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ABSTRACT
Feature engineering plays a critical role in the development
of machine learning systems for educational contexts, yet
its impact on student trust remains understudied. Tra-
ditional approaches have focused primarily on optimizing
model performance through expert-crafted features, while
the emergence of AutoML offers automated alternatives for
feature extraction. Through an experimental design com-
paring expert-crafted features with two AutoML approaches
(Featuretools and TSFRESH), we investigated the relation-
ship between feature types and student trust in educational
systems. Analysis of student interactions with these systems
revealed significant variations in trust formation, reliance,
and decision-making behaviors based on feature type. We
measured trust through multiple metrics including compli-
ance behavior, overreliance tendencies, and decision-making
patterns such as response time and decision switching. Our
results demonstrate that expert-crafted features led to sig-
nificantly higher trust and compliance compared to AutoML-
generated features, but also resulted in concerning levels of
over-reliance when system recommendations were incorrect,
whereas computationally complex TSFRESH features en-
countered persistent undercompliance. Expert-created fea-
tures were also initially more trusted, and the stability of
trust perceptions across all conditions suggests that early
impressions remain relatively unchanged. We also provide
implications for the design of educational machine learning
systems, suggesting that while expert-crafted features may
better align with students’ mental models, careful attention
must be paid to preventing over-reliance. These insights con-
tribute to the development of more effective and trustworthy
learning analytics tools that better serve student needs.
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1. INTRODUCTION
The integration of machine learning in education has ush-
ered in a new era of learning, prompting a critical exami-
nation of human–machine interactions and their impact on
educational outcomes [59, 1, 50, 39, 3]. As machine learn-
ing systems become increasingly prevalent in classrooms and
online learning environments, so too is it increasingly impor-
tant to understand how students perceive machine learning
systems. Trust forms the cornerstone of effective human–
machine collaboration [72]. This is especially true in the ed-
ucational setting [48, 49], where trust has been recognized
as an essential foundation for learning and forming coop-
eration between different stakeholders in education system,
e.g., teachers, students, graders [68, 6]. However, establish-
ing trust in machine learning (ML) systems presents unique
challenges [72], primarily due to the often inscrutable nature
of their decision-making processes.

Recent years have witnessed ML models achieving human-
like performance in various tasks [62]. In fully automated
systems, these models’ predictions are utilized without hu-
man intervention, necessitating a high degree of student
trust in algorithmic decisions [31]. This shift raises im-
portant questions about how we build and maintain trust
in machine systems, especially within educational contexts
where stakes are high and participation is often compul-
sory. Questions of trust in machine learning models have
become crucial issues [62, 83, 75]. Studies have revealed
that trust in these models is influenced by various factors
throughout the ML lifecycle; notably, the stated accuracy,
observed accuracy and interpretability of ML model have
become a focus point in contemporary trust research [11].
Central to this trust discussion is the concept of trust cal-
ibration—the alignment between a user’s trust in a sys-
tem and the system’s actual capabilities or reliability [37,
46]. Proper calibration occurs when users trust a system
in proportion to its actual performance, while miscalibra-
tion manifests as either excessive trust (overcalibration) or
insufficient trust (undercalibration) relative to system relia-
bility. In educational settings, where students increasingly
rely on ML-driven recommendations, achieving appropriate
trust calibration becomes essential for effective learning out-
comes. Students who overtrust may uncritically accept er-
roneous recommendations, while those who undertrust may
disregard valuable insights, both scenarios potentially im-
peding learning progress. To build appropriately calibrated
student trust in ML systems, we must first understand and
optimize the fundamental processes that shape how these



models function.

Feature engineering is the process of selecting, transforming,
and creating relevant input variables for machine learning
models. Students expect learning analytics to support their
planning and organization of learning processes, provide self-
assessments, deliver adaptive recommendations, and pro-
duce personalized analyses of their learning activities [63].
However, these expectations require feature engineering in
creating analytics-driven assessments that harness formative
data from learners to facilitate learning processes. Feature
engineering establishes the parameters for a model that ul-
timately determine how certain input data may lead to de-
cisions. The performance and efficacy of machine systems
hinges critically on the quality of feature engineering [57,
26], a process that has demonstrated significant potential in
enhancing both fairness [61] and interpretability [20].

Despite the advancements in feature engineering for enhanc-
ing fairness and interpretability, little attention has been
paid to how the extracted features themselves influence trust.
In the educational domain, this issue takes on added signif-
icance when we consider students as active users of ML-
driven tools. Student-facing dashboards, for instance, allow
learners to engage with predictions about their academic
outcomes [70]. The type and presentation of features in
these dashboards can significantly influence how students
interpret and trust the information provided. This democ-
ratization of data access transforms students from passive
subjects of analysis into empowered stakeholders [73], capa-
ble of leveraging insights to refine their learning strategies
and educational trajectories. The introduction of dashboard
learning analytics systems has had a transformative impact
on student engagement [56], yet understanding the factors
that drive adoption of these systems remains a critical chal-
lenge for their successful implementation.

