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Abstract 

There is a growing interest in viewing self-regulated learning as events unfolding over time, 

especially when students perform learning tasks in computer-based environments. Metacognitive 

activities are critical events in self-regulated learning. This study investigated the evolution of 

metacognitive strategy use in an open-ended computer-based learning environment, Betty's 

Brain. The data were from 93 sixth graders who used Betty's Brain to learn about climate change 

for four days. We extracted indicators of metacognitive strategy use from action logs. A 

knowledge test and self-report questionnaire were administrated before students started using 

Betty's Brain to assess prior domain knowledge and motivation, respectively. Results showed 

that metacognitive strategy use increased from the first to the second day and remained stable 

from the second to the fourth day of the study. The evolution of these behaviors varied across 

students. Task value and prior domain knowledge partially explained the individual differences 

in this evolution. Task value and prior domain knowledge also predicted the use of metacognitive 

strategies. Self-efficacy did not influence metacognitive strategy use. These results suggest the 

need for further investigation into the role of motivation and prior domain knowledge in the 

temporal evolution of metacognitive events. 
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Open-ended, computer-based learning environments provide students with the opportunity to 

experience complex phenomena in authentic problem-solving scenarios and the freedom to learn 

by making their own decisions (Land, 2000; Lowyck, 2014). However, the freedom and 

complexity demand that learners actively monitor and manage their activities (Kinnebrew et al., 

2017; Segedy et al., 2015a). That is, learners need to self-regulate learning (SRL; Zimmerman, 

1990). Metacognitive strategies are an essential component of SRL (Panadero, 2017), and their 

use can facilitate learning (Ohtani & Hisasaka, 2018). Studies have found that motivational 

factors and prior domain knowledge influence how learners use cognitive and metacognitive 

strategies (Liem et al., 2008; Ocak & Yamaç, 2013; Üner et al., 2020), but few studies have 

explored how these factors relate to changes in strategic behaviors over time.  

 Learning has temporal characteristics because it is the acquisition process of knowledge 

and skills (Molenaar, 2014). It takes time for these new skills to manifest in behavioral changes 

(Soderstrom & Bjork, 2015; Zimmerman, 2002). There has been increasing interest in 

understanding the temporal aspects of SRL (Azevedo, 2014; Molenaar & Järvelä, 2014; Winne 

& Baker, 2013), as they have both theoretical and practical implications. Understanding how 

strategic learning behaviors change over time—and how prior domain knowledge and motivation 

influence such change—can enrich SRL theories and lead to more informed decisions about 

when to provide scaffolding and to whom. As such, the present study investigated how 

metacognitive strategies use evolved over time in an open-ended computer-based learning 

environment, Betty's Brain. Specifically, we examined how prior knowledge, task value, and 

self-efficacy related to the temporal evolution of metacognitive strategies. 



 
 

1.1 Self-regulated learning (SRL) and Its Temporal Characteristics 

SRL refers to how learners adaptively regulate their cognition, behaviors, motivation, and affect 

to achieve their learning goals (Schunk & Greene, 2017). SRL can be viewed as a series of 

cognitive and metacognitive events (Azevedo, Moos, et al., 2010) unfolding over time (Greene 

& Azevedo, 2010; Hadwin, 2021; Molenaar & Järvelä, 2014; Winne & Baker, 2013). Examples 

of cognitive events include memorization, elaboration, and reviewing, while examples of 

metacognitive events include goal setting, planning, self-monitoring, self-control, and self-

evaluation (Dent & Koenka, 2016).  

These broad categorizations are important, but SRL events, like learning, are highly  

contextually dependent (Azevedo et al., 2012; Li et al., 2020). An SRL event should not be 

classified into a specific category (cognitive vs. metacognitive) or subcategory (e.g., 

memorization and elaboration) without considering the specific context in which it occurs. For 

instance, in MetaTutor, an intelligent hypermedia environment for learning human body systems 

(e.g., the circulatory system; Azevedo, Johnson, et al., 2010), the action of taking notes may 

align with different subcategories of cognitive events (Azevedo et al., 2013). If students create 

notes by copying text verbatim from the learning material, taking notes may represent content 

reproduction (a shallow cognitive processing event). By contrast, if students create notes by 

integrating ideas from different sections, the note-taking action may represent elaboration (a deep 

cognitive processing event). 

Researchers have investigated SRL events across two dimensions: (1) individual and (2) 

sequential characteristics (Knight et al., 2017; Molenaar, 2014). Individual characteristics may 

include the occurrence rate, timing, and duration of an event during learning processes. 

Sequential characteristics may include the sequential relations and transitions among events 



 
 

(Molenaar & Järvelä, 2014)—for example, the conditional probability of reading relevant book 

pages after taking a quiz. The sequential characteristics of SRL events can be discovered via data 

mining techniques, such as sequential pattern mining (Kinnebrew et al., 2014), process mining 

(Bannert et al., 2014), and epistemic network analysis (Paquette et al., 2021), or advanced 

statistical models, such as lag-sequential analyses (Kuvalja et al., 2014) and statistical discourse 

analyses (Molenaar & Chiu, 2014).  

This paper focuses on the temporal change of individual characteristics, specifically, the 

rate at which students use metacognitive strategies and how the rate evolves during the learning 

process. We use the term evolution to refer to the temporal change of metacognitive strategy use 

based on the following considerations. Prior studies have used different terms such as evolution 

(de Backer et al., 2016; Kinnebrew et al., 2014), temporal variation (Paans et al., 2019; Zheng et 

al., 2019), and difference (Greene et al., 2021) to describe the change of SRL behaviors over 

time. Compared with the other terms, evolution implies that the behavioral change is systematic 

rather than random as the word evolution can be used to refer to "a process of change in a certain 

direction" (Merriam-Webster, n.d.). Behavioral changes may demonstrate a learner's ability to 

adapt as they acquire new knowledge (Greene et al., 2021). However, this notion may only apply 

to systematic behavioral change as a random change does not require adaptivity. In summary, 

using evolution may match the SRL process better than other terms such as temporal variations 

and differences.  

Studies have examined the evolution of SRL behaviors in various contexts, including 

classrooms without technology (de Backer et al., 2016), sheltered Internet-based learning 

environments (Paans et al., 2019), online collaborative inquiry environments (Zheng et al., 

2019), and learning management systems (Greene et al., 2021). This research has found 



 
 

differences in the evolution of SRL behaviors between high and low-performing groups (Paans et 

al., 2019; Zheng et al., 2019), suggesting that finding ways to support SRL behaviors may be one 

path to enhancing learning. However, these studies did not investigate the relationship between 

how student-level variables related to the evolution of their SRL behaviors, which limits the 

inferences we can make about which SRL scaffolds were most effective. In contrast, the current 

research investigates whether student-level variables like prior domain knowledge, task value, 

and self-efficacy, explain the individual differences in the evolution of SRL behaviors within an 

open-ended learning environment. 

1.2 Self-regulated Learning and Open-ended Learning Environment 

Open-ended learning refers to situations in which learners determine what, how, and when to 

learn based on their unique intentions and external goals (Hannafin et al., 1994). It contrasts with 

directed learning, where the environment and designers determine what is to be learned and the 

sequence of action. Open-ended learning environments provide learners with authentic contexts 

and rich resources to support the exploration of complex phenomena, the integration of new 

knowledge and daily experience, and learner-centered inquiries (Land, 2000). However, these 

environments demand that individuals actively monitor their understanding, evaluate their 

performance, and refine their strategies. As such, SRL is particularly critical in open-ended 

learning environments (Segedy et al., 2015a). Indeed, low-performing learners show fewer SRL 

activities and approach the task with less effective strategies (Kinnebrew et al., 2013; Roscoe et 

al., 2013; Sabourin et al., 2013). Nevertheless, how SRL strategy use evolves in such 

environments is underexplored. Kinnebrew et al. (2014) showed that students who received 

different scaffolding differed in the evolution of their strategic and ineffective behaviors. Segedy 

et al. (2015b) found that students' problem-solving strategies were relatively stable across days. 



