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Abstract—In computer-based education, understanding stu-
dent data is essential for students, teachers, researchers, and
others to adapt to insights gained from analyses (e.g., AI pre-
dictions of student outcomes). However, one important question
is: how well can students make sense of the data we present?
And what factors influence the interpretability of those data?
This study assessed students’ perceptions of predictive variables
(i.e., “features”) used in machine learning models for predicting
student outcomes; in particular, we explored features crafted
by experts versus those extracted by methods for automatic
machine learning (i.e., AutoML). Our results indicated a mean-
ingful difference in students’ interpretability perceptions between
the expert and AutoML features across two diverse datasets.
Additionally, features derived from timing and scoring data were
more interpretable than those from interaction (e.g., keystroke)
data. Other potential explanations for interpretability differences,
including statistical methods, repeated exposure, and lexical
familiarity, had relatively minimal impact on interpretability.

I. INTRODUCTION

The shift towards e-learning and web-based education
methods has led to promising opportunities to expand and
improve education [34]. For example, within the context of
computer-mediated learning, the abundant data generated from
teacher–student interactions can be leveraged to optimize the
digital interface for both parties [2]. Machine learning is
becoming a transformative tool not only for institutions of
higher education but, more importantly, for enhancing student
success directly [38]. Machine learning promises to provide
insights that can reshape academic processes and interventions
and has been used to systematically explore complex educa-
tional datasets to identify hidden patterns and relationships
[43]. Through insights derived from data mining, educators
have the opportunity to refine their curriculum in alignment
with students’ needs, promoting engagement and optimizing
learning outcomes [26], [44]. Importantly, this process can
also empower students by providing them access to insights
mined from their own learning data, fostering a more per-
sonalized and self-directed learning experience. As students
engage with their data, they gain valuable insights into their
learning habits, strengths, and areas for improvement [15].
Many scholarly works have explored the utilization of machine
learning techniques in this domain, concentrating on collecting
student data, analyzing their behavior, and identifying—for
example—students who might encounter academic difficulties

[33], [42]. Such advancements have potential to radically
transform outcomes, from predicting student performance to
optimizing curriculum delivery. However, the introduction of
such technology also carries with it ethical, practical, and
legal responsibilities to ensure that the decisions from machine
learning models can be understood—especially when stake-
holders are directly affected by predictions or are expected to
learn from them, as may often be the case with students.

Historically, the primary focus of machine learning research
was on performance optimization, with the aim of designing
systems capable of delivering the most accurate predictions by,
for example, learning rules and decision trees from data [28].
As AI models became more accurate, a challenge emerged:
these advanced predictive models were often too complex to
understand, leaving researchers and students puzzled about
the “how” and “why” behind models’ predictions [14]. This
realization has prompted a rapid increase in research focusing
on the interpretability of AI systems [12], and especially on
designing methods to enable stakeholders to explore what
inputs are most relevant to a prediction and how particular
values affect a prediction [19]. However, a critical yet poorly
understood consideration for interpreting machine learning
model decisions arises from the fact that interpreting a model
is intrinsically tied to the inputs, or features, that it uses.
Notably, even a simple linear regression model can become
incomprehensible when trained with uninterpretable features.

Recognizing students as active users of machine learning-
driven tools is a critical shift in perspective. These tools, such
as student-facing dashboards, allow students to understand
and reflect upon the predictions made about their learning
outcomes [37]. By accessing and interpreting their learning
data, students transition from being mere subjects of edu-
cational analysis to becoming interactive users, empowering
them to take control of their educational process and change
their learning strategies accordingly. The impact of dashboard
learning analytics systems on students’ learning experiences is
profound. Students engage more deeply with their education
when they can interpret the data presented to them [23]. Given
the critical role that students play as users, the interpretability
of data used for machine learning in education is a pedagogical
necessity beyond a mere technical concern. Students have the
opportunity to self-reflect and learn from machine learning



models if they can interpret, for instance, why a model makes
a prediction about a particular learning outcome and how
they can adjust accordingly [5], [20]. Enabling students to
understand and reflect upon the predictions made about their
learning outcomes is fundamental, ensuring that educational
technology enhances the overall learning experience by being
meaningful to all stakeholders, especially students. Overall,
the primary objective of this work is to explore how students
can understand machine-generated features in educational
machine-learning models to some extent. By investigating the
ways in which students can interpret and engage with these
features, we aim to bridge the gap between the technical
aspects of machine learning and the pedagogical needs of
students.