Educational research has also explored factors that increase
individual decisions to trust and adopt learning analytics
tools. Klein et al. [34] found that organizational context and
commitment play a significant role, while Sjöblom et al. [65]
emphasized the importance of integration with existing or-
ganizational systems. Moreover, West et al. [76] highlighted
the value of communication channels in facilitating the adop-
tion of learning analytics while some researchers cited stu-
dent interface as an important factor [47]. In this context,
features engineered for learning analytics tools serve a dual
purpose: they bridge communication between stakeholders
and form a crucial part of the student interface. As such,
the impact of feature engineering on trust and adoption in
learning analytics deserves deeper research. This is particu-
larly important given the potential of well-designed features
to enhance student engagement and learning outcomes, as
demonstrated by the transformative impact of dashboard
systems [56].

Given these considerations, our research investigates how
students collaborate with and develop trust in educational
ML systems, specifically focusing on their interactions with
machine-generated versus expert-designed features. By in-
vestigating how students engage with these different types of
features, we seek to understand the impact on collaborative
learning behaviors and the decision to trust. Our findings

will provide implications for the development of more ef-
fective, trustworthy, and student-centric feature engineering
methodologies in educational technology.

2. BACKGROUND
2.1 Machine Learning in Education
Advanced learning analytics tools with ML embedded of-
fer unprecedented opportunities to dive into complex edu-
cational datasets, uncovering hidden patterns and relation-
ships that were previously inaccessible [58]. With data min-
ing, educators can now refine their teaching methodologies
and tailor interventions to better meet the diverse needs of
their students [41]. For instance, learning systems can group
similar materials or students based on their learning and in-
teraction patterns and further reveal which types of learning
materials (e.g., videos, interactive simulations, or text-based
resources) are most effective for different topics or student
groups [4].

One of the most promising applications of ML in education
is its ability to predict student performance and identify
those who may be at risk of academic difficulties [78]. This
predictive capability allows for timely interventions and per-
sonalized support, evolving the way educational institutions
approach student success [22]. Moreover, the integration
of ML technologies in education extends beyond predictive
functions; it also has the potential to empower students
directly by providing them with access to insights derived
from their own learning data [23]. For instance, personalized
dashboards can display a student’s progress across different
subjects, highlighting areas of strength and those needing
improvement. Some systems even provide comparative ana-
lytics, letting students anonymously benchmark their perfor-
mance against peers, which can motivate self-directed learn-
ing [60]. When students can access and review data about
their own academic work—such as their assignment com-
pletion patterns, quiz scores over time, and topic-specific
performance—they can better identify which concepts they
have mastered and where they need additional practice[53,
9, 32]. ML in educational contexts has therefore attracted
significant scholarly attention. Researchers have explored
various aspects of ML in education, from data collection
methodologies to student behavior analysis techniques [81,
14, 9, 2, 29]. These studies have highlighted the potential
of ML to optimize curriculum delivery and enhance overall
learning outcome. For example, Wu et al. used machine
learning predictions to automatically decide when to pro-
vide a quiz to students, resulting in greater learning versus
a control group who received quizzes randomly, and Ball
et al. employed machine learning techniques to analyze in-
stitutional data, identifying key factors influencing gradua-
tion rate then implementing targeted curriculum changes to
address specific student needs and enhance graduation out-
comes[5, 77]. In the Eye-Mind Reader project, researchers
employed a support vector machine to predict mind wan-
dering episodes during reading tasks. Using features from
eye-gaze patterns, including fixation durations and pupil di-
ameters, the model identified moments when learners’ at-
tention drifted from the instructional text[45].

As the volume and complexity of educational data grow ex-
ponentially, researchers and practitioners face the challenge
of extracting meaningful insights that can inform pedagogi-



cal strategies and enhance student outcomes [13]. A crucial
step in developing effective machine learning models is fea-
ture engineering: the process of selecting and transforming
relevant attributes from raw data for ML models to utilize.
The importance of this step cannot be overstated, as the per-
formance and efficacy of ML models are linked to the quality
and comprehensibility of their input features [84]. However,
designing features that are both statistically meaningful and
interpretable to educators and students poses a significant
challenge [33].

One set of approaches to feature engineering that attempts
to reduce the manual labor involved is automatic machine
learning (AutoML) [12], with a particular focus on automat-
ing the feature engineering process. Tools such as Feature-
tools (for relational data) [30] and TSFRESH (Time Series
FeatuRe Extraction on basis of Scalable Hypothesis tests)
[19] have revolutionized the way we approach feature ex-
traction, offering unprecedented efficiency and adaptability
[7, 19]. These AutoML methods employ mathematical and
statistical methods to explore data, potentially uncovering
patterns that might be hidden to human experts and saving
time.