 
 

The temporal characteristics of SRL events require further research in open-ended learning 

environments. 

1.3 Self-regulated Learning and Prior Domain Knowledge 

The information processing theory of SRL emphasizes the role of prior domain knowledge in 

learning (Winne & Hadwin, 2008). According to this model, domain knowledge is a cognitive 

condition that impacts how learners understand a task. Taub et al. (2014) further illustrate how 

domain knowledge may influence the cognitive and metacognitive activities in the four phases of 

SRL, i.e., task definition, goal setting and plan, execution, and adaptation. Indeed, studies have 

found a positive association between domain knowledge and SRL strategies (Li, 2019; Moos & 

Azevedo, 2008, 2009a; Taub et al., 2014; Taub & Azevedo, 2019). Moos and Azevedo (2008) as 

well as Taub and Azevedo (2019) have investigated the relationship between domain knowledge 

and SRL in undergraduate students learning about the human circulatory system. In Moos and 

Azevedo's (2008) research, learners with higher domain knowledge planned and monitored their 

learning more frequently than those with low domain knowledge. Learners with higher domain 

knowledge also engaged in more cognitive activities, such as note-taking, summarizing, and 

memorizing. Taub and Azevedo (2019) replicated these results, reinforcing the link between 

domain knowledge and SRL. 

The increased use of SRL strategies by students with high prior knowledge is possibly 

related to working memory (Moos & Azevedo, 2008; Taub et al., 2014). Working memory has 

serious limitations in both capacity and duration when learners encounter novel information 

(Sweller, 2011). Learners with low domain knowledge need more working memory capacity for 

processing the information, while learners with high domain knowledge can allocate more of this 

capacity for regulation (Taub et al., 2014). As the learning process unfolds, domain knowledge 



 
 

increases, and some of the working memory capacity for novel information may be released. As 

these resources become available, learners engage in more regulatory activities.  

In this account, learners who frequently use SRL strategies as part of their normal 

learning practices may be less likely to increase SRL strategy use. Similarly, increases in domain 

knowledge may vary, especially between novice and more expert learners. Thus, domain 

knowledge may influence both the overall SRL strategy use and the evolution of SRL strategy 

use. However, this assumption has not been examined. 

1.4 Self-regulated Learning and Motivation 

Motivation has been an essential component of several SRL models (Efklides, 2011; Pintrich, 

2000; Winne & Hadwin, 2008; Zimmerman, 2000). Monitoring learning processes and enacting 

proper strategies consumes energy, time, and effort (Zimmerman, 2000). If learners are not 

motivated, they tend not to apply proper strategies or persist with the learning activity. 

Motivation may serve as a predictor, mediator, or outcome of self-regulation activities 

(Zimmerman & Schunk, 2008). The present study investigates two prominent sources of 

motivation: self-efficacy and task value. These motivational components are mutually correlated, 

but each has unique effects on SRL behaviors (Pintrich & de Groot, 1990; Üner et al., 2020; 

Zimmerman & Schunk, 2008). 

1.4.1 Self-efficacy 

Self-efficacy refers to an individual's beliefs about their capability to complete a task (Bandura, 

1997). The social cognitive theory of SRL emphasizes the influential role of self-efficacy in SRL 

(Schunk & Ertmer, 2000; Zimmerman, 2000). Learners with higher self-efficacy reported more 

cognitive and metacognitive strategy use (Pintrich & de Groot, 1990). High self-efficacy learners 



 
 

tended to set challenging goals for themselves and persist when facing difficulty (Schunk & 

Ertmer, 2000; Zimmerman & Bandura, 1994). Similarly, high self-efficacy learners monitored 

working time more frequently than their low self-efficacy counterparts (Bouffard-Bouchard et 

al., 1991).  

Research has used learning process data to investigate the association between self-

efficacy and SRL. For instance, Moos and colleagues (Moos, 2014; Moos & Azevedo, 2009a) 

coded students' thinking-aloud data for metacognitive monitoring processes based on a well-

developed SRL coding scheme (Azevedo & Cromley, 2004). The results showed that self-

efficacy positively predicted the behaviors of monitoring understanding and progress toward 

goals. Hong et al. (2020) examined undergraduates' motivation and metacognition in a biology 

course. They extracted metacognitive behavior metrics from students' action logs in the 

Blackboard learning management system. Compared with groups reporting stronger 

performance-approach or performance-avoidance goals and psychological cost, the group 

characterized by higher self-efficacy, mastery-approach goal, and task value engaged more in 

activities related to planning their learning and monitoring their performance. Overall, the 

empirical evidence supports the claim that self-efficacy is positively related to SRL strategy use.  

1.4.2 Task Value 

Task value refers to a student's perceptions about the importance, usefulness, enjoyment, and 

cost of a task (Wigfield & Eccles, 1992). Eccles and colleagues' expectancy-value model of 

achievement behavior claims that task-value beliefs, in addition to expectancy-related and 

ability-related beliefs, are critical determinants of task behaviors (Eccles et al., 1983; Wigfield & 

Eccles, 1992). If students perceive a high probability of success in a task but do not value it, they 

may not choose to engage in or put little effort into the task. Social cognitive models of SRL 



 
 

highlight the role of task value in SRL, especially the phase of goal setting and plan (Pintrich & 

Zusho, 2002; Zimmerman, 2000). If students highly value the task, they will spend more time on 

making and executing the plan.  

Studies have found associations between task value and metacognitive strategy use. For 

instance, in Pintrich and de Groot's (1990) study, seventh-grade students' who perceived course 

work as important and interesting reported more use of SRL strategies, such as planning and 

comprehension monitoring. Task value has predicted cognitive and metacognitive strategy use in 

samples from adolescents and college students (Üner et al., 2020; Wolters & Pintrich, 1998), and 

the predicting effects were stable across the subjects of mathematics, English, and social studies 

(Wolters & Pintrich, 1998). Task value might indirectly impact the use of surface and in-depth 

learning strategies (e.g., memorization and questioning learning material) via achievement goals 

(Liem et al., 2008). It should be noted that measures of strategy use in these studies are self-

reported. As Wigfield et al. (2008) suggest, using behavioral measures of SRL provides crucial 

supplementary information about associations between task value and SRL. Yet few studies have 

done so (Hong et al., 2020; Sabourin et al., 2013). As a result, it is unclear whether task value is 

also related to the temporal evolution of SRL strategy use. 

1.5 The Present Study 

The current study investigated how students' metacognitive strategy use changed from day to day 

in Betty's Brain, an open-ended learning environment, and examined the relationships that 

domain knowledge, task value, and self-efficacy had with metacognitive strategy use. Four 

research questions (RQs), based on the review of the literature, were investigated: 

1. Does the use of metacognitive strategies increase across days? 



 
 

Prior studies have found that, depending on the context, the frequency of metacognitive 

strategy use may decrease, increase, or remain stable over time (de Backer et al., 2016; Greene et 

al., 2021; Paans et al., 2019). In the current study, we expect the frequency would increase 

because students might become more familiar with Betty's Brain, and their knowledge of the 

studied topic may increase over time. Such increases in the knowledge about the environment 

and the domain might enhance students' capacity for applying metacognitive strategies. 

2. If so, does the temporal evolution of the use of metacognitive strategies vary across 

students? 

The temporal change of SRL behaviors has been found to differ between groups, such as 

students with high and low performance (Paans et al., 2019) and students receiving different 

scaffolding (Kinnebrew et al., 2014). Although this study did not compare specific groups, it is 

reasonable to assume that the evolution of metacognitive strategy use would vary across students 

due to individual differences. 

