of unfairness. For calibration, a value of 0 indicates perfect



fairness.

We applied the previously described fairness definitions to
provide a multifaceted fairness analyses of BKT predicted
outcomes for emerging and non-emerging readers. Overall,
we cover the non-discrimination criteria of independence,
separation, and sufficiency [7].

Using the AI Fairness 360 toolkit (AIF360), and creating a
wrapper for pyBKT to work as a scikit-learn classifier [44],
we preprocessed our data using the reweighting unfairness
mitigation algorithm [9]. reweighting is designed to address
bias by adjusting weights of training instances to mitigate
differences across groups [32]. The BKT models trained on
the reweighed data are then compared to the models trained
on the original data to examine the impact of unfairness
mitigation on the BKT models for emerging readers.

Since the metrics and statistics we are using for fairness
do not have a traditional closed-form solution like tradi-
tional methods of calculating p-value, we used statistical
bootstrapping to estimate our confidence intervals. Specif-
ically, we performed bootstrapping to determine if any dif-
ferences between emerging and non-emerging readers were
significant. With 10,000 iterations and measuring 95% confi-
dence intervals, we bootstrapped the difference in means be-
tween emerging and non-emerging readers for the base rates,
predicted values, model error at problem-solving steps, and
model calibration. By comparing the difference in means,
we examined if the difference in both base rates (i.e., the
data) and model predictions were significant. Furthermore,
by finding significance between the differences in model er-
ror (RMSE), we determined if BKT models provided similar
errors to both groups. Finally, by bootstrapping the differ-
ence in calibration between the groups, we calculated if the
model predictions were significantly different—and thus po-
tentially unfair—for emerging readers.

4. RESULTS
Our results are organized by research question (RQ1–3). Ta-
ble 1 summarizes the results of our aggregate BKT models
trained on the two original datasets and our two datasets
preprocessed using the reweighting unfairness mitigation al-
gorithm. Table 2 describes the differences of BKT models
trained on different skills in MATHia. Figure 1 displays the
bootstrapped confidence intervals for the differences between
emerging and non-emerging readers.

4.1 RQ1: Do emerging and non-emerging
readers have different outcomes within a
mathematics-focused adaptive learning
software?

The results outlining bootstrapped 95% confidence intervals
are in Figure 1. We compare four different bootstrapped
statistics for our two original datasets and the two unfairness
mitigated datasets. We statistically tested for differences in
the overall base rates of mastery, predicted mastery, model
errors, and model calibration between the two groups. We
found significance in six out of the eight tests.

The emerging and non-emerging readers had differing base
rates of mastery in both the 2021–2022 and 2022–2023 datasets.

The base rate of mastery in the 2021–2022 dataset for emerg-
ing readers was .687 and for non-emerging readers it was
.776. We bootstrapped the difference between these two
means and the resulting confidence interval (CI2021−2022 =
[.0747, .0950]) and mean difference can be seen in Figure 1.
Since the difference in means is significant, we can conclude
that the emerging and non-emerging readers groups had dis-
parate rates of math mastery in MATHia. The base rates of
mastery for emerging and non-emerging readers in the 2022–
2023 dataset were .673 and .748 respectively. We performed
the same bootstrapping analysis for significance on the 2022–
2023 dataset and also found that the difference in means be-
tween the base rates of emerging and non-emerging reading
was significant (CI2022−2023 = [.0722, .0932]). These results
imply that across both years of data, emerging and non-
emerging readers had significantly different rates of mastery.

Moving beyond the base rates, we wanted to know if the
distribution of mastery emerging readers received was sta-
tistically different from the distribution of mastery that non-
emerging readers received. We tested for significance in
the difference of BKT predictions between groups. That is,
we wanted to know if the distribution of mastery emerging
readers received was statistically different from the distribu-
tion of mastery that non-emerging readers received. For the
2021–2022 dataset, emerging readers had an average mas-
tery prediction of .708 and non-emerging readers had an
average mastery prediction of .752. Similarly, for the 2022–
2023 dataset, emerging readers had an average prediction
of .679 and non-emerging readers had an average prediction
of .733. Furthermore, we found that the difference between
means of BKT model predictions for both datasets was sig-
nificant (CI2021−2022 = [0.0366, 0.0503], CI2022−2023

= [0.0317, 0.0452]). These results imply that the BKT mod-
els predicted mastery with significantly different distribu-
tions for the two groups (as they arguably should given the
difference in base rates).