II. BACKGROUND

A. Interpretability

The concept of interpretability is crucial in developing
understandable machine learning models, referring to humans’
ability to comprehend the reasoning behind a model’s decision
[8]. Machine learning interpretability is important for several
reasons, such as enabling experts to refine models [27],
fostering trust [6], and ensuring that students and teachers can
comprehend, learn from, and question a model’s evaluations
in educational scenarios [7], [20]. Studies reveal that when
students can interpret and engage with models predicting
their learning outcomes, they can better adjust their learning
strategies, leading to improved educational experiences and
higher acceptance [6]. Interpretability also plays a role in
addressing societal concerns, such as the European Union’s
establishment of rights for individuals to access meaningful
information about the logic involved in automated decision-
making [39]. Emphasizing the “why” behind AI decisions is
a fundamental feature of responsible AI deployment [17]. A
student’s ability to interpret a model is influenced by various
factors, with features being a particularly predominant influ-
ence [31]. Considering interpretability implies that there must
be someone to do the interpreting, and different stakeholders
may require various levels and forms of feature interpretability.
In this paper, we focus on students, the largest and most
directly impacted group of stakeholders in education. We
expect that the effectiveness of AutoML tools in educational
contexts critically depends on the degree to which students can
understand and interact with these systems. Education systems
designed with student interpretability in mind act not just as
tools for assessment but as catalysts for active learning and
self-reflection. In this study, we define interpretability as the
extent to which students can understand and make sense of
the features used in machine learning models for predicting
educational outcomes.

B. Feature Engineering for Machine Learning with Educa-
tional Data

As the volume of educational data expands, the insights we
seek to extract become more complex [10]. Designing and
extracting features (i.e., feature engineering) from complex

learning data in a manner that is readily digestible for students
and teachers poses a challenge [22], yet an important one since
ML models are only as interpretable as their features [45].
Therefore, ensuring that these features are both meaningful
and interpretable to educators and students is critical for the
effective use of ML in education.

Automated machine learning (AutoML) methods have
emerged to address the challenge of feature engineering, offer-
ing greater adaptability and efficiency compared to manual fea-
ture selection. We focus specifically on AutoML for the feature
engineering step [9], which can affect the interpretability of
any type of model or training process. Tools like FeatureTools
[3] (for relational data) and TSFRESH [11] (Time Series Fea-
ture Extraction based on Scalable Hypothesis tests) automate
the feature engineering process by extracting huge numbers of
features based on provided data and metadata. Expert-driven
feature engineering methods rely on domain knowledge and
human intuition, leading to features that we expect to be more
interpretable and contextually relevant, but potentially limited
in scope due to cognitive biases and time/effort required. In
contrast, AutoML systems utilize mathematical and statistical
methods, allowing for a more comprehensive and unbiased
exploration of data. However, understanding their interpretabil-
ity is still an unknown challenge. Previous work indicates
that domain experts find AutoML features more difficult to
interpret [3], but little is known about students’ perceptions.

C. The Present Study

From a student’s perspective, the interpretability of a sys-
tem might not always directly influence their decision to
accept it. Instead, interpretability might more subtly impact
human confidence level, trust, comfort, and acceptance with
the technology [6], [35], thereby impacting their acceptance
of utilizing these technologies in their learning process. For
example, when the visual representation of data and personal-
ized performance feedback work together to build user trust,
users are more likely to trust the machine learning result
because they can clearly see how their data are being used
[1]. Nonetheless, if the learning analytics dashboard’s inner
workings are opaque, the student might use it with a degree of
skepticism or discomfort, which could eventually affect their
continued engagement with the dashboard.

Researchers have increasingly concentrated on exploring
the impact of machine learning features’ characteristics (such
as perceived usefulness, complexity, performance expectancy,
and effort expectancy) [21]. One notable area of research is
the concept of “procedural fairness” in algorithmic decision-
making [13], which concerns how people perceive the fairness
of outcomes delivered by algorithms. This is closely tied to the
features themselves, as perceived fairness can be influenced
by how users understand the features that lead to predicted
outcomes.