3. Does students' prior domain knowledge predict their use of metacognitive strategies? 

3.1 Is prior domain knowledge related to overall metacognitive strategy use? 

3.2 Does prior domain knowledge explain the differences in the evolution of 

metacognitive strategy use across students? 

For RQ 3.1, we expect that prior domain knowledge would be positively related to 

overall metacognitive strategy use, which is in line with previous studies (Li, 2019; Moos & 

Azevedo, 2008; Taub et al., 2014). For RQ 3.2, students who frequently apply metacognitive 

strategies as part of normal practices might be less likely to increase their strategy use. Besides, 

increases in domain knowledge may vary between novice and more experienced students. Thus, 

we expect that prior domain knowledge would explain the differences in the evolution of strategy 



 
 

use. However, there is currently a lack of theory or empirical evidence to guide the direction of 

the hypothesis, i.e., whether prior domain knowledge would be positively or negatively related to 

the increases in strategy use. 

4. Do motivational factors (i.e., self-efficacy and task value) predict metacognitive strategy 

use? 

4.1 Are motivational factors related to overall metacognitive strategy use? 

4.2 Do motivational factors explain the differences in the evolution of metacognitive 

strategy use across students? 

For RQ 4.1, prior studies have found that self-efficacy and task value are positively 

related to metacognitive strategy use (Moos, 2014; Moos & Azevedo, 2009a; Üner et al., 2020). 

Thus, we expect such associations in the current research. For RQ 4.2, students with higher task 

value and self-efficacy might engage in the task and adjust to the environment better than those 

with low task value and self-efficacy. However, their high motivation might not be sustained 

over multiple days, and decreases in motivation might cause smaller increases in metacognitive 

strategy use. Thus, we expect that task value and self-efficacy would explain some differences in 

the evolution of strategy use. Again, theory and empirical evidence are currently insufficient to 

guide the direction of the hypothesis. 

2 Methods 

2.1 Participants and Procedure 

The data were collected from 93 sixth-grade students in an urban middle school (grades 5–8) in 

the Southern U.S. This school serves around 700 students each year. For the 2018-2019 school 

year (when data collection took place), this school reported a student population that was 60% 



 
 

White, 25% Black, 9% Asian, and 5% Hispanic. Around 8% were enrolled in the free and 

reduced-price lunch program.  

No demographic data were collected from individual students, but informal observations 

of the classes where research was conducted suggested that these classes appeared to reflect the 

school-level demographics for race, and sex was also well-balanced in this sample. Additionally, 

because this school was an academically competitive magnet school, students were not being 

tracked into high and low-performing groups, which sometimes leads to defacto segregation of 

meaningful demographic categories.  

Students came from four classrooms of 21 to 23 students, each. Four or five students 

were seated at a table but worked independently on separate laptops. They occasionally talked to 

others, but there was not any sustained collaboration. The study lasted seven school days. On day 

1, students spent 30 to 45 minutes completing a self-report questionnaire and a paper-based 

pretest. The self-report questionnaire measured students' motivation, and the pretest assessed 

their prior domain knowledge of climate change and causal relationships. On day 2, they 

received a 30-minute training about how to use Betty's Brain. Over the next four days, they spent 

30 to 45 minutes per day learning about climate change within Betty's Brain. On the final day, 

students completed a posttest identical to the pretest.  

2.2 Material 

2.2.1 Betty's Brain 

Betty's Brain is an open-ended computer-based learning environment that uses a learning-by-

teaching approach (Biswas et al., 2016). Students learn about scientific phenomena, such as 

climate change and thermoregulation, by teaching Betty, a virtual student. Specifically, students 

build a causal map describing scientific phenomena, in which causal (cause-and-effect) 



 
 

relationships are represented by a set of concepts connected by directed links (see Fig. 1). To 

build this map, students can access hypermedia resource pages on relevant scientific concepts. 

Students can evaluate their causal modeling progress by asking Betty to take graded quizzes or 

by querying her on cause-and-effect questions related to what she has been taught. Betty's quiz 

grades or her explanations of her answers can help the student keep track of her progress (and 

thus their own). By looking at Betty's correct and incorrect answers, students can identify 

problems in their causal map. They can then improve their understanding of the topic by reading 

the resource pages and correcting those problems (e.g., missing links and incorrect links between 

concepts).  

Students can also ask Mr. Davis, a virtual pedagogical agent described to students as an 

experienced teacher, for help if they do not know how to use the system. In some situations, Mr. 

Davis may intervene if the student has difficulties and is not making progress in their map-

building tasks. He may prompt students to read resource pages containing information that could 

improve the causal map (e.g., "You should go and read the page on Deforestation and Carbon 

Dioxide"). The prompts are triggered in conditions such as "quiz score has not improved in the 

students' last five attempts at updating their map". 

The learning unit used in this study was on the topic of climate change. This unit was 

organized into four sections, including the introduction, greenhouse effect, human activities, and 

impacts on climate. It contained ten hypertext pages and covered 22 relevant scientific concepts 

and 27 causal relationships between these concepts.  

 

  



 
 

Fig. 1 

Screenshot of viewing quiz results and checking the chain of links Betty used to answer a quiz 

question 

Note. The top right shows the quiz questions, answers, and grades. A gray grade means Betty 

could not answer the question because the question involved concepts or links that had not been 

added to the map. The second question, which was answered incorrectly, was selected, and the 

concepts and links that Betty used to answer this question were highlighted at the right bottom. 

 

2.2.2 Metacognitive Strategy Use 

This study operationalizes metacognitive strategy use as coherent actions (Segedy et al., 2015a). 

Coherent actions are actions that support later actions or are based on prior actions. For instance, 

in Fig. 1, the quiz results could inform students that the causal links between deforestation and 

carbon dioxide were incorrect. After viewing these quiz results, if students read the resource 



 
 

pages that contained information about the correct relationship between the two concepts, the 

viewing and reading actions were coherent. Coherent actions imply the use of metacognitive 

strategies because a coherent action entails that a student monitors information generated by the 

prior actions (e.g., viewing quiz results) and adapt current actions (e.g., reading pages) based on 

the acquired information (Segedy et al., 2015a; Zhang et al., 2020). The two actions do not need 

to be consecutive, but it is necessary to restrict the time interval between them. Prior research in 

Betty's Brain found that students usually used information within 5 minutes of encountering the 

information (Segedy, 2014). The proportion of actions not supported by prior actions within 5 

minutes was negatively correlated with students' map scores within Betty's Brain (the number of 

correct causal links minus the number of incorrect links; Segedy et al., 2015a). In contrast, the 

proportion of information that was used within 5 minutes of encountering the information was 

positively related to students' map scores and changes between pretest and posttest scores 

(Segedy et al., 2015a). 

 We analyzed students' action logs from Betty's Brain to identify coherent actions. There 

were five kinds of coherent actions in Betty's Brain: coherent viewing, prompts, edits, reading, 

and marking. Each type of coherent action had its incoherent counterpart, which might provide 

complementary information for understanding how metacognitive strategy use evolves. Thus, 

incoherent metrics were used in the analysis for RQ1 and defined here.  

1. Coherent viewing was viewing quiz results actions that were coherent with later 

actions. It measured whether students used assessment results to support later 

activities and might indicate self-monitoring (Zhang et al., 2020). 



 
 

Incoherent viewing was viewing quiz results actions that did not support later actions. 

In other words, students did not utilize information generated by viewing quiz results 

to guide reading or editing actions.   

2. Coherent prompts. Mr. Davis might give prompts recommending students to read 

resource pages containing information that could improve the causal map. Coherent 

prompts were the prompts that students used, i.e., students read the resource pages 

recommended by the prompts. Coherent prompts assessed whether students utilized 

external feedback and might reflect self-control. 

Incoherent prompts were prompts that students received but did not use.  

3. Coherent edits were map edit actions that were based on reading actions or viewing 

quiz results actions. It measured whether students edited the concept map based on 

previously acquired information and might reflect self-control (Zhang et al., 2020).  