We also investigated whether the average RMSE for emerg-
ing readers was significantly different than the average RMSE
for non-emerging readers in regards to attempt-level correct-
ness. Figure 1 illustrates the results of our bootstrapped
RMSE comparison for the two original and two unfairness
mitigated datasets. Unlike the previous two statistical tests,
we did not find significance in the difference in RMSE be-
tween groups for any of the four datasets. The 2021–2022
dataset had a mean difference in RMSE of -.0031 (CI2021−2022

= [−0.0079, 0.0018]), and the 2022–2023 dataset had a mean
difference in RMSE of -.0006 (CI2022−2023 = [−0.0067,
0.0062]). These results show that the prediction errors were
not substantially larger in one group than the other, since
the confidence intervals include 0. This suggests two possi-
ble interpretations: (i) there is no meaningful difference in
the model errors that each group experiences, and (ii) the
model is splitting the difference between emerging and non-
emerging readers, so that errors were similar but in opposite
directions across groups. The overall RMSE would not cap-
ture that since RMSE does not indicate the direction of the
error. The statistical parity results in RQ2 below further
clarify these results, suggesting (ii) is the likely interpreta-
tion.

Lastly, we bootstrapped the difference in model calibration



Table 1: The table shows the aggregate measurements of the BKT models trained on the two original datasets and the reweighed
versions of both original datasets. There is minimal to no difference between the aggregate measurements across the BKT models
trained on the original and reweighed versions of the datasets. The mean difference between the AUC of our original datasets
and the reweighting datasets is ≈ .002.

Dataset AUC RMSE Statistical Parity Disparate Impact Average Odds
2021–2022 0.696 0.386 -0.077 0.885 -0.052
2021–2022 (RW) 0.699 0.386 -0.078 0.883 -0.054
2022–2023 0.694 0.393 -0.066 0.878 -0.047
2022–2023 (RW) 0.694 0.393 -0.066 0.878 -0.047

for emerging and non-emerging readers. For the 2021–2022
dataset, emerging and non-emerging readers had a difference
in model calibration of .0046 (CI2021−2022 = [.0009, .0086]).
For the 2022–2023 dataset, emerging and non-emerging read-
ers had a difference in model calibration of .0054 (CI2022−2023 =
[.0012, .0097]). Thus, both datasets showed a statistically
significant—if quite small—difference in calibration between
the two groups, such that BKT probabilities were slightly
better calibrated for non-emerging readers.

4.2 RQ2: Is the MATHia BKT model unbi-
ased with respect to the students who are
emerging readers?

The fairness metrics displayed in Table 1 show bias in the
aggregate BKT predictions for emerging readers. For the
2021–2022 original dataset, the -0.077 statistical parity value
indicates that the aggregate model had a slight bias toward
predicting lower knowledge for emerging readers. Similarly,
disparate impact (i.e., a ratio where perfect fairness implies
the value is 1) being 0.885 also indicates there was a bias
towards predicting lower knowledge for emerging readers.
Furthermore, average odds being -0.052 represents the false
positive and true positive rates between the groups were not
equivalent. This indicates that emerging readers were pre-
dicted to gain lower knowledge than non-emerging readers.
Likewise, the 2022–2023 dataset exhibited the same trends
in measurement with a -0.066 statistical parity, 0.878 dis-
parate impact, and -0.047 average odds.

Despite the lack of perfect fairness, the levels of bias that the
fairness metrics displayed were small for the aggregate mod-
els. For example, the -0.077 statistical parity for the 2021–
2022 dataset implies a 7.7% difference in the predicted rate
(Table 1. Table 1 also shows the impact of the BKT models’
predictions being trained on the reweighted datasets. No-
tably, there was minimal difference across all fairness metric
measurements once the data is reweighted, perhaps due to
the already low level of bias in the predictions when aggre-
gated across all topics.

To further understand the fairness of the BKT models, we
examined the bias within skill-specific BKT models. While
we could not include the analysis of all 50 skills in both
of the original datasets and the two unfairness mitigated
datasets due to computational limitations, we included mul-
tiple examples of models trained on the skills present in the
datasets. Specifically, Table 2 presents the worst, best, and
median BKT model in terms of statistical parity trained on
specific skills on the original and unfairness mitigated data.
Notably, the reweighting technique did not substantially im-

pact any of the bias in the skill-level models.