Traditionally, educational machine learning research has
focused on the accuracy and efficiency of predictive models
[4], with less emphasis on interpretability from the perspective
of non-technical end-users like students. Our study evaluates



the interpretability of machine learning features, particularly
those generated by AutoML methods, addressing a gap in
the existing literature. We investigate which features are more
interpretable for students and why, aiming to make AutoML
methods more accessible and understandable in educational
contexts. We address two research questions:

RQ1: In the context of predicting student outcomes,
how does the interpretability of AutoML features
compare to those crafted by experts?

Hypothesis: AutoML features will be harder to grasp than
expert-developed features because domain experts are guided
by similar educational experiences and intuitions as students,
while AutoML methods lack biases toward domain require-
ments or interpretability preferences.

RQ2: Apart from their origin (i.e., AutoML vs.
expert), what characteristics make a feature more
interpretable to students?

Hypothesis: The intricacy of statistical methods, aggregation
functions, and familiarity with terms used might influence a
feature’s interpretability [32].

III. METHOD

A. Machine Learning Data Description

This paper relies on two datasets from which we extracted
features and trained predictive models for students to evaluate.
The Open University Learning Analytics Dataset (OULAD)
[24], collected between 2013 and 2014, captures student
behaviors, interactions with course materials, and their final
outcomes. OULAD consists of relational data tables, including
student-level, student × assessment-level, and day-level data
for 32,592 students and spans over 10 million rows describing
students’ interactions with an online learning management
system. For modeling purposes, we converted the original four
student outcome categories (“fail”, “withdrawn”, “pass”, and
“distinction”) into binary categories (i.e., “fail” and “pass”)
to simplify the interpretation of the machine learning models’
results and ensure consistency across different datasets.

The other dataset, Educational Process Mining (EPM) [40],
records interface interaction data at a finer granularity than
OULAD; EPM has data from 115 first-year undergraduate
engineering students with 230,318 rows of data about their
interactions with electronic tutoring software and assessment
scores corresponding to different topics within the system.
Student outcomes ranged from 0 to 5 and were used directly
in prediction tasks without conversion.

The datasets both underwent a cleaning process that in-
volved removing missing values and columns with no vari-
ance.

B. AutoML Feature Engineering

The differences in complexity and abstraction level between
AutoML-generated and expert-crafted features are significant,
stemming from their origin and the nature of how they are
created. Even when translated into simpler terms, the underly-
ing complexity and relationships they represent might not be

immediately obvious. For instance, an AutoML system might
use the first digits of a submission date as a feature, which
abstractly connects the submission date with performance
without a clear educational rationale, whereas a human expert
might design a “beginning of the month” or “end of month”
feature instead.

We applied FeatureTools [18] to the OULAD dataset and
TSFRESH to the EPM dataset. FeatureTools with default set-
tings yielded 3,799 features, which were reduced to 668 after
removing features with no variance and redundant features.
TSFRESH aggregates time series data, producing simple and
complex features that may capture trends like student pacing or
time allocation strategies (see section III-D). After eliminating
invariant and redundant features, 321 of the original 6,312
features were retained. The choice to apply different AutoML
methods was influenced by the unique characteristics and
specific requirements of each dataset. TSFRESH specializes
in extracting relevant features from time series data, making
it suitable for the EPM dataset, while FeatureTools excels in
dealing with relational datasets, making it more suitable for
OULAD.

C. Expert Feature Engineering

We manually engineered features expected to be good pre-
dictors of students’ assessment scores based on our expertise
in educational technology, data mining, and machine learn-
ing, with substantial prior experience in feature engineering
[Citations removed for anonymous review]. We prioritized
predictive utility over interpretability and used preexisting fea-
tures from prior research unrelated to interpretability [Citations
removed for anonymous review] to reduce potential biases.
These features represent common feature engineering work
without emphasis on interpretability, serving as a “typical”
comparison for AutoML methods.

The final dataset included 75 features for EPM and 28 for
OULAD, with structure and design similar to other educational
data mining literature [16], [25]. For example, we transformed
quiz score data into (i) quantiles, (ii) indicators of exceeding
class average, and (iii) standard deviations. We also combined
date submitted and date features to form past due, referring to
how often students submitted assignments past the due date.