Incoherent edits were map edit actions that were not supported by reading or viewing 

quiz results actions. For instance, if a student added a link between deforestation and 

carbon dioxide but did not read pages about their relationships, this edit would be 

incoherent no matter whether the link was correct or not. 

4. Coherent reading was page reading actions that were based on quiz results or prompts 

from the system. It measured whether students intentionally sought relevant 

information to improve their understanding based on the quiz results or the prompt 

(Zhang et al., 2020). Thus, coherent reading might indicate self-control. 

Incoherent reading was page reading actions that were not based on quiz results or 

reading prompts from the system. For example, in Fig. 1, after viewing the quiz 

results, if a student read the resource pages that contained information about the 



 
 

relation between deforestation and carbon dioxide, this reading action would be 

coherent. By contrast, if the student read resource pages that did not contain any 

information related to the quiz questions answered incorrectly, the reading action 

would be incoherent. Note that if students read a page that they did not read before, 

these reading actions would not be labeled incoherent even though they were not 

supported by the quiz results or reading prompts. Such reading might indicate that 

students did not know what to read next and opened a new page randomly or that they 

intentionally searched for information about causal links not in the map. We could not 

verify which reason drove these reading actions. Thus, they were excluded from the 

analysis. 

5. Coherent marking was marking actions that were based on quiz results. This variable 

reflected how often, based on the quiz results, students understood what links on their 

map were correct or possibly incorrect and annotated them accordingly. Coherent 

marking might represent constructive monitoring behaviors because the marking 

action translates quiz results into systematic checking of the causal maps (Zhang et 

al., 2020). 

Incoherent marking was marking actions that were not based on quiz results. For 

instance, students labeled a causal link correct or wrong without using quizzes to test 

its correctness. 

Note that we did not examine incoherent metrics in the analyses for RQs 2 to 4 because 

these RQs focused on the use of metacognitive strategy, as measured through coherent actions 

(Segedy et al., 2015a; Zhang et al., 2020). No evidence supports the idea that incoherent actions 



 
 

may indicate metacognitive strategy use, although we do not assume that incoherent actions 

represent less effective or inadequate strategies. 

In the current study, over half of the students did not use the marking functionality 

(86.6%, 56.5%, 47.7%, and 50.6% in the first, second, third, and fourth days of using Betty's 

Brain, respectively). Low marking usage provided limited information about students' 

differences in the application of metacognitive strategies. Thus, coherent and incoherent marking 

actions were not analyzed.  

The number of coherent edits and the number of coherent prompts were computed per 

day per student. For coherent reading and viewing, we used the sum of duration per day per 

student as indicators rather than the action counts because the duration of reading and viewing 

actions could vary from seconds to minutes. Using the action counts as the indicators of coherent 

reading and viewing would imply that a coherent reading action with a span of 10 seconds is 

equivalent to a coherent reading action with a span of 100 seconds. The time on Betty's Brain 

varied across days and students, and thus, we divided the coherent action metrics by hours on 

Betty's Brain to make them comparable within and between students. 

2.2.3 Prior Domain knowledge 

Domain knowledge was operationalized as pretest scores. The test assessed knowledge of 

climate change and causal relationships and contained seven multiple-choice and three short-

answer questions. Each question involved both climate change and causal relationships. Each 

multiple-choice question had four choices, and students got one point if they answered a question 

correctly. Short-answer questions asked students to explain how one factor influenced another 

based on their understanding of the causal relations among concepts in the climate change 

domain. The correct answer to each question contained three or four successive causal links 



 
 

between a relevant set of concepts. A student got one point if their answers had one link that was 

the same or close to a link in the correct answer. The appendix presents two example questions. 

Students could get a total maximum score of 18 points. A posttest was administrated to check 

students' learning. The coefficient alpha was 0.75 and 0.84 for the pretest and posttest, 

respectively, indicating acceptable to satisfactory internal consistency, given the small number of 

items (Cortina, 1993). 

2.2.4 Motivational Factors 

The self-report questionnaire measured two motivational factors: task value and self-efficacy. All 

items were scored on a 5-point Likert scale. Task value reflected students' perceived importance 

and utility of science in general and the learning topic (i.e., climate change). It was measured by 

three slightly modified items from the Science Learning Value subscale of Students' Motivation 

toward Science Learning questionnaire (SMTSL; Tuan et al., 2005). The coefficient alpha was 

0.69, indicating acceptable internal consistency, given the few items (Cortina, 1993). The 

average item score was used as an indicator. 

 Self-efficacy represented the extent to which students thought they were able to learn 

science in general. Three items from the self-efficacy subscale of the SMTSL questionnaire 

measured it (Tuan et al., 2005). The coefficient alpha was 0.75, indicating acceptable internal 

consistency, given the few items (Cortina, 1993). The average item score was used as an 

indicator.  

2.3 Data Analyses 

For RQ1, a one-way repeated analysis of variance (ANOVA) was conducted with each coherent 

metric as the dependent variable and day as the within-student independent variable. If a 



 
 

coherent metric varied across days, we used post-hoc pairwise comparisons to determine which 

pairs of consecutive days showed a significant difference. We applied a Bonferroni correction for 

multiple comparisons.  

For RQ2, we fitted mixed models to the data using the lme4 package in R (Bates et al., 

2015), with each coherent metric as a response variable and day as the predictor. We compared 

models with and without the random effect of the day. When examining the random effect, the 

commonly used Wald test and the likelihood-ratio test (LRT) will be invalid if the random effect 

is zero (Stram & Lee, 1994). The mixture chi-square LRT is a better option (Stram & Lee, 1994). 

This test computes the LRT statistic and compares the statistic to two chi-square distributions. 

One chi-square distribution has a degree of freedom the same as the chi-square distribution in the 

commonly used LRT, while another has a degree of freedom one less than the commonly used 

LRT if only one random effect is examined. Then, it averages the two p-values returned by the 

comparison. We rejected the null hypothesis (e.g., the random effect of day on coherent reading 

equals zero) when the average p-value was less than .05, suggesting that the evolution of 

coherent reading may vary across students. We fitted linear mixed models for coherent reading 

and coherent viewing since their durations were continuous and log-linear mixed models with 

the Poisson distribution for coherent edits and coherent prompts because their frequencies were 

count variables (Snijders & Bosker, 2012). Taking coherent reading as an example, the linear 

mixed model without the random effect for the day was the following: 

!"!" = $## + $$# ∗ '()!" + *#" + "!"                                       (1) 

!"!" refers to the duration of coherent reading per hour for student j on the ith day. $## is the 

fixed effect of the intercept, and *#" 	is the random effect of the intercept. If we let the value of 

'()!" in the first day equal to 0, i.e., '()$" = 0, $## and *#" can be interpreted as the mean and 



 
 

variance of the coherent reading duration across students in the first day, respectively. $$# is the 

fixed effect of day. "!" is residuals and independent of *#". With the random effect of the day, the 

linear mixed model becomes:  

!"!" = $## + $$# ∗ '()!" + *#" + *$" + "!"                                   (2) 

*$" is the random effect of day, related to *#" but independent of "!". 

For RQ3 and RQ4, we added domain knowledge, motivation, and their interaction with 

day to the mixed effect models. Taking coherent reading as an example, the linear mixed effect 

model is: 

!"!" = $## + ∑ $#% ∗ .%"% + ($$# +∑ $$% ∗ .%"% ) ∗ '()!" + *#" + *$" + "!"       (3) 

.%" represents domain knowledge and motivation in student j. $#% is the main effect of these 

student-level predictors, and $$% is their interaction with the day. The fixed effects were tested 

via 95% bootstrap confidence intervals with 1,000 resampling iterations (Davison & Hinkley, 

1997). All predictors were grand-mean centered to mitigate the collinearity between the main and 

the interaction effects and ease the interpretation (Enders & Tofighi, 2007). 