However, the advent of AutoML has introduced a new set of
considerations. While AutoML approaches offer the promise
of systematic data exploration, questions remain about stu-
dents’ confidence in using the resulting features. Research
indicates that even domain experts often struggle to make
sense of AutoML-generated features [7], raising concerns
about their practical applicability in educational contexts
where transparency and understanding are paramount. In
contrast, traditional expert-driven feature engineering relies
heavily on domain knowledge and human intuition. This
approach often yields features that are more contextually
relevant and easier to interpret. However, it is not without
its limitations, potentially constrained by cognitive biases
[18] and the considerable time and effort required for man-
ual feature selection. For instance, consider these examples
in the context of predicting student academic performance:

Expert: score higher than mean

Translation: Numbers of test scores students received that
were higher than average of class

Featuretools: MAX(assessmentsmerged.CUM COUNT (as-
sessment type))

Translation: Largest value of the count of how many assign-
ments were submitted by the student so far

TSFRESH: mouse click left agg linear trend attr “rvalue”

chunk len 5 f agg “mean”

Translation: Correlation of a line drawn through the sequence
of values that consist of the average number of mouse
clicks in the last 5 actions done by the student

These three features demonstrate different levels of com-
plexity in their calculations. The Expert feature is rela-
tively straightforward, using a basic statistical comparison

to count above-average test scores—a calculation that di-
rectly relates to familiar educational metrics. The Feature-
tools example introduces temporal aggregation by track-
ing cumulative assignment submissions over time, requir-
ing more complex data aggregation across multiple database
tables but still maintaining a connection to recognizable
educational concepts. The TSFRESH feature is the most
complex, incorporating sequence analysis of mouse behav-
ior with both temporal chunking and correlation calcula-
tions. Each shows a distinct approach to capturing student
behavior: direct performance metrics (Expert), engagement
through submission patterns (Featuretools), and detailed in-
teraction behavior through mouse movements (TSFRESH).

2.2 Trust
As a fundamental aspect of human–machine collaboration,
trust requires close inspection with regard to its precondi-
tions, implications, and consequences across multiple disci-
plines. In ML systems specifically, this manifests through
dimensions of perceived competence, benevolence, and in-
tegrity [21]. Trust in ML involves a willingness to rely on the
system’s outputs and recommendations, based on positive
expectations of its performance and reliability [42]. While
high levels of trust can promote the adoption and effective
use of ML technologies, excessive trust without critical eval-
uation may lead to overlooking potential biases or limita-
tions inherent in these systems [83, 24, 37]. As ML contin-
ues to evolve, including the evolution of its strengths and
weaknesses, striking the right balance of trust between hu-
mans and ML becomes crucial for ensuring both the efficacy
and ethical implementation of these technologies. This is
particularly important because students, especially younger
ones, are often more susceptible to trusting technology due
to their age and less experience evaluating automated rec-
ommendations [64, 15]. Their heightened trust makes them
potentially more vulnerable to accepting ML-driven insights.

Trust formation is a complex process influenced by multiple
factors. To address this complexity, researchers have pro-
posed various frameworks to analyze and explain trust in
automated systems. McKnight et al.’s [43] trust in tech-
nology model focuses primarily on institutional, calculative,
and knowledge-based dimensions, which may not fully cap-
ture the experiential aspects of student interactions with
ML features. Lee & See’s [37] framework emphasizes per-
formance, process, and purpose, providing valuable insights
into the functional aspects of trust. Similarly, Mayer et al.’s
[42] organizational trust model, while robust in addressing
ability, benevolence, and integrity, was originally developed
for human-human trust rather than human-machine inter-
actions. The Hoff & Bashir [24] model emphasizes the sig-
nificance of factors such as the machine’s ability to engage
socially, its overall appeal to users, and its communication
approach [51]. By focusing on these aspects, the framework
provides insights into how the design of machine learning
systems can influence trust and interaction. Among these
layers of trust, learned trust plays a pivotal role in shap-
ing attitudes toward ML systems, developing through re-
peated interactions and accumulated experiences aligns par-
ticularly well with our focus on how different feature types
influence trust formation and decision-making in educational
ML systems. Research indicates that prior knowledge, ex-
pectations, observed performance, and perceived reliability



of ML models can significantly influence the trust formation
process [67, 82].

Distinguishing between different aspects of trust is also cru-
cial. Two key concepts are automation complacency and the
propensity to trust technology. Automation complacency
refers to suboptimal monitoring of model performance, po-
tentially leading to overreliance on technology and failure to
recognize situations requiring human intervention [44, 37].
It manifests as a trust behavior and emerges from prolonged
exposure to consistently reliable ML systems [44, 52], po-
tentially compromising users’ critical thinking and decision-
making abilities. In contrast, the propensity to trust tech-
nology is an individual’s general tendency to rely on or be-
lieve in technological systems. It represents a more dispo-
sitional trait, reflecting an individual’s general inclination
to trust machines. Therefore, we employ a multifaceted ap-
proach from previous trust research to measure trust in ML-
generated features within educational contexts [75]. First,
Appropriate Compliance captures instances where students
correctly accept or reject ML recommendations. Second,
Overcompliance identifies cases where students accept in-
correct ML recommendations, and serves as a behavioral
indicator of overreliance, directly linking to the concept of
automation complacency discussed earlier. Third, Under-
compliance tracks situations where students reject correct
ML recommendations, possibly suggesting under-trust. Ad-
ditionally, we analyze Decision Time, which measures the
duration students take to accept or reject ML recommen-
dations. Furthermore, the Switch Ratio, which quantifies
the frequency with which students change their mind from
disagreement with the ML system at first to eventual agree-
ment. Lastly, we adopt the Propensity to Trust[27] scale
as a measure of non-behavioral level trust, providing insight
into students’ general inclination to trust ML systems.