The BKT model trained on the “geometric transform” skill
displayed in Table 2 is a skill-specific model that had less
bias than than the aggregate BKT. The statistical parity,
disparate impact, and average odds fairness metrics all indi-
cate less bias towards emerging readers than the aggregate
model. Alongside some skills having fairer models, others
had more biased models. For example, the models trained
on the “identifying units” and “apply exponent” skills in Ta-
ble 2 both exhibited more extreme biases than the aggregate
model. The BKT models trained on the “apply exponent”
skill had a difference of 26% mastery prediction for emerg-
ing and non-emerging readers (as presented by the statistical
parity metric). Outside of the three skills presented, 36 of
the 50 skills analyzed were biased against emerging readers
in terms of statistical parity and disparate impact. 34 of
the skills were biased against emerging readers considering
the average odds metric. These results show that models
for certain skills can contain large amounts of bias that the
aggregate BKT representation does not display.

4.3 RQ3: If there is bias, can we mitigate it
through common unfairness
mitigation strategies?

Despite there being bias in specific skills, there is consis-
tent minimal change when applying the reweighting unfair-
ness mitigation algorithm to the data. First, in Table 1,
we present that the reweighting method had minimal im-
pact on the aggregate model predictions and had a mean
difference of AUC from the models trained on the original
dataset of ≈ .002, thus performance was minimally impacted
by reweighting. Similarly, in Table 2, we found the reweight-
ing preprocessed datasets yielded no apparent improved fair-
ness for the knowledge component models due to there being
minimal change in the fairness measures when reweighted.
Finally, reweighting did not lead to the differences in emerg-
ing and non-emerging readers to be significant as further de-
scribed in the previous section and seen in Figure 1. Table 1,
Table 2, and Figure 1 each display how the reweighting un-
fairness mitigation algorithm was ineffective in mitigating
the biases between emerging and non-emerging readers.

5. DISCUSSION
Our analyses resulted in a few main findings. The first is
that BKT models, when considered in aggregate across all
skills, had small but significant biases against emerging read-
ers when examining common definitions of fairness. Despite
the minimal bias in aggregate BKT, there was noticeable
bias within certain skills. The second finding is that emerg-
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Figure 1: Presented are the mean differences and confidence intervals of each bootstrapped statistic. Across each statistic and
for both of the datasets, the reweighting method had minimal impact on the results. Our measurements of difference in base
rates, predictions, and calibration were all significant. The second and fourth intervals for each statistic represent the results
from the datasets that were preprocessed with the reweighting (RW) algorithm.

ing readers had a significant difference in base rates and
model predicted rates of answer correctness compared to
the rest of the students. Furthermore, the BKT models did
have a significant error in predicted rates when compared to
the base rates across all groups.

Our analysis of student outcomes with MATHia showed sev-
eral differences between emerging and non-emerging read-
ers RQ1) Initially, when examining overall BKT model per-
formance and the classical group fairness definitions (i.e.,
statistical parity, disparate impact, and average odds), we
found minimal bias in the model against emerging readers.
However, in Table 2 we found that specific skills in MATHia
had varying levels of bias against emerging readers. Fur-
thermore, by bootstrapping the differences in group base
rates, predictions, model errors, and calibrations, we deter-
mined that emerging and non-emerging readers were not
only statistically different, but also had different learning
experiences within MATHia.

Our results imply both that reading ability is an important
aspect in how students interact with mathematics learning
software and that there are ways to improve current learn-
ing software to better support learners with different levels
of reading ability. The significance in the difference of base
rates and predictions between the two groups shows that the

groups interact with the learning software in different ways.
The difference in outcomes is shown throughout our analy-
ses, in terms of how the groups experience mastery, how the
groups are estimated mastery by the software, and how they
experience specific skills within the learning software.