3 Results 

3.1 Preliminary Analyses 

Table 1 displays the means, standard deviations, and correlations among pretest and posttest 

scores and motivational factors. The paired sample t-test showed that posttest scores were 

significantly higher than pretest scores (t = 11.60, p < .001), and the effect size was large 

(Cohen's d = 1.20), indicating that students learned from using Betty's Brain. Task value was 

related to neither pretest scores nor posttest scores. Self-efficacy was positively related to 



 
 

posttest scores. As in previous research (Liem et al., 2008; Üner et al., 2020; Wolters & Pintrich, 

1998), the two motivational factors were positively related to each other. 

 

Table 1 

Descriptive statistics and correlations of time-invariant variables 
 

Pretest scores Posttest scores Task value Self-efficacy  

Posttest scores  .63** - - - 

Task value .17 .19 - - 

Self-efficacy .21 .31* .44** - 

M 6.22 9.39 4.24 3.45 

SD 2.62 3.16 .55 .68 

Note: *p < .05, ** p < .01. Bonferroni correction was applied for multiple tests. 

 

Fig. 2 displays the means of coherent and incoherent metrics with 95% confidence 

intervals per day. There were remarkable increases in all coherent metrics from the first day to 

the second day. Daily increases in the remaining days were relatively weak, except for coherent 

viewing between the second and third days, the average duration of which rose from 6.54 

minutes to 9.87 minutes per hour. For incoherent metrics, no noticeable change was found in the 

frequency of edits and the duration of viewing. There was a moderate decrease in the duration of 

incoherent reading from the first to the second day. Incoherent prompts increased gradually over 

the four days. 

 

  



 
 

Fig. 2  

The average frequency or duration of coherent actions with 95% confidence intervals 

 

3.2 The Evolution of Metacognitive Strategy Use 

Table 2 shows the results of the repeated ANOVA. The results indicated that all actions had 

significant variations across days. Thus, we conducted post-hoc pairwise comparisons to 

determine which pairs of consecutive days showed a significant difference. Table 2 displays the 

results. In line with Fig. 2, the post-hoc pairwise comparison indicated that all coherent actions 

differed significantly between days 1 and 2. Students edited the causal map more frequently 

based on collected information (coherent edit), adhered more often to the reading prompts from 

the learning system (coherent prompt), and spent more time on reading pages containing 

information that could improve the causal map (coherent reading). They also spent more time 



 
 

checking quiz results that generated information supporting later actions (coherent viewing). 

Coherent viewing also differed between days 2 and 3.  

For incoherent metrics, there were significant decreases in incoherent reading between 

days 1 and 2 and in incoherent edits between days 2 and 3. No significant daily change was 

found in incoherent viewing. Incoherent prompts increased significantly between all pairs of 

days. Overall, coherent actions increased over time, but incoherent actions decreased or did not 

change, except for incoherent prompts. Comparing the effect sizes of the change in coherent and 

incoherent prompts showed that the effect size for coherent prompts (η2 = .14) was larger than 

for incoherent prompts (η2 = .10).  

 

Table 2 

Results of repeated ANOVA and post hoc pairwise comparisons 

Dependent variable 
ANOVA Day 1 vs. 2 Day 2 vs. 3 Day 3 vs. 4 

F η2 t Cohen's d t Cohen's d t Cohen's d 

Reading Coherent 13.19 .14*** 6.57 0.84*** 1.96 0.22 1.37 0.16 

Incoherent 5.48 .06*** -2.59 0.33* -0.58 0.06 -2.00 0.23 

Viewing Coherent 12.78 .12*** 5.22 0.67*** 2.74 0.31* 1.14 0.13 

Incoherent 3.58 .05* 0.48 0.06 1.04 0.12 1.05 0.12 

Edit Coherent 10.80 .09*** 6.89 0.88*** 1.82 0.20 0.97 0.11 

Incoherent 3.21 .04* 1.28 0.16 -3.27 0.37** 1.83 0.21 

Prompt Coherent 12.36 .14*** 5.95 0.76*** 1.18 0.13 1.43 0.16 

Incoherent 9.79 .10** 3.45 0.44** 2.58 0.29* 2.97 0.34* 

Note: * p < .05; ** p < .01; *** p < .001. The independent within student variable is day. 

Bonferroni correction was applied for multiple tests. 

 

Since the duration of coherent viewing increased from the first to second days and the 

second to third days, we were interested in whether the daily growth rate was constant from the 



 
 

first to third days. We created a new day-related variable, day_34, which grouped the third and 

fourth days together (i.e., the value of day_34 is 0, 1, 2, and 2 for the first, second, third, and 

fourth days, respectively). We fitted two linear mixed models with coherent viewing as the 

response variable and day_34 as the predictor 1. The difference between the two models was that 

day_34 was categorical in one model but numeric in another. The model with categorical day_34 

assumed that the daily growth rate from the first to the third days might vary, while the model 

with numeric day_34 supposed that the daily growth rate was constant. The latter was a restricted 

version of the former. Thus, the likelihood ratio test (LRT) could be used to determine whether 

the model with numeric day_34 fitted the data the same as the model with categorical day_34. 

The LRT revealed that the two models fitted the data the same (χ2 = 0.70, df = 1, p = .40), 

indicating that the daily growth rate in coherent viewing was constant from the first to the third 

day. Thus, in subsequent analyses, we used the numeric day_34. 

To examine whether the increase in coherent metrics varied across students, we compared 

mixed models with and without the random effect of the day. There were increases from the first 

to the second days for coherent edit, read, and prompts, so we used a dummy day-related 

variable, not_first_day, which grouped the second, third, and fourth days together (i.e., for the 

first day, the value of not_first_day is 0, and for the other days, the value of not_first_day is 1). 

For coherent viewing, we used the day_34 variable described above. Table 3 shows the results of 

the mixture chi-square LRT. The evolution of coherent edits, read, and viewing varied across 

students, while the growth of coherent prompts did not. 

 

 
1 We considered linear and quadratic models with the raw day variable (i.e., day = 0, 1, 2, 3 for the first, 
second, third, and fourth days, respectively). With the raw day variable, the quadratic model fitted the 
data better than the linear model (χ2 = 5.39, df = 1, p = .02). However, the quadratic model with the raw 
day variable was not superior to the linear model with day_34 (χ2 = 2.13, df = 1, p = .14). 



 
 

Table 3 

Results of the mixture chi-square LRT for the random effect of the day 

 Model No. τ Deviance 
Test 
statistics 

 p from  

!!! !"! average 

Coherent reading Null 1 2026.3     
Full 2 2020.9 5.4 .069 .020 .043 

Coherent viewing Null 1 2129.9     
Full 2 2106.8 23.1 < .001 < .001 < .001 

Coherent edit  Null 1 2360.8     

Full 2 2300.8 60.0 < .001 < .001 < .001 
Coherent prompt Null 1 1288.7     

Full 2 1284.5 4.2 .120 .040 .080 
Note: Null model, only a random effect for intercept. Full model, containing random effects for 

intercept and day. No. τ, the number of random effects. 

3.3 The Influence of Domain Knowledge, Task Value, and Self-efficacy 

Tables 4 to 7 present the results of mixed models for coherent reading, viewing, edits, and 

prompts, respectively. The base model only included the day as the explanatory variable. Models 

1.1 and 1.2 contained domain knowledge and its interaction with the day. Models 2.1 and 2.2 had 

motivational factors and their interactions with the day. The final model only included variables 

that significantly predicted a coherent metric. 