3. THE CURRENT STUDY
The literature reviewed thus far underscores the complex in-
terplay between student trust, system design, and the nature
of features in ML models. It highlights a critical gap in un-
derstanding of how different feature engineering approaches—
specifically, expert-crafted versus AutoML-generated features—
might influence student trust and behavior in educational
contexts. We focus on the context of predicting student
outcomes, a critical application of ML in education. Our
research is guided by the following research question and
hypotheses:

Research question (RQ): In the context of pre-
dicting student outcomes, how do expert-crafted
features compare to two AutoML-generated fea-
ture approaches (Featuretools and TSFRESH) in
terms of student trust and propensity to use?

H1: Expert-crafted features will elicit higher levels of initial
trust compared to AutoML-generated features.

Reasoning: We expect that expert-crafted features are likely
to be more aligned with domain knowledge and interpretable
understanding of educational processes because they arise
from human experts’ knowledge. This alignment may lead

to higher initial trust and more accurate decision-making by
students [33]. Simultaneously, algorithm aversion—a ten-
dency to distrust algorithmic decision-making after observ-
ing algorithmic errors—might lead to lower trust in AutoML-
generated features [10], given that students may have expe-
rienced algorithmic errors in the past. This aversion could
potentially result in relatively higher trust or appropriate
compliance for expert-crafted features, as students may per-
ceive human expertise as more reliable.

H2: AutoML-generated features will result in higher over-
compliance rates compared to expert-crafted features.

Reasoning: The complexity and potential opacity of AutoML-
generated features may lead to a form of automation bias,
in which people often exhibit a tendency to trust computer-
generated outputs more than human-generated ones due to
their perceived sophistication [51, 69]. The automation bias
stems from the perception that machine-generated informa-
tion is more objective, comprehensive, and free from human
error [66, 66]. This phenomenon might result in higher over-
compliance rates for AutoML-generated features, despite
possible initial lower trust hypothesized in H1. While initial
trust might be lower for AutoML features (H1), overcom-
pliance represents a different behavioral pattern where stu-
dents may defer to suggestions even when they have doubts.
This distinction between trust and potentially harmful over-
compliance is crucial—trust, in general, reflects a considered
judgment, while overcompliance indicates an excessive re-
liance that may override critical thinking and professional
judgment.

H3: Expert-crafted features will lead to higher appropriate
compliance compared to AutoML-generated features.

Reasoning: When features align with domain knowledge,
students are more likely to make decisions that accurately
reflect the system’s reliability. This alignment in expert-
crafted features may facilitate better judgment about when
to trust or question the system’s suggestions [33]. For exam-
ple, research shows that when students rely purely on their
personal experiences of learning (like expectations about
workload patterns or forum participation), they sometimes
interpret data very differently from statistical approaches
and from each other [28]. The interpretability of expert
features could also enable students to better calibrate their
trust, leading to more appropriate compliance decisions.

H4: AutoML-generated features will result in higher under-
compliance rates compared to expert-crafted features.

Reasoning: The complexity and unfamiliarity of AutoML-
generated features may trigger skepticism and resistance,
leading students to reject system suggestions even when they
are correct. This cognitive barrier could stem from algo-
rithm aversion [10], where the opacity of machine-generated
features makes students more likely to dismiss valid system
recommendations.

H5: Decision time will be shorter for expert-crafted features
compared to AutoML-generated features.

Reasoning: The lexical familiarity and interpretability of



expert-crafted features may facilitate quicker decision-making
processes. In contrast, the potentially novel or complex na-
ture of AutoML-generated features might require more cog-
nitive processing time [84].

H6: Students will demonstrate a higher propensity to trust
expert-crafted features compared to AutoML-generated fea-
tures, with this difference remaining consistent.

Reasoning: The familiarity and interpretability of expert-
crafted features may sustain this trust advantage over time,
as students might find these features consistently more re-
latable and understandable compared to potentially complex
or opaque AutoML-generated features [71].

H7: The switch ratio will be higher for expert-crafted fea-
tures compared to AutoML-generated features.

Reasoning: Consistent with our earlier hypotheses about the
propensity to trust and decision time, students are likely to
maintain higher trust in expert-crafted features throughout
their interactions. This sustained trust in expert features
may lead to more instances where students initially disagree
with the system but then switch to agreement after further
consideration [24].

In general, we hypothesize that features that are more in-
terpretable or align closely with students’ understanding of
learning processes may foster greater trust. While highly
abstract or complex features may demonstrate strong pre-
dictive power, their reduced interpretability may make them
less effective at convincing students to thoughtfully recon-
sider their initial judgments when disagreements arise[35].
This is distinct from overcompliance patterns that develop
over repeated interactions; here, we focus on those criti-
cal single instances where students reconsider their initial
stance. By analyzing students’ responses to these different
feature types, we seek to uncover patterns in trust forma-
tion. Do students place more trust in models that use fa-
miliar, easily understood features? Or do they have more
confidence in systems that employ sophisticated, machine-
generated features that might be less interpretable? Under-
standing these dynamics is crucial for bridging the gap be-
tween the technical aspects of ML and the practical needs of
students. Our findings inform the design of more trustwor-
thy and effective educational ML systems, potentially lead-
ing to increased student engagement and improved learning
outcomes.