By answering the first research question, we also began to
examine the possible bias in MATHia that RQ2 addresses
(RQ2: Is the MATHia BKT model unbiased with respect
to the students who are emerging readers? ). Holistically, as
seen in Table 1, the MATHia BKT model is in some respects
fair. Both datasets have an absolute statistical parity mea-
sure of < .08 and absolute average odds measure of < .06.
The low statistical parity tells us that reading ability has
minimal impact on the mastery prediction. The low aver-
age odds represents that the difference in false positive and
true positives is almost equal despite differing reading lev-
els. Furthermore, Figure 1 illustrates that the mean model
calibration for each group is similar. By analyzing each of
the three anti-discrimination criteria (i.e., sufficiency, sepa-
ration, and independence), we can conclude that the aggre-
gate MATHia BKT model contains little unfairness towards
emerging readers; however, the unfairness is still statisti-
cally significant (e.g., the difference in model calibrations
between emerging and non-emerging readers is significant)
given the large sample size. Since the base rates are different



Table 2: This table shows fine-grained fairness analyses of specific BKT models trained on different skills. We show both
the knowledge component-specific BKT model trained on the original data and on the reweighed data. RW represents the
knowledge component models trained on the reweighed datasets.

Skills AUC RMSE Statistical Parity Disparate Impact Average Odds
geometric transform 0.512 0.285 -0.009 0.991 -0.007

geometric transform (RW) 0.512 0.284 -0.009 0.991 -0.007
identifying units 0.809 0.420 -0.175 0.736 -0.089

identifying units (RW) 0.809 0.420 -0.175 0.736 -0.089
apply exponent 0.771 0.439 -0.262 0.609 -0.181

apply exponent (RW) 0.771 0.439 -0.263 0.609 -0.181

for emerging and non-emerging readers, it is impossible for
the model to be fair in every way. Thus, adaptive learning
designers and researchers must decide if they want equally
predicted rates of mastery or equally correct predictions, or
a compromise between both goals. These results are sim-
ilar to research in related fields that found not all defini-
tions of fairness can be equally satisfied at the same time
[20]. Related to adaptive learning, Prihar et al. [46] found
significantly more learning when lowering the threshold for
mastery because the sum of benefits (i.e., students get to
experience more topics) outweighed the cost (i.e., students
may not learn each topic as well). When resolving the dis-
crepancy between base rate and predicted rate, then, it may
be pedagogically favorable to increase the predicted mastery
for non-emerging readers, prioritizing reducing differences
in predicted mastery across groups at the cost of increas-
ing miscalibration and potentially reducing accuracy. These
results imply that when the unfairness is significant, even
if small, there are still ways in which we can improve the
BKT model and in turn other adaptive learning software to
promote equity for emerging readers.

Our analysis of different skills (i.e., Table 2) gives the most
straightforward way to promote equity in learning software
for emerging readers, implementing different levels of mas-
tery for different skills. The analysis also implies that certain
skills rely more heavily on reading comprehension. Thus,
BKT modeling for math curricula could potentially be im-
proved by adding one or more “reading” skills into the steps
that require higher levels of reading comprehension. Then,
that reading skill could be estimated, like the math skills,
throughout the adaptive learning software. This would al-
low the model to predict performance due to the reading
skill, without conflating reading skills and math skills. Fur-
thermore, the results show that skills in MATHia can be
analyzed on a more fine-grained level to understand why
some are biased against emerging readers (e.g., some math
topics might require previous vocabulary that math courses
do not teach).

Finally, since we observed bias within specific skills in MATHia,
we tested if the reweighting unfairness mitigation algorithm
was successful in mitigating that knowledge component-specific
bias (i.e, RQ3: If there is bias, can we mitigate it through
common unfairness mitigation strategies? ). We used reweight-
ing since it has been used in other educational tasks related
to classification [50]. However, the reweighting unfairness
mitigation algorithm had minimal, if any, changes to the
BKT model results. Also, the reweighting method failed to
reduce the unfairness present in any of the fine-grained skills.

These results suggest that since reweighting works to ensure
a definition of fairness within a whole dataset, and that the
overall model is slightly unfair, the reweighting method also
fails to notice (and correct for) the biases within specific
skills and the significant differences in outcomes of emerging
and non-emerging readers.

Each of our contributions helps promote the design of more
equitable learning software. In tandem with better under-
standing of how unfairness mitigation methods interact with
BKT models, the results can be captured in a few main
contributions. We have quantitatively shown that emerging
reading skill affects how students interact with math-based
adaptive learning software, that meaningful non-math-based
groupings can be found using initial outcomes in learning
software, and that skill models with unmodeled difficulty
factors (i.e., that do not model all of the underlying skills
including non-math skills) can exhibit unfairness.