Domain knowledge predicted all coherent metrics. Students with higher domain 

knowledge had more coherent edits and prompts and spent more time on coherent reading and 

viewing than those with lower domain knowledge on the first day. Table 5 shows that the random 

effect of the day on coherent viewing decreased from 2.52 to 2.31 from Model 1.1 (without the 

interaction between domain knowledge and day) to Model 1.2 (containing the interaction), 

indicating that domain knowledge explained 8.3% of the random effect of day on coherent 

viewing. The moderating effect was statistically significant at the .01 significance level (γ  = 

0.30, 95% and 90% bootstrapped confidence intervals were [-0.02 , 0.62] and [0.03, 0.57], 



 
 

respectively). On average, for students with one SD higher in domain knowledge, their increases 

in coherent viewing from the first to the third days was 3.14 minutes higher than the increase in 

students with one SD lower in domain knowledge 2. Compared with the average increase in 

coherent viewing (6.00 minutes), the moderation effect of domain knowledge might be at a 

medium level. 

Task value predicted coherent viewing (see Table 5). Students that valued the task spent 

more time on coherent viewing. In Table 6, the random effect of the day on coherent edits 

decreased from 0.42 to 0.36 from Model 2.1 (without the interaction between task value and day) 

to Model 2.2 (containing the interaction), indicating that task value explained 14.29% of the 

random effect. The moderating effect was statistically significant at the .05 significance level (γ = 

-0.39, 95% bootstrapped confidence intervals = [-0.76, -0.01]). The moderating effect indicates 

that students with high task value had fewer increases in coherent edits from the first to the 

second day. On average, for students with one SD higher in task value, their increase rate in 

coherent edits from the first to the second days was 65.12% of the increase rate in students with 

one SD lower in task value 3.  

Self-efficacy neither predicted any coherent metric nor moderated their changes over 

days. Its coefficient estimates were much smaller than the coefficient estimates of task value.

 
2 The 3.14 minutes was the product of 0.30 (the coefficient of the domain knowledge*day interaction in 
model 1.2 of Table 5), 2 (two days between the first and third days), 2.62 (the SD of domain knowledge 
in Table 1), and 2 (two SDs). 
3 The 65.12% was the natural exponential to the power of the product of -0.39 (the coefficient of the task 
value*day interaction in the final model of Table 6), 0.55 (the SD of task value in Table 1), and 2 (two 
SDs). 



 
 

Table 4 

The linear mixed model for coherent reading 

 Note: not_first_day = 0 if the first day; else not_first_day = 1. *, the 95% confidence intervals do not contain zero. 

 Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       

Intercept 6.93 [6.19, 7.70]* 6.91 [6.16, 7.67]* 6.91 [6.13, 7.65]* 6.94 [6.09, 7.72]* 6.91 [6.16, 7.72]* 6.91 [6.21, 7.59]* 

not_first_day 4.89 [3.44, 6.31]* 4.86 [3.34, 6.26]* 4.85 [3.38, 6.28]* 4.88 [3.39, 6.29]* 5.00 [3.54, 6.44]* 4.86 [3.44, 6.25]* 

domain knowledge  .44 [.12, .72]* .44 [.17, .73]*   .44 [.15, .73]* 

not_first_day*domain knowledge  .06 [−.49, .62]    

Task value    −.57 [−2.22, .89] −.65 [−2.13, 1.01]  

Self-efficacy    .23 [−1.00, 1.57] .28 [−.99, 1.48]  

not_first_day*Task value    −1.93 [−4.84, .80]  

not_first_day*Self-efficacy    −.15 [−2.57, 2.27]  

Random effects       

Intercept 6.33 5.21 5.21 6.15 6.30 5.21 

not_first_day 3.78 3.88 3.87 3.66 3.23 3.88 



 
 

Table 5 

The linear mixed model for coherent viewing 

Note: day_34 = 0 if the first day; day_34 = 1 if the second day; else day_34 = 2. *, the 95% confidence intervals do not contain zero. 

 

 

  

 Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       

Intercept 6.25 [5.30, 7.26]* 6.22 [5.30, 7.16]* 6.21 [5.22, 7.17]* 6.19 [5.15, 7.14]* 6.23 [5.29, 7.25]* 6.18 [5.22, 7.11]* 

day_34 2.99 [2.15, 3.82]* 2.97 [2.09, 3.78]* 2.96 [2.13, 3.81]* 3.05 [2.17, 3.87]* 3.00 [2.15, 3.87]* 3.00 [2.12, 3.87]* 

domain knowledge .57 [.16, .93]* .56 [.21, .93]*   .52 [.18, .85]* 

day_34*domain knowledge  .30 [−.02, .62]    

Task value    2.04 [.04, 3.88]* 1.99 [.17, 4.04]* 2.06 [.20, 3.77]* 

Self-efficacy    .66 [−.87, 2.36] .63 [−.89, 2.21]  

day_34*Task value    .33 [−1.37, 1.95]  

day_34*Self-efficacy    .60 [−.83, 2.05]  

Random effects       

Intercept 12.14 9.89 10.09 10.47 10.62 9.09 

day_34 2.90 2.52 2.31 2.78 2.67 2.31 



 
 

Table 6 

The log-linear mixed models with the Poisson distribution for coherent edits 

Note: not_first_day = 0 if the first day; else not_first_day = 1. *, the 95% confidence intervals do not contain zero. The coefficient is at 

the log scale of coherent edits. Taking the coefficient of domain knowledge in the final model as an example, holding other variables, 

one unit increase in domain knowledge means that coherent edits per hour were expected to increase e0.09 = 1.09 times. 

  

 Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       

Intercept 2.60 [2.46, 2.74]* 2.60 [2.46, 2.73]* 2.60 [2.47, 2.74]* 2.60 [2.45, 2.74]* 2.59 [2.46, 2.74]* 2.60 [2.47, 2.72]* 

not_first_day .68 [.47, .89]* .66 [.47, .86]* .68 [.48, .90]* .68 [.49, .88]* .70 [.50, .92]* .68 [.49, .87]* 

domain knowledge  .09 [.04, .14]* .10 [.05, .15]*   .09 [.04, .14]* 

not_first_day*domain knowledge  −.05 [−.13, .03]    

Task value    .01 [−.26, .29] .08 [−.21, .36] .05 [−.17, .29] 

Self-efficacy    .08 [−.16, .31] .08 [−.14, .31]  

not_first_day*Task value    -.38 [-.76, -.01]* -.39 [-.76 , -.02]* 

not_first_day*Self-efficacy    -.00 [-.28 , .31]  

Random effects       

Intercept 0.43 0.36 0.36 0.42 0.42 0.35 

not_first_day 0.42 0.42 0.42 0.42 0.36 0.37 



 
 

Table 7 

The log-linear mixed models with the Poisson distribution for coherent prompts 

Note: not_first_day = 0 if the first day; else not_first_day = 1. *, the 95% confidence intervals do not contain zero. The coefficient is at 

the log scale of coherent prompts. Taking the coefficient of domain knowledge in the final model as an example, holding other 

variables, one unit increase in domain knowledge means that coherent prompts per hour were expected to increase e0.11 = 1.12 times. 

  

 

 Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       

Intercept .91 [.74, 1.06]* .90 [.72, 1.04]* .89 [.73, 1.03]* .90 [.73, 1.06]* .89 [.72, 1.05]* .90 [.74, 1.04]* 

not_first_day 1.12 [.86, 1.43]* 1.12 [.87, 1.42]* 1.17 [.88, 1.52]* 1.13 [.89, 1.45]* 1.16 [.88, 1.55]* 1.12 [.88, 1.42]* 

domain knowledge  .11 [.05, .16]* .12 [.06, .18]*   .11 [.06, .17]* 

not_first_day*domain knowledge  −.07 [−.18, .05]    

Task value    .15 [−.17, .47] .18 [−.16, .50]  

Self-efficacy    .09 [−.14, .36] .11 [−.14, .39]  

not_first_day*Task 

value 

    −.15 [−.84, .46]  

not_first_day*Self-efficacy    −.10 [−.66, .36]  

Random effects       

Intercept 0.38 0.32 0.32 0.37 0.37 0.32 



 
 

4 Discussion 

SRL is a dynamic process that unfolds over time (Azevedo, Moos, et al., 2010; Winne & 

Hadwin, 2008), and thus, researchers have been increasingly interested in the temporal 

characteristics of SRL events (Greene et al., 2021; Molenaar & Järvelä, 2014; Paans et al., 2019). 