4. METHOD
This research protocol was pre-registered through OSF(https:
//doi.org/10.17605/OSF.IO/3H2GM) and conducted under
approval from the Institutional Review Board of the Univer-
sity of Illinois.

4.1 Data Preparation
We utilized two publicly available, de-identified educational
datasets: the Open University Learning Analytics Dataset
(OULAD) [36] and Educational Process Mining (EPM) data
[74]. From these datasets, we extracted and designed vari-
ables related to student interactions and behavior within
learning systems. While study participants only saw the
plain English translations to ensure naming conventions didn’t

Figure 1: Research Procedure

.

influence their judgments, the calculation difference vary
substantially between these AutoML and expert-created fea-
tures.

The Open University Learning Analytics Dataset (OULAD)
[36], collected between 2013 and 2014, captures student be-
haviors, interactions with course materials, and their final
outcomes. OULAD includes information on 32,592 students,
with over 10 million data points describing their interac-
tions with an online learning system. The dataset contains
student demographics, assessment results, and daily online
activity logs. For our study, we simplified the original four-
category student outcomes (“fail”, “withdrawn”, “pass”, and
“distinction”) into two categories: “fail” and “pass”. This
binary classification makes it easier to interpret our ma-
chine learning models’ results—especially for participants,
who make judgments about pass/fail with the help of these
machine learning models—and ensures consistency across
different datasets.

The EPM dataset offers more granular student interface in-
teraction data from 115 first-year undergraduate engineer-
ing students [74]. It contains 230,318 rows of data about
their interactions with electronic tutoring software and as-
sessment scores for different topics. Student outcomes in
EPM range from 0 to 5 and were first converted into pass
and fail for use in prediction.

4.2 Machine Learning Model Development
To ensure that the feature sets presented to participants
were both fair and statistically valid, we selected feature sets
that balanced predictive power with a degree of uncertainty.
We built machine learning models using combinations of
variables to determine their utility in predicting students’
future academic outcomes. These models formed the basis
for the predictions presented to participants in the subse-
quent survey experiments. The survey displayed predicted

https://doi.org/10.17605/OSF.IO/3H2GM
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outcomes from machine learning models to student partici-
pants. To create these predictions, we trained and applied
random forest classification and regression models using the
AutoML-generated features and the hand-crafted features
separately, with data split into testing and training sets us-
ing a 30/70 ratio. For each of the three feature generation
methods (Featuretools, TSFRESH, and expert-crafted), we
selected 4 distinct sets, each comprising 5 variable combina-
tions. These feature sets were selected to achieve a predic-
tive accuracy within the range of 0.7 to 0.75. This specific
range was chosen based on multiple studies that suggest a
threshold of about 70% accuracy is appropriate for examin-
ing trust in decision-support systems incorporating AI [80,
83]. After that, we utilized SHAP (SHapley Additive exPla-
nations) [40] values to identify and visualize the importance
of each feature within these sets, providing participants with
graphical representations of how each variable contributes
to the model’s predictions. The purpose of including SHAP
values was to provide participants with additional machine
learning-supported information about feature importance.
This inclusion is based on the premise that having more in-
formation to support decision-making can actually lead to
less trust in the machine [75].

In our study, the decision to train a random forest model
was driven by two main considerations. First, random for-
est models allow for fast and efficient SHAP value calcu-
lations [79, 40], which is crucial for our study design that
incorporates feature importance visualization. This compu-
tational efficiency is not available with other popular models
such as neural networks or support vector machines. Second,
Random forest’s robustness against overfitting makes it an
appropriate choice for prediction tasks with many features
[8], such as in this study. Moreover, our research specifically
examines how different feature types influence student trust
and decision-making, with the model architecture serving
only as a means for this investigation. Thus, comparing dif-
ferent model types would extend beyond the scope of our
core research questions about student trust. The focus was
not on comparing model types but rather on highlighting the
utility of the features within typical educational data min-
ing contexts. By prioritizing feature selection, we aim to
ensure that our study’s findings are grounded in the quality
and relevance of features, rather than the capabilities of any
particular modeling technique.

4.3 Prediction Task and Trust Evaluation
Participants engaged in a multi-stage study to explore their
use of different types of ML features for making decisions,
and especially what their usage patterns might tell us about
trust and reliance on features (Figure 1):

Initial Prediction: Participants were presented with a set of
features (Figure 2), and then made an initial prediction of
outcomes (Pass or Not Pass).

Model Prediction and Re-evaluation: Participants were shown
the ML model’s prediction and asked to make other pre-
dictions. Regardless of their decision on the first level, all
participants progressed through the other two levels of pre-
diction tasks.

Figure 2: Screenshot of an example table of expert features
shown to participants.

1. Level 1: Participants received basic information about
the ML model and made predictions using a subset of
variables.

2. Level 2: Additional insights into the ML model’s pre-
dictions (variable importance) were provided, and par-
ticipants made another set of predictions.