D. Per-feature Analysis and Feature Selection

Given that there were hundreds of features for students
to evaluate, we narrowed the list of features to those that
were most useful for predicting student assessment scores.
To do so, we trained a single decision tree model with 5-
fold cross-validation via scikit-learn in Python [29]. We then
ranked features according to accuracy and selected the top
15 for inclusion in a subsequent interpretability survey given
to students. The accuracy metrics used for this evaluation
were R2 for the EPM data (a continuous assessment score
outcome) and area under the receiver operating characteristic
curve (AUC) for OULAD (a pass/fail outcome).

Our primary goal was to evaluate the comprehensibility
of the fundamental concepts represented in the features, not



the internal feature names generated by AutoML (or even
experts), which can be unnecessarily difficult to understand
(e.g., “f agg” may be hard to understand without knowing that
TSFRESH uses this to denote using a function to aggregate a
sequence). Hence, we manually “translated” the feature names
into a more interpretable form. For example:

FeatureTools: MAX(assessmentsmerged.CUM COUNT(
assessment type))

Translation: Largest value of the count of how many
assignments were submitted by the student so far

TSFRESH: mouse click left agg linear trend attr
“rvalue” chunk len 5 f agg “mean”

Translation: Correlation of a line drawn through the se-
quence of values that consist of the average number
of mouse clicks in the last 5 actions done by the
student

Students participating in the interpretability survey were
exposed solely to translated descriptions of features. The key
point of comparison in our study is how these features, origi-
nating from different sources, are perceived by students. This
comparison is vital because, in real-world applications, feature
names generated purely by machine learning algorithms might
often be impractical due to their inherent complexity or lack
of clarity. Such features, while mathematically or statistically
well-motivated, may not effectively communicate the practical
implications or relevance of the features they represent. Hence,
the translated feature names represent a more realistic scenario
of how features might be presented to students (e.g., in a
student-facing dashboard).

E. Constructing Machine Learning Models

As described below in section III-F, the interpretability
survey displayed predicted outcomes from machine learning
models to student participants. To create these predictions,
we trained and applied random forest classification and
regression models using the AutoML-generated features and
the hand-crafted features separately, with data split into
testing and training sets using a 30/70 ratio. The accuracy
of each model was assessed using standard metrics including
AUC and R2 (Table I).

Table I
MODEL ACCURACIES FOR MACHINE LEARNING MODELS USED TO

PREDICT STUDENT OUTCOMES.

Dataset Feature Type Metric Result
EPM TSFRESH R2 .471

EPM Expert R2 .443

OULAD FeatureTools AUC .812

OULAD Expert AUC .798

In our study, the decision to train a random forest model
is driven by considerations that directly support our research

objectives. Firstly, random forest was chosen for its well-
established reputation and widespread use in machine learning,
including within the field of education [36], [43]. Random
forest’s robustness against overfitting makes it an appropriate
choice for prediction tasks with many features, such as in this
study. Secondly, and more importantly, our research primarily
concentrates on the analysis and selection of features, with
the choice of model serving merely as a means to facilitate
this focus; hence, comparisons between different model types
would be largely orthogonal to the research questions in this
study. The focus was not on comparing model types but
rather on highlighting the utility of the features within typical
EDM contexts. By prioritizing feature selection, we aim to
ensure that our study’s findings are grounded in the quality
and relevance of features, rather than the capabilities of any
particular modeling technique.

F. Assessing Interpretability with Students

We assessed interpretability by surveying university/college
students across the United States (study approved by university
institutional review board, protocol #[masked for review]).

We recruited college students via Prolific, an online data
collection platform with flexible participant selection criteria
and empirical evidence demonstrating its quality [30].

After consenting to participate, students viewed survey
instructions and answered questions about their backgrounds,
their experience with machine learning, and their understand-
ing of both AutoML-generated and expert-crafted features.
We integrated prediction tasks in the survey to help ground
participants’ interpretability judgments in a specific task. We
opted to use a direct 1-5 scale for evaluation due to the number
of features and the impracticality of applying a comprehensive
survey for each one.

Additionally, previous research has shown that stakes and
scarcity can influence positive attitudes towards AI inter-
pretability [28], we incorporated stakes and scarcity as an
element of the survey by revealing only specific resources (i.e.,
features) for decision-making, then allowing participants to
view additional features if they could not decide. Participants
received points based on prediction accuracy and whether they
asked for additional features, as an incentive to attend to the
task and interpret the features. Participants received $5 USD
for completing the study, with those scoring in the top 10%
receiving an additional $2.