This study investigated how metacognitive strategy use evolved daily within an open-ended 

learning environment and whether students showed different rates of change. It also examined 

whether these differences were related to students' domain knowledge, task value, and self-

efficacy. 

4.1 The Evolution of Metacognitive Strategy Use (RQ1 + RQ2) 

The current study found that students' coherent actions increased over time, while their 

incoherent actions decreased, did not change, or experienced relatively fewer increases 

(depending on the type of action). The η2 ranged from .04 to .14. The range of effect size 

matches prior work, where the η2 of students' behavioral change over time fell between .01 to .22 

(Paans et al., 2019). The increased use of metacognitive strategies (operationalized as coherent 

actions) might be related to the increases in familiarity with the learning content (climate change) 

and environment (Betty's Brain). As the learning process unfolded, students knew more about 

climate change (this is supported by significant gains from the pretest scores to the posttest 

scores). Both the present and prior studies have found that domain knowledge was positively 

related to metacognitive strategy use (Li, 2019; Moos & Azevedo, 2008; Taub et al., 2014). 

Increases in domain knowledge might enhance students' capacity for applying metacognitive 

strategies. In addition to becoming more familiar with the learning material, learners also became 

more familiar with the interface features of Betty's Brain over time. Familiarity with Betty's 

Brain features enabled students to utilize the tools offered by the system effectively, such as 



 
 

adopting the advice that recommended individual book pages, having Betty take a quiz, and 

analyzing the quiz results to identify incorrect causal links.  

 The growth of coherent actions lessened after the first two days. One possible 

explanation may be that, after using Betty's Brain for two days, students were now relatively 

familiar with the features of Betty's Brain and may have determined what strategies they found 

helpful towards making progress on the learning task. Thus, their coherent actions became stable. 

Alternatively, the students in this study might not possess sufficient working memory capacity to 

continue improving the frequencies of coherent actions. Sixth graders' cognitive and 

metacognitive skills are still under development (de Bruin et al., 2011), and the application of 

metacognitive strategy requires effortful control of behavior (Efklides, 2011). Moreover, students 

might become bored with the task (Roscoe et al., 2013) and less willing to exert effortful control 

of behavior. Decreases in motivation might mitigate the effect of increases in domain knowledge. 

Nevertheless, this hypothesis needs further examination. 

Note that coherent prompts did not increase from the second to the fourth day, but 

incoherent prompts continued rising. Prompts recommended pages for reading, and incoherent 

prompts were those that students received but did not read the recommended pages. The results 

meant that students received an increased number of prompts from the system over days, but the 

number of prompts they followed each day remained stable. That is, they might select which 

prompts to follow. This may be a sign of more effective learning regulation compared to 

following all prompts provided by the system.   

The second research question focused on whether the evolution of metacognitive strategy 

use varied across students. The increases in the frequency of adopting reading prompts showed 

no individual differences, but we found variation across students in the growth of coherent edits, 



 
 

reading, and viewing. The individual differences in the growth of coherent edits and viewing 

were partially explained by students' domain knowledge and task value. We discuss these in the 

following sections. 

4.2 The Impact of Prior Domain Knowledge on Metacognitive Strategy Use (RQ3) 

Prior domain knowledge was positively associated with all types of metacognitive strategy use. 

This was in line with prior studies (Moos & Azevedo, 2008, 2009a; Taub & Azevedo, 2019). 

High domain knowledge allows learners to process novel information with less working memory 

capacity (Taub et al., 2014). Students with high domain knowledge might be able to apply more 

working memory resources to monitor and control activities and execute more coherent actions.  

The moderation effect of domain knowledge on the day was statistically significant for 

coherent viewing at the .10 significance level. The random effect of the day on coherent viewing 

decreased 8.3% after adding the moderation effect of domain knowledge to the model. The 

reason for this moderation effect might be that domain knowledge is associated with efficient 

learning (Alexander et al., 1994; Beier & Ackerman, 2005). High domain knowledge students 

might learn faster than low domain knowledge students, and the greater daily knowledge 

acquisition in climate change, in turn, led to greater increases in coherent viewing. Overall, the 

result suggests that domain knowledge may contribute to the evolution of metacognitive strategy 

use. Future research can examine this assumption by using larger sample sizes, measuring daily 

learning gains, and relating it to the evolution of metacognitive strategy use.  

4.3 The Impact of Motivation on Metacognitive Strategy Use (RQ4) 

In line with existing findings (Üner et al., 2020; Wolters & Pintrich, 1998), task value positively 

predicted the application of one metacognitive strategy: coherent viewing. Students who thought 



 
 

the task and science were important spent more time on coherent viewing than those with lower 

task value on the first day. The result suggests that starting the task with high value may drive 

students to evaluate their understanding and decide the next step based on the evaluation results. 

Students with higher task value had smaller increases in the frequency of coherent edits 

than those with lower task value. The reason may be their high value toward the task is not 

maintained through the learning process (Wigfield et al., 1997). When students devalue the 

activity, they may put less effort into monitoring and controlling their behavior and cognition 

(Wigfield et al., 2008). Thus, decreases in the value for the task may lead to smaller increases in 

coherent edits. It is unexpected that self-efficacy was not a significant predictor of metacognitive 

strategy use given prior work, as discussed below in sections 4.4 and 4.5.  

4.4 Implications 

This study contributes to our understanding of SRL as a series of events unfolding over time. We 

found that students evolved toward increased use of metacognitive strategies and decreased use 

of less effective behaviors. This result suggests that learners as young as sixth-grade students 

may be able to regulate behaviors in an open-ended learning environment adaptively. However, 

their adaptivity may be limited since the increases in metacognitive strategy use lessened after 

the first two days. The change in the magnitude of increases or decreases of SRL behaviors 

implies opportunities for adaptive scaffolding (De Backer et al., 2016). For example, in Betty's 

Brain, the number of coherent actions increased little after the first two days, but one-fourth to 

one-third of reading, viewing, and editing actions were still incoherent (see Figure 2). Thus, 

during these days, students may need scaffolding that differs from the first two days to enhance 

metacognitive strategy use. However, further investigation is needed to determine why increases 

in coherent actions tapered off and what scaffolding could help. 



 
 

This study found that task value explained the individual differences in the evolution of 

metacognitive strategy use, but self-efficacy did not. Moreover, self-efficacy was not related to 

the overall frequency of any metacognitive strategy use. Motivation have been viewed as factors 

that are worth adapting instruction to (Aleven et al., 2017; Shute & Zapata-Rivera, 2012). The 

current findings suggest that adapting metacognitive strategy scaffolding to task value may be 

better than adapting to self-efficacy. At least, it may not be beneficial to adapt scaffolding to task-

independent self-efficacy, which was measured in this study. 

Prior domain knowledge positively predicted the use of metacognitive strategy use, no 

matter which type of metacognitive strategy. This effect implies that it is necessary to provide 

learners with tailored scaffolding based on their domain knowledge in open-ended learning 

environments (Land, 2000). Learners with low prior knowledge need more support on utilizing 

the functions offered by open-ended learning environments. For example, in Betty's Brain, 

learners with low prior knowledge may need longer training on how to use this system. After 

they start learning activities in Betty's Brain, the system may provide them with scaffolding to 

interpret quiz results, extract causal relationships between concepts from the resource page, and 

transfer their understanding to the causal map. Furthermore, we found a positive association 

between prior knowledge and the use of prompts (see Table 7), which indicates that learners with 

low prior knowledge may be less likely to utilize the support of Betty's Brain. Thus, instructors 

and learning systems may particularly demonstrate and emphasize the usefulness of the support 

to learners with low prior knowledge. For high prior knowledge learners, the system may reduce 

the spontaneous support and provide support only when they request, given that the expertise 

reversal effect suggests that superfluous support may hamper high-domain knowledge learners' 

learning (Kalyuga, 2007).  