3. Level 3: Detailed graphical explanations (SHAP) of
variables were given, and participants made final pre-
dictions.

Trust Assessment: Following each prediction task, partici-
pants rated their trust in the model’s most recent predic-
tion on a 5-point Likert-type question, ranging from 1 (not
trustworthy at all) to 5 (completely trustworthy).

Participants were assigned to interact with three feature cre-
ation methods: Expert, TSFRESH, or Featuretools. They
were presented with a series of recommendations and asked
to make decisions based on these recommendations. Their
interactions were recorded, including their decisions, deci-
sion times, and any changes in their decisions.

4.4 Trust Metrics
Our study employed trust-related behavioral measures to
assess participants’ trust in three different feature creation
methods: Expert, TSFRESH, and Featuretools. To assess
trust, we employed a set of behavioral measures derived
from participants’ interactions with system recommenda-
tions. Specifically, we focused on four key indicators that re-
flect different aspects of trust and decision-making behavior.
Moreover, we measured trust compliance as the number of
times participants followed the system’s recommendations.
This was further broken down into three specific metrics:

• Appropriate Compliance: The sum of correct recom-
mendations accepted and incorrect recommendations
rejected. This measure indicates the overall alignment
between the participant’s decisions and the system’s
accurate recommendations. A high value implies that
participants are effectively discerning between accu-
rate and inaccurate system recommendations, indicat-
ing a balanced level of trust. A low value suggests
either indiscriminate acceptance or rejection of recom-
mendations, pointing to potential issues in trust cali-
bration [75].



• Overcompliance: The number of incorrect recommen-
dations accepted. A high overcompliance rate suggests
excessive trust in the system, potentially leading to er-
rors and poor decision-making [75].

• Undercompliance: The number of correct recommen-
dations rejected. High undercompliance might indi-
cate a lack of trust in the system, even when it is pro-
viding accurate information. This could lead to missed
opportunities for improved decision-making and un-
derutilization of the system’s capabilities [75].

• Decision Time

We recorded the time taken by participants to accept
or reject a recommendation, providing insight into the
cognitive processing involved in trust-based decision-
making. A shorter decision time might indicate higher
trust in the system or a more interpretable understand-
ing of the features, while longer decision times could
suggest more careful consideration or uncertainty about
the recommendation’s validity.

• Switch Ratio

The switch ratio was calculated to measure the fre-
quency with which participants changed their initial
disagreement with the system to eventual agreement.
This ratio is expressed as a percentage and calculated
using the following formula:

Switch Ratio (%) =
Num. switches to agreement

Num. disagree initially
×100

(1)

A high switch ratio could imply that participants are
willing to reconsider their initial judgments based on
the system’s recommendations, potentially indicating
growing trust in the system over time. Conversely, a
low switch ratio might suggest that participants are
more confident in their initial judgments or less will-
ing to rely on the system’s recommendations, possibly
indicating lower trust toward the system.

• Initial Trust and Trust Difference In addition to behav-
ioral measures, we assessed participants’ self-reported
trust at the beginning of the interaction (Initial Trust)
and the change in trust over the course of the interac-
tion (Trust Difference).

5. RESULTS
5.1 Participants
Participants were recruited through Prolific, an online plat-
form for research studies with exceptional data quality [55].
The inclusion criteria specified currently enrolled U.S. col-
lege students, at least 18 years old. A total of 179 partic-
ipants completed the study. Participants received $5 base
compensation for their participation. Additionally, to in-
centivize engagement and performance, participants were
scored based on their prediction accuracy rate throughout
the study. The accuracy rate was calculated as the percent-
age of correct predictions made by each participant across
all tasks. Participants whose accuracy rates ranked in the
top 10% of all participants received a bonus of $2.

5.2 Compliance Metrics
We employed linear mixed-effects models to analyze the data,
with the feature creation method (Expert, TSFRESH, Fea-
turetools) as a fixed effect and participant ID as a random
effect. This approach allowed us to account for the effect
of individual differences on multiple observations per par-
ticipant, while examining the effect of the feature creation
method on our trust-related measures. Figure 3 illustrates
the compliance metrics across the three groups.

Figure 3: Compliance Metrics by Condition

5.2.1 Appropriate Compliance
Figure 3 shows that the Expert condition had the highest av-
erage appropriate compliance made by participants at 8.71
out of 36 rounds, followed by Featuretools at 7.89 and TS-
FRESH at 6.77. A linear mixed model analysis revealed
significant differences among the conditions. The Expert
condition showed higher appropriate compliance compared
to both TSFRESH (β = −0.615, p < .001) and Feature-
tools (β = −0.240, p = .002). These results support H3, as
the Expert condition showed significantly higher appropriate
compliance.

5.2.2 Overcompliance
For overcompliance (Figure 3), participants averaged 2.41
incorrect acceptances with Expert features, 2.34 with Fea-
turetools, and 1.81 with TSFRESH, out of the 9 rounds
where the ML system made incorrect recommendations. The
linear mixed effects model, with TSFRESH as the reference,
showed significant differences. The Expert condition demon-
strated significantly higher overcompliance compared to TS-
FRESH (β = 0.598, p < .001). Featuretools also showed
higher overcompliance than TSFRESH (β = 0.531, p < .001).
These results contradict H2, which predicted higher over-
compliance for AutoML-generated features.