We used the models from Table I as illustrations of machine
learning predictions with student data during the survey. Based
on Table I, we indicated to participants that “the algorithm has
previously been evaluated on a large dataset of student data.
The system has been found to be reliable, achieving a task
accuracy of 75-85%, or performing 40-50% better than random
guessing of a student’s grade”. In binary classification tasks,
where random guessing would be correct 50% of the time (the
baseline rate), saying a model is “40% better than random
guessing” indicates that the model’s performance exceeds
this baseline rate by 40% of the possible improvement on



a 0–100% scale. The reason for expressing model perfor-
mance in this manner is to provide a standardized way of
comparing model effectiveness across different metrics and
datasets. In our study, different models were evaluated using
various metrics (i.e., R2 and AUC), depending on what was
most appropriate for the specific dataset. By relating model
performance to the baseline of random guessing, we offer
this common ground for comparison to participants without
explaining the nuances of R2 versus AUC interpretation.

Following the introduction, participants completed a set of
prediction tasks. For each task, participants were shown a list
of features derived from student activity, either by experts or
AutoML, without an indication of which was the source. We
provided the natural-language translation of feature names (per
section III-D) and the values of the features for the given
prediction task. Participants then made a prediction based
on the features shown, then once more if they requested to
see additional features (specifically, three additional features
were shown). We then revealed the actual outcomes to help
participants reflect and learn if they wished to improve. The
tasks included five predictions from each of two datasets (EPM
and OULAD) and two types of features (AutoML and expert),
for a total of 5 × 2 × 2 = 20 tasks, shown in randomized order
to account for possible ordering effects and learning effects.
After the final predictions were made, participants are asked
to rate the interpretability of each encountered variable. We
inquired about their understanding of each feature, using a 5-
point scale where 1 signified “Not at all interpretable”, 3 sig-
nified “Moderately interpretable”, and 5 signified “Extremely
interpretable”.

IV. RESULTS

A. Participants

In total, 199 college students participated from postsec-
ondary institutions across the United States. Mean age was
approximately 29.6 years, with a range from 18 to 74 years.
The majority (53.5%) identified as male, 45.0% as female, and
8.50% as genders not reported in detail due to small sample
sizes. Additionally, 61.3% identified as White, 15.6% as Asian,
13.1% as Black, and 10.0% as multiracial and additional
races or ethnicities. English was the primary language spoken
by 92.5% of participants. All participants were students and
resided in the United States, with 41.5% employed full-
time and 29.0% part-time. The sample primarily represented
students with a limited range of expertise levels in AI/ML,
from novices to those with intermediate knowledge.

The survey data and code have been made publicly available
on the Open Science Framework at https://osf.io/nxguq/?view
only=62ff3fd8469c42d29aff19eb6d2cec4d

B. RQ1: Interpretability of Expert- versus AutoML-Generated
Features

The results of the Kruskal–Wallis test (H-value = 315.607,
p < .001) indicated that expert-crafted features were perceived
as significantly more interpretable than AutoML features (Fig-
ure 1).
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Figure 1. Box plot of average interpretability of AutoML versus expert-crafted
features

It is important to note that the interpretability rating data
in this study were ordinal. Ordinal data, by nature, are not
expected to be normally distributed as they represent cate-
gories with a meaningful order but without consistent distances
between categories. Thus, we applied non-parametric statistics.

C. RQ2: Attributes of Features Related to Interpretability

Given that RQ1 results showed significant differences be-
tween AutoML and expert features, despite representing both
feature types in natural language, in RQ2 we further investi-
gated what might explain these differences. We investigated
potential sources of differences including the underlying type
of data represented by a feature (section IV-C1), the aggre-
gation functions applied in a feature (section IV-C2), and the
influence of familiarity (section IV-C3).

1) Interpretability of Features’ “Root” Data: We tested
whether the original column(s) of data, or the “root” from
which a feature was extracted, related to feature interpretabil-
ity. For example, might prior assessment scores be considered
more interpretable than lower-level data like the number of
keystrokes a student does? We counted the appearance of each
root column name, then filtered out those that appeared fewer
than five times in the features shown to students (i.e., the most
predictive features), yielding a set of five common roots. Then,
we calculated the average interpretability rating of all features
including that root.