6. LIMITATIONS
Although we present a large-scale study using diverse stu-
dents, there are many details about both our emerging and
non-emerging students that we simply do not have access to.
For example, the students in this study are primarily located
within specific school districts in the Midwestern and North
Eastern United States, and may represent different demo-
graphics (with different approaches to using online learning
systems) than we might find in other parts of the world.

Likewise, within this data, there may be variation that is
not yet accounted for. As we have discussed above, there
are many reasons that a student could be classified as an
emerging reason. Students with learning disabilities may
differ in their behaviors and learning than students from
English Language Learning (ELL) backgrounds. Likewise,
ELLs are not monolithic groups, and they likely differ based
on years of English exposure, reading fluency in their first
language, and what language family their first language be-
longs to. Moreover, both emerging and non-emerging read-
ers are likely to differ based on factors like socioecomic status
(SES), as variables like these are known to affect students
learning opportunities both inside and outside of the class-
room.

Furthermore, we only analyzed the most commonly com-
pleted 50 skills in MATHia, ranked by the number of unique
students who interacted with them, to focus on the most
influential parts of the curriculum. It is possible that less
frequently assigned content is non-random with respect to
reliance on reading ability, and will merit further analysis as



data becomes available.

6.1 Future Work
The results of this study suggest directions for future work
involving the relationship between reading ability and BKT
estimates in other learning domains. In addition to better
understanding how this relationship mediates learning more
generally, work is needed to better understand how BKT
will need to be adjusted to accurately predict the moment
of learning for learners with different reading skills.

Although the relationship between reading and mathematics
learning has been studied in other contexts, there is a need
for more work on this issue in online learning systems, par-
ticularly those using adaptive algorithms. Further research
can be done to understand more facets of emerging reader in-
teractions and outcomes. For example, outside of traditional
fairness analyses, the patterns of interactions in mathemat-
ics learning software of emerging versus non-emerging read-
ers would help researchers better understand how the two
groups differ in their interactions. That is, emerging readers
might have different patterns while interacting with math-
ematics learning software over the long-term (e.g., patterns
in requesting help or gaming tendencies).

In this study, we tested the reweighting algorithm’s [32] abil-
ity to mitigate bias in the MATHia data. This algorithm
was chosen due to its prevalence in related work and that
the method does not modify ground truth labels [32]. Un-
fortunately, it was unable to substantially improve the fair-
ness in this data, but future work should test other unfair-
ness mitigation techniques. Given the Markov model nature
of BKT-based models, other preprocessing techniques [55,
10] and postprocessing techniques [25, 32, 9] may be strong
candidates. Furthermore, possible inprocessing unfairness
mitigation techniques could be created to specifically ensure
skill-level fairness in BKT models similar to Xu et al. [53].
For example, methods could be designed to introduce vari-
able mastery thresholds for group-level mastery rates. These
unfairness mitigation techniques can also be applied within
different knowledge tracing frameworks [8, 1].

7. CONCLUSION
Our analysis shows how emerging and non-emerging readers
interact with mathematics-focused adaptive learning soft-
ware, which revealed insights into how adaptive learning
systems—specifically, those using BKT—can be designed to
support more equitable learning experiences. BKT mod-
els contained significant differences for emerging and non-
emerging readers, indicating differences in how they interact
with the ITS. These disparities suggest underlying reading-
related biases in specific skills might affect student outcomes,
or at least understanding of students’ learning, if not ac-
counted for.

Emerging readers do interact with the adaptive learning
software differently (RQ2), and we were able to detect statis-
tically significant prediction biases based on emerging reader
status (RQ1). However, we were unable to successfully use
reweighting to mitigate unfairness in specific BKT skills
(RQ3), but our analyses do suggest promising opportunities
for targeted interventions (e.g., for specific relevant read-
ing skills) and opportunities for improving adaptive learning

systems (e.g., by modeling reading skill) that decrease the
bias imparted by specific skills. In sum, the results advance
research about fairness in adaptive learning environments by
illustrating the importance of emerging readers’ as a critical
category to consider in fairness assessments.
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