5.2.3 Undercompliance
Undercompliance was highest for TSFRESH at 3.42 cor-
rect recommendations rejected out of the 28 rounds where
the ML system made correct predictions, followed by Fea-
turetools at 1.76 and Expert at 0.88 (Figure 3). Signif-
icant differences were observed among conditions. Com-
pared to the Expert condition, Featuretools showed higher
undercompliance (β = 0.201, p < .001), as did TSFRESH
(β = 0.732, p < .001). These results support H4, showing
significantly higher undercompliance rates in both AutoML
conditions compared to the Expert condition.



5.3 Trust Metrics
5.3.1 Initial Trust
Figure 4 shows the distribution of initial trust across condi-
tions.
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Figure 4: Distribution of Initial Trust by Condition

The Expert condition exhibited a higher median trust (3.52
out of 5) and a smaller interquartile range compared to
TSFRESH and Featuretools, which both had median trust
around 3.0 and larger interquartile ranges. The linear mixed
model revealed significant differences in initial trust among
conditions. Compared to the Expert condition, both Fea-
turetools (β = −0.315, p < .001) and TSFRESH(β = −0.729, p <
.001) showed significantly lower initial trust. This finding
supports H1, suggesting that expert-crafted features indeed
elicit higher levels of initial trust and appropriate compli-
ance.

5.3.2 Trust Difference
Analysis of trust differences between initial trust and post-
trust did not reveal statistically significant changes across
conditions. Neither Featuretools (β = −0.017, p = .276)
nor TSFRESH (β = 0.007, p = .705) showed significant dif-
ferences in trust change compared to the Expert condition.
This finding partially contradicts H6, which predicted dif-
ferences in trust levels between expert-crafted and AutoML-
generated features over time.

5.4 Switch Ratio
Figure 5 presents the switch ratio by condition.

Figure 5: Switch Ratio by Condition

Featuretools had the highest switch ratio at 22.44%, fol-
lowed by TSFRESH at 17.60%, and Expert at 14.06%. The

linear mixed-effects model showed that Featuretools had a
significantly higher switch ratio compared to Expert (β =
8.380, p = .008). TSFRESH, however, did not show a statis-
tically significant increase compared to Expert (β = 3.538, p =
.064), although the p-value suggests future work to confirm
a trend in the same direction. This partially supports H7,
with Featuretools exhibiting a higher switch ratio as pre-
dicted for AutoML-generated features, but no statistically
significant difference for TSFRESH features.

5.5 Decision Time
Figure 6 illustrates the time differences by feature type.
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Figure 6: Decision Time by Feature Type

The Expert condition yielded the highest median decision
time indicating that participants spent more time making
decisions when presented with expert-crafted features. A
linear mixed-effects model analysis revealed significant dif-
ferences in time differences among the conditions. The Ex-
pert condition showed the highest time difference (β = 38.980,
p < .001). Compared to the Expert condition, both Fea-
turetools (β = −12.839, p = .007) and TSFRESH (β =
−10.000, p = .035) demonstrated significantly lower decision
time. This result contradicts H5, which predicted shorter
decision times for expert-crafted features.

In summary, our results indicate significant differences in
compliance metrics and initial trust across the three condi-
tions, with the Expert condition generally showing higher
appropriate compliance and initial trust. However, trust
changes over time were not significantly different across con-
ditions. The Featuretools condition demonstrated a signif-
icantly higher switch ratio compared to the Expert condi-
tion, while decision time differences showed some variation
but with considerable overlap between conditions.

6. DISCUSSION
6.1 Compliance Patterns and Feature Inter-

pretation
The observed differences in compliance across conditions
provide insight into how students interpret and act upon dif-
ferent types of features. The Expert condition’s higher ap-
propriate compliance suggests that expert-crafted features
may align more closely with students’ mental models of what



predicts educational outcomes. This alignment could facili-
tate more accurate interpretations and decisions [34]. When
features are grounded in educational domain knowledge and
presented in familiar terms, students appear better equipped
to make well-calibrated decisions about when to trust the
system’s suggestions (H3). This finding suggests that in-
terpretability and domain alignment may serve as crucial
mechanisms for fostering appropriate trust calibration.

Interestingly, the Expert condition also showed the highest
overcompliance, followed closely by Featuretools and then
TSFRESH. This pattern suggests that students may be more
inclined to accept recommendations based on expert-created
features, even when incorrect (H2). This concurrent finding
might present an intriguing paradox. One possible expla-
nation is that the familiarity and interpretability of expert
features might create an “interpretability bias” where stu-
dents become overconfident in their understanding of the
system’s decision-making process and become less likely to
check for errors [17], leading to excessive trust. While this
pattern might lead to better performance in cases where
the machine learning model is quite accurate, it also high-
lights a potential risk of over-reliance due to a specific type
of feature, which could propagate biases or errors present in
expert-created features—particularly given that we matched
accuracy across feature types to control for the effect of ac-
curacy, indicating that overcompliance is not explained by
higher accuracy. The Featuretools condition’s close second
in overcompliance suggests that its machine-generated fea-
tures, while not matching expert features in perceived au-
thority, still inspire a considerable degree of student confi-
dence. This could be due to the features’ apparent simplicity
or relevance compared to TSFRESH, even if not fully un-
derstood by students.