From our investigation of root columns and their impact on
interpretability, distinct patterns emerged (Figure 2). Perhaps
unsurprisingly, students perceived score-based features (which
appeared 8 times in the survey) as most interpretable for
outcome prediction. Conversely, the keystroke “root”, with
the highest appearance count of 13, alongside its moderate
interpretability rating of 2.66, suggests that while keystrokes
are a common part of the learning environment and a good
predictor of outcome, their significance or utility might not
be fully clear to students. Similarly, time and click roots,
appearing 12 and 11 times respectively, received moderate
interpretability scores of 2.91 and 2.68. Another root similar
to time is the date root, with an interpretability score of 2.98
(and 8 appearances). The close interpretability scores of time
and date suggest that students have a comparable, relatively
high level of understanding of both features. mousewheel



interactions, despite being the least interpretable root, had
a substantial presence in the dataset with 10 appearances,
indicating that mousewheel-based features were among the
most effective for prediction.

A Kruskal–Wallis test further substantiated these observa-
tions (H-value = 221.235, p < .001), revealing a statistically
significant difference in interpretability ratings among the
roots.

2) Interpretability of Aggregation Functions: We investi-
gated both the number of aggregation functions applied in
feature extraction and the type of functions as explanations
for differences in interpretability.

Number of Aggregation Functions. Features may consist
of data aggregated at multiple levels; for example, a feature
might simply be a mean of numeric values (one level), or
the standard deviation of means of chunks of data (two
levels), and so on. We explored aggregation up to three levels,
where level 3 included 3 or more, expecting that more levels
of aggregation would be perceived as less interpretable. We
conducted this analysis in the AutoML features only because
expert-engineered features did not tend to include more than
one level of aggregation.

A Kruskal–Wallis test revealed a small significant difference
between the three levels of aggregation (H-value = 82.016,
p < .001). However, the levels were not entirely ordered as
expected; mean interpretability for the three levels was 2.73,
2.93, and 2.59, respectively. Individual results per AutoML
method (FeatureTools or TSFRESH) were also significant, but
not in increasing order. For the FeatureTools method dataset
(H-value = 26.432, p < .001), mean interpretability ratings
were 2.97, 3.27, and 2.81. For TSFRESH (H-value = 24.660,
p < .001), mean interpretability ratings were 2.52, 2.35, and
2.56 for the three layers respectively.

Type of Aggregation Functions. We averaged the in-
terpretability ratings for features containing each statistical
aggregation function, for functions that occurred at least five
times. A Kruskal–Wallis revealed significant differences across
aggregation functions (F = 38.126, p = .004). Figure 3 shows
the results for 12 common aggregation functions (appearance
> 5), suggesting that functions involving cumulative and
proportional calculations, followed by those identifying the

Figure 2. Interpretability ratings averaged by the root data from which features
were derived.

maximum values (max/highest) were considered most inter-
pretable by participants.

3) Interpretability versus Feature Familiarity: Recurrent
Exposure. We expected that repeated exposure to an aggrega-
tion function might increase interpretability due to higher per-
ceived familiarity, and thus calculated a correlation between in-
terpretability ratings and aggregation function frequency (i.e.,
how often participants encountered a particular aggregation
function during the survey). However, Spearman’s correlation
results were not significant (rho = .009, p = .983), indicating
no support for this hypothesis.

Interpretability versus Lexical Familiarity. We also ex-
pected that interpretability might be affected by lexical famil-
iarity. The Brown Corpus [41] is a well-established corpus in
linguistic studies, known for its broad representation of the En-
glish language across various genres and topics. By using word
frequencies from this corpus, we aimed to obtain a reliable
measure of lexical familiarity that is not limited to a specific
domain or context. For example, perhaps binarization in Fig-
ure 3 is considered less interpretable than a proportion because
“binary” is a less common/familiar word (and concept) than
“proportion”. We extracted word frequencies from the Brown
corpus [41], removed stop words, then used the frequencies
as an index of familiarity for words in the feature descriptions
shown to participants, excluding words that appeared fewer
than five times. However, the Spearman’s correlation between
word frequency and familiarity was not significant (rho =
-.029, p = .837), so we could not conclusively state that
familiarity with words has a direct relationship.