 
 

The prompt in Betty's Brain was adaptive because it was triggered in particular 

conditions, such as missing a quiz question multiple times (Biswas et al., 2016). Clarebout and 

Elen (2008) found that students were more inclined to take adaptive advice on using tools than 

random advice during open-ended learning. The current study found that students only used a 

stable number of prompts, even though they received increasing prompts over days. Thus, 

offering more advice to learners does not necessarily increase the frequency of advice adoption, 

even though the advice is adaptive. Moreover, the increasing number of unused prompts raises 

the concern that excessive prompts may frustrate students and interfere with learning. If so, the 

prompt triggering mechanism should ensure that learners will not receive excessive prompts. 

This may be achieved by restricting the number of prompts that the system offers to learners 

within a period and avoiding duplicate prompts. 

4.5 Limitations and Further Research 

One limitation of this study is the lack of student-level demographics in this sample. We 

collected school-level demographics, which we expected to resemble the sample demographics 

closely, but the sample's specific race, age, and gender distributions were unknown. This is an 

acknowledged weakness since prior research has shown that demographic differences relate to 

metacognition and SRL. Specifically, prior research has shown that metacognitive skills are still 

developing in middle school students (de Bruin et al., 2011), but that gendered differences in 

these constructs have already begun to emerge (see discussion in Pajares, 2002). Velayutham et 

al.'s (2012) research suggests that task value shows gendered differences in SRL, for example, 

but Schnell et al.'s (2015) work on self-efficacy and SRL strategies did not find a moderating 

effect of gender. Although gender was well-balanced in this study, our results may still be 



 
 

obscuring important differences that might be relevant to identifying which SRL interventions 

are most likely to help. 

Similarly, previous research has shown differences in self-regulation strategies by 

students from different ethnic backgrounds. For help-seeking behaviors, these demographic 

differences have been studied at both the student and the school level (Karumbaiah et al., 2021; 

Schenke et al., 2015). While the driving forces for these differences are not fully understood, 

they do suggest the importance of incorporating demographic variables into future research.  

Future research should make greater efforts to incorporate demographics into analyses. 

For example, researchers may examine whether demographics explain individual differences in 

the evolution of metacognitive strategy use and moderate the relationships between other 

variables and metacognitive strategy use. Such results may deepen the understanding of the role 

of demographic factors in the dynamic SRL process and generate insights about adapting support 

to these factors. Collecting this demographic information is also vital to other kinds of analyses, 

for example, predictive modeling, as it is the only way to ensure against algorithmic biases 

(Paquette et al., 2020).  

Studies have found that self-efficacy is one of the most critical factors that impact 

learning (Chin-Chung et al., 2011; Moos & Azevedo, 2009b; Pajares, 1996a). However, in the 

present study, neither its main effect nor its interaction with the day was significant on any 

coherence metric. A possible explanation might be that the measure of self-efficacy in this study 

was toward science in general rather than task-specific. Compared with task-specific self-

efficacy, domain self-efficacy measures have no or weaker predictive power to task performance 

(Liu et al., 2020; Pajares, 1996b; Ramos Salazar & Hayward, 2018). When students respond to 

the science self-efficacy items, they may not have knowledge about the learning topic (e.g., 



 
 

climate change) in mind (Pajares, 1996a). Further research may compare the associations 

between metacognitive strategy use and domain-specific as well as task-specific self-efficacy. 

Another possible explanation is that students' self-efficacy expectations may not fit the Betty's 

Brain context. Betty's Brain utilizes a learning-by-teaching paradigm and is open-ended (Biswas 

et al., 2016). It supports the development of SRL skills by requiring students to plan, regulate, 

and manage their activities. Self-efficacy is built on previous experiences (Bandura, 1997). In 

this study, previous experiences might not fit the current task because students might have little 

experience with learning environments similar to Betty's Brain. Thus, when investigating the role 

of self-efficacy in SRL, researchers need to consider how self-efficacy items touch on the 

learning content and environment. 

This study did find associations between task value and metacognitive strategy use, but 

the overall effect of task value was small. The reason may be that sixth-grade students' 

metacognitive skills are under development (de Bruin et al., 2011). The relations between task 

value and regulating activities may gradually grow as children learn how to regulate their 

behavior. We expect that a more substantial effect of task value may be found in older 

populations, such as college students. Moreover, this study did not decompose task value into 

different facets, such as incentive and attainment value, utility value, and cost (Wigfield & 

Eccles, 2000), because of limited task value items. Different value facets have different 

associations with SRL (Wigfield et al., 2008). The effect of task value on the evolution of 

metacognitive strategy use may also depend on the exact facet.  

Another limitation is that this study viewed motivation as static during the task. However, 

motivation may fluctuate as the learning process unfolds (Bernacki et al., 2015; Kalyuga, 2007). 

Furthermore, motivation is also a target of regulation and serves as both predictors and outcomes 



 
 

of self-regulation activities (Zimmerman & Schunk, 2008). The association between 

metacognitive strategy use and motivation may also be bidirectional during learning (Pavlik Jr, 

2013). Further studies may measure both metacognitive strategy use and motivation at multiple 

points and investigate their mutual influence in evolution.  

Metacognitive strategies generally include goal setting, planning, self-monitoring, 

control, and evaluation (Dent & Koenka, 2016). Metacognitive strategy use in this study mainly 

covered monitoring and control. The evolution of other metacognitive strategy use may be 

different from self-monitoring and control activities. For instance, learners' metacognitive 

behaviors evolved toward deep-level goal setting and monitoring activities but not planning and 

evaluation in one prior study (de Backer et al., 2016). Consequently, the role of domain 

knowledge and motivation in the evolution of metacognitive strategy use may depend on the type 

of metacognitive strategies.  

4.6 Conclusion 

This study supports the continued calls for temporal analyses of SRL events (Azevedo, 2014; 

Hadwin, 2021; Molenaar & Järvelä, 2014; Winne, 2010). Specifically, it shows how 

metacognitive strategy use evolved daily in an open-ended learning environment. Students used 

metacognitive strategies more frequently on the second day of learning than on the first day, 

implying students' adaptivity in metacognitive strategy use. The evolution of metacognitive 

strategy use varied across students, and task value and prior domain knowledge partially 

explained this variation. Task value and prior domain knowledge positively predicted the overall 

metacognitive strategy use. The results suggest further investigations into the role of motivation 

and prior domain knowledge in the temporal evolution of SRL events. The findings imply that 

learners may need different scaffolding at different task-solving phases. Adapting scaffolding to 



 
 

task-independent self-efficacy may not be useful. It may be beneficial to nudge those with low 

prior knowledge to utilize the scaffolding.  
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Appendix: Examples of knowledge test questions 

An example of the multiple-choice question: 

Question: Light from the sun comes to the earth and its energy is absorbed by the atmosphere. 

What is the relation between this absorbed light energy and heat energy absorbed by the 

earth?  

a. Absorbed light energy increases the amount of absorbed heat energy.  

b. Absorbed light energy decreases the amount of absorbed heat energy.  

c. Absorbed light energy does not change the amount of absorbed heat energy.  

d. Absorbed light energy is not related to absorbed heat energy. 

(Correct answer is a.) 

 

An example of the short answer question:  

Question: We know that deforestation (cutting down a large number of trees) increases the 

earth's absorbed heat energy. Explain, step-by-step, how deforestation increases the earth's 

absorbed heat energy.  

Step 1: Deforestation reduces the number of trees on the earth, so more deforestation would 

decrease vegetation. 

Step 2: When vegetation decreases,      

Step 3:         

Step 4:         

 

 

 

 