Unlike overcompliance which reflects excessive trust, under-
compliance indicates an ongoing trust deficit—where stu-
dents continue to reject valid system recommendations due
to their inability to build confidence in the system’s decision-
making process. The patterns of undercompliance, where
students reject correct recommendations, also merit care-
ful consideration. TSFRESH features in particular resulted
in substantially more undercompliance. This could reflect
a form of algorithm aversion where students are less will-
ing to accept correct recommendations from machines com-
pared to human experts [16], suggesting—along with appro-
priate compliance rates—that TSFRESH features are the
least trusted and perhaps the most clearly “machine-like”
in nature from students’ perspectives (H4). This persistent
skepticism likely originated from the features’ computational
complexity and lack of interpretable meaning, creating a
barrier to trust development that persists throughout re-
peated interactions.

The consistently lower trust levels for machine-generated
features might suggest that the opacity of AutoML features
may create a “trust ceiling”—where students’ trust remains
consistently below optimal levels despite exposure and ex-
perience with the machine-created features. This finding is
particularly important since it indicates that mere exposure
to AutoML systems may not be sufficient to overcome trust
barriers; instead, students may need additional support to
develop appropriate levels of trust in these more complex,

machine-generated features.

6.2 Trust Formation and Evolution
The significant differences in initial trust, with Expert fea-
tures receiving higher trust ratings, reflect a persistent hu-
man preference for expert knowledge over machine-generated
insights (H1). However, the lack of significant differences in
trust change over time across conditions suggests that ini-
tial trust impressions are relatively stable. This stability in
trust perceptions, despite exposure to features’ performance
in machine learning models, raises questions about the mal-
leability of trust in machine systems and the potential need
for more explicit trust calibration mechanisms [25].

6.3 Decision-making Processes
The time difference analysis reveals that participants spent
significantly more time on Expert-created features compared
to Featuretools and TSFRESH (H5). This increased de-
liberation time could indicate deeper cognitive processing
of expert-crafted features, possibly due to their perceived
complexity or relevance [54, 38]. The switch ratio analysis
further complicates this picture, with Featuretools showing
a higher propensity for students to change their initial dis-
agreements (H7). This finding suggests that while machine-
generated features may initially be viewed with skepticism,
they have the potential to alter student judgments upon fur-
ther consideration and interaction.

Overall, expert-created features consistently inspired higher
levels of trust and compliance, highlighting the enduring
value of domain expertise in machine system design. How-
ever, this also raised concerns about potential over-reliance
on expert-created features. Machine-generated features, par-
ticularly those from Featuretools, showed promise in their
ability to influence student decisions over time, as evidenced
by higher switch ratios.

6.4 Implications for Student–AI Interaction De-
sign

The results of the experiment in this paper have significant
implications for the design of automated, machine learning-
powered systems, especially in educational contexts where
stakeholders (e.g., students, teachers, administrators, oth-
ers) may rely on predictions of learning outcomes from a
machine learning algorithm to help them make decisions ex-
actly like those explored in this paper. The persistence of
higher trust in expert-crafted features underscores the im-
portance of incorporating domain expertise in feature engi-
neering processes. However, the malleability of judgments
regarding machine-generated features, as evidenced by the
Switch Ratio, suggests potential for improving student ac-
ceptance of machine-generated insights. Future machine
learning-powered systems might benefit from hybrid app-
roaches that combine expert knowledge with machine learn-
ing capabilities, potentially leveraging the strengths of both
to enhance student trust and system performance. Addi-
tionally, the development of more transparent and inter-
pretable machine learning models could help bridge the trust
gap between expert-crafted and machine-generated features,
though only if interpretability extends beyond explanations
in terms of feature values—which will only be as useful (and
trusted) as the features are.



6.5 Limitations and Future Directions
While our findings demonstrate how students develop trust
in AI systems, educational decision-making often involves
more complex real-world contexts. The controlled nature
of the experiment may not fully capture the complexities
of real-world educational decision-making contexts. Future
research could explore these dynamics in more naturalistic
settings, potentially through longitudinal studies that track
trust evolution over extended periods of interaction with
AI-assisted decision-making. Furthermore, investigating the
impact of different explanation strategies for machine-generated
features could yield valuable insights into how to foster ap-
propriate trust in machine systems. Exploring individual
differences in trust propensity and machine literacy could
also provide a more nuanced understanding of trust forma-
tion in student-AI collaborations.

7. CONCLUSION
As machine learning systems become increasingly important
in educational contexts, understanding and addressing these
dynamics will be crucial for developing systems that are not
only accurate but also trustworthy and effectively utilized by
human decision-makers. This experiment provides crucial
insights into the dynamics of student trust and behavior in
educational machine systems, specifically comparing expert-
crafted features with those generated by AutoML tools. We
reveal an important consideration: the origin of features sig-
nificantly influences student trust, compliance, and decision-
making processes.
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