V. DISCUSSION

In this study, we sought to understand how students assess
the interpretability of features used for machine learning deci-
sions in educational contexts. The distinction between expert
and AutoML-generated features holds broad implications for
contexts where interpretability is paramount, especially in ed-
ucation. While AutoML is convenient and accurate, it may not

Figure 3. Interpretability of aggregation functions.



always align with human-centric goals like explainability. As
RQ1 results showed, features crafted by human experts were,
on average, significantly more interpretable despite efforts to
make both expert and AutoML features as understandable as
possible.

A. Factors Impacting Interpretability

Our study assessed potential factors influencing the in-
terpretability of machine learning features in an educational
context, including repeated exposure, lexical familiarity, the
source or “root” data before aggregation, and type of aggre-
gation in the features. Surprisingly, our findings did not show
significant effects for repeated exposure and lexical familiarity,
in contrast to our hypothesis for RQ2.

However, we observed significant differences in inter-
pretability based on the root data and aggregation functions
used for a feature, which has implications for interpretable
adaptive learning systems. Interpretable adaptive learning sys-
tems will likely enjoy higher interpretability with features
related to scores and timing, as opposed to interaction activity
data (Figure 2). Certain aggregation functions may be prefer-
able over others as well (Figure 3), though the reason behind
these differences remains to be discovered. Additionally, as
features undergo multiple layers of aggregation, their original
context might become obfuscated, leading to a loss in clarity
and interpretability. As we found (section IV-C2), the number
of aggregation levels was related to interpretability, though
not in the expected monotonically increasing way; hence,
future work is needed to better understand this result and
its implications for designing interpretable machine learning
models for education.

B. Limitations and Future Work

There are a few opportunities for future work to address the
limitations of this study. Since our current scope was limited
to short time frame assessment, it remains unknown what
the lasting impacts on interpretability might be, especially if
students have time to learn more about the features over the
course of a semester. Additionally, we used incentive rewards
via virtual points as the sole criterion for motivating students,
which may result in different goals for students to interpret
features versus goals like learning that could occur during first-
hand use of a computer-based learning environment. Future
research should delve deeper into contextualizing these virtual
indicators within classrooms and explore additional contex-
tual factors that could further inform what affects feature
interpretation by students. Despite efforts to minimize bias in
feature name translations, subjective interpretation may have
influenced the final descriptions. Future work could explore
more objective methods for feature name translation and in-
vestigate the impact of different translations on interpretability.
Participants’ lack of familiarity with the learning environment
may have impacted their perception of feature interpretability.
Future research should explore the effects of familiarity on
interpretability by conducting studies with participants who
have direct experience with the learning environments in

question.This study focused primarily on students’ perceptions
of interpretability, though other constructs such as concep-
tual understanding, trust, and reliance on machine learning
decisions are also important to consider. Future work should
explore these issues, including how interpretability moderates
the relationship between properties of different features and
constructs like trust and reliance.

It is important to acknowledge that interpretability is a
multi-dimensional concept and may have two facets: how a
feature was created, and why a feature value resulted in a
particular ML decision (e.g., why a feature is negatively related
to learning performance). In our paper, we combined these
two facets of interpretability as a preliminary exploration.
While this approach provides valuable insights, it is essential
to recognize that a more comprehensive understanding of in-
terpretability would benefit from a multi-faceted investigation
that distinguishes between these two aspects.

VI. CONCLUSION

Our study focused on understanding how well college stu-
dents can interpret features used in machine learning models
for educational outcomes. We found a significant difference
in the interpretability of features created by human experts
compared to those generated by AutoML methods across mul-
tiple datasets. While manual feature engineering is resource-
intensive, the disparity in interpretability suggests that human
expertise still plays an essential role in crafting understandable
features. As machine learning continues to be more deeply
integrated into educational platforms, the design and presen-
tation of features demand heightened attention. Of particular
note, there is still a need for further research to explore
the underlying factors that contribute to these differences in
feature interpretability. This will be essential for improving
both the accuracy and the user-friendliness of machine learning
systems in educational settings. In addition, we recommend
methodological advancements to enhance the interpretability
of existing AutoML-generated features, and to develop new
AutoML feature engineering methods that inherently consider
interpretability constraints. We hope our findings will serve
as a catalyst for related research, particularly concerning the
design and application of features in educational software.